ANALYSIS OF SURVIVAL AND MORPHOMETRIC PARAMETERS OF LOACH EMBRYOS AND PRELARVAE UNDER THE ACTION OF THE POLYETHYLENEGLYCOL DERIVATIVE POLYMERIC NANOCARRIER
DOI: http://dx.doi.org/10.30970/10.30970/sbi.1802.764
Abstract
Background. Our previous studies have shown a minor embryotoxic effect of polymeric poly(VEP-co-GMA)-graft-mPEG carrier on Missgurnus fossilis L. embryos and prelarvae. At the same time, it was found that a 3-day exposure to 10-15 M polymer carrier slowed developing, which is characterized by a delayed hatching of larvae. However, in the 10-day experiment on loach larvae exposed to polymeric carrier, anomalies and defects of development have not been identified. The aim of this work was to analyze the embryos and prelarvae survival, as well as determine the morphometric indicators of the loach embryos under the action of a PEG-modified polymer carrier.
Materials and Methods. Ovulation in loach females (Misgurnus fossilis L.) was stimulated by intramuscular injection of female chorionic gonadotropin (500 units), eggs were obtained 36 h after stimulation, fertilized in Petri dishes with a suspension of sperm according to A. A. Neifach. The stages of development were observed visually under a binocular microscope MBS-9 with a photo camera in a real-time mode. The experimental embryos were incubated in Goltfreter’s solution with the addition of PEG-containing carrier to a final concentration of 10 and 100 μmol/L. The morphological development of the embryo groups was evaluated according to the T. Fujimoto development tables (2004), and the morphological parameters (diameter and area of roes, blastomers, embryos, embryo sac and blastodisk) were measured using ImageJ and Photoshop (CC 2014v15) programs.
Results. Addition of the 10 μmol/L PEG-containing carrier to the medium initiated significant positive changes in the survival of loach embryos and prelarvae, in contrast to exposure to 100 μmol/L carrier. A significant increase in the area and diameter of blastomers and the embryos themselves under the influence of 100 μmol/L PEG carrier was established, which may indicate swelling of the embryos and a disruption of water-salt exchange that causes the early death of embryos.
Conclusions. (1) Low embryotoxicity of the PEG-polymer was confirmed on the studied model of the loach embryos. Based on the obtained data and the original data of J. Maes et al. (2) PEG is an attractive polymeric carrier for the delivery of a variety of compounds to both embryos and prelarvae as well as other model subjects. Despite the fact that we investigated only two concentrations of the PEG-containing carrier, it is quite likely that these concentrations of the carrier are (3) biologically active in themselves and, therefore, a thorough selection of the PEG-carrier concentration for each objective of the model is needed.
Keywords
Full Text:
PDFReferences
Adepu, S., & Ramakrishna, S. (2021). Controlled drug delivery systems: current status and future directions. Molecules, 26(19), 5905. doi:10.3390/molecules26195905 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Alamro, F. S., Mostafa, A. M., Abu Al-Ola, K. A., Ahmed, H. A., & Toghan, A. (2021). Synthesis of Ag nanoparticles-decorated CNTs via laser ablation method for the enhancement the photocatalytic removal of naphthalene from water. Nanomaterials, 11(8), 2142. doi:10.3390/nano11082142 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Avramović, N., Mandić, B., Savić-Radojević, A., & Simić, T. (2020). Polymeric nanocarriers of drug delivery systems in cancer therapy. Pharmaceutics, 12(4), 298. doi:10.3390/pharmaceutics12040298 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Bagday, А., Zdvizhkov, Y., Mandzynets, S., & Bura, M. (2014). Morphological aspects of influence of newlysynthesized polymers on the development of loach embryos and larvae during early embryogenesis. Visnyk of the Lviv University. Series Biology, 68, 69-78. (In Ukrainian) Google Scholar | ||||
| ||||
Bantle, J. A., Finch, R. A., Fort, D. J., Stover, E. L., Hull, M., Kumsher-King, M., & Gaudet-Hull, A. M. (1999). Phase III interlaboratory study of FETAX part 3. FETAX validation using 12 compounds with and without an exogenous metabolic activation system. Journal of Applied Toxicology, 19(6), 447-472. doi:10.1002/(sici)1099-1263(199911/12)19:6<447::aid-jat601>3.0.co;2-4 Crossref ● Google Scholar | ||||
| ||||
Boіko, N., Celevycz, M., & Sanagurski, D. (2002). The heavy metal ion influence on the Na+, K+-АТPase activity and the dynamic of transmembrane potential of loach embryos. Visnyk of the Lviv University. Series Biology, 29, 25-31. (In Ukrainian) Google Scholar | ||||
| ||||
Chan, J., Bayliss, P. E., Wood, J. M., & Roberts, T. M. (2002). Dissection of angiogenic signaling in zebrafish using a chemical genetic approach. Cancer Cell, 1(3), 257-267. doi:10.1016/s1535-6108(02)00042-9 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Dardeer, H. M., Toghan, A., Zaki, M. E. A., & Elamary, R. B. (2022). Design, synthesis and evaluation of novel antimicrobial polymers based on the inclusion of polyethylene glycol/TiO2 nanocomposites in cyclodextrin as drug carriers for sulfaguanidine. Polymers, 14(2), 227. doi:10.3390/polym14020227 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Fawzy, A., & Toghan, A. (2020). Unprecedented treatment strategy of aquatic environments: oxidative degradation of penicillin G by chromium trioxide in acidic media and the impact of metal ion catalysts: kinetics and mechanistic insights. American Chemical Society Omega, 5(50), 32781-32791. doi:10.1021/acsomega.0c05288 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Fort, D. J., Stover, E. L., Farmer, D. R., & Lemen, J. K. (2000). Assessing the predictive validity of frog embryo teratogenesis assay - Xenopus (FETAX). Teratogenesis, Carcinogenesis, and Mutagenesis, 20(2), 87-98. doi:10.1002/(sici)1520-6866(2000)20:2<87::aid-tcm4>3.0.co;2-6 Crossref ● Google Scholar | ||||
| ||||
Fujimoto, T., Kataoka, T., Otani, S., Saito, T., Aita, T., Yamaha, E., & Arai, K. (2004). Embryonic stages from cleavage to gastrula in the loach Misgurnus anguillicaudatus. Zoological Science, 21(7), 747-755. doi:10.2108/zsj.21.747 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Goyda, О. А. (1993). Biofizicheskiye aspekty rannego ontogeneza zhivotnykh [Biophysical aspects of animal early ontogenesis]. Kiev: Naukova dumka. (In Russian) Google Scholar | ||||
| ||||
Higashi, T., Morita, K., Song, X., Zhu, J., Tamura, A., Yui, N., Motoyama, K., Arima, H., & Li, J. (2019). One-pot synthesis of cyclodextrin-based radial poly[n]catenanes. Communications Chemistry, 2(1), 78. doi:10.1038/s42004-019-0180-x Crossref ● Google Scholar | ||||
| ||||
Jalali, M. A., Sirmandi, H. B., & Hatamzadeh, A. (2017). Effects of carbohydrate source and polyethylene glycol on maturation and germination of somatic embryos in walnut (Juglans regia L.). Journal of Crop Science and Biotechnology, 20(1), 29-35. doi:10.1007/s12892-016-0089-1 Crossref ● Google Scholar | ||||
| ||||
Knop, K., Hoogenboom, R., Fischer, D., & Schubert, U. S. (2010). Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angewandte Chemie International Edition, 49(36), 6288-6308. doi:10.1002/anie.200902672 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Li, J., & Ma, S. (2013). Survival analysis in medicine and genetics. New York: Chapman and Hall/CRC. doi:10.1201/b14978 Crossref ● Google Scholar | ||||
| ||||
Lu, R.-M., Hwang, Y.-C., Liu, I.-J., Lee, C.-C., Tsai, H.-Z., Li, H.-J., & Wu, H.-C. (2020). Development of therapeutic antibodies for the treatment of diseases. Journal of Biomedical Science, 27(1). doi:10.1186/s12929-019-0592-z Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Maes, J., Verlooy, L., Buenafe, O. E., de Witte, P. A. M., Esguerra, C. V., & Crawford, A. D. (2012). Evaluation of 14 organic solvents and carriers for screening applications in zebrafish embryos and larvae. PLoS One, 7(10), e43850. doi:10.1371/journal.pone.0043850 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Mitina, N. Ye., Riabtseva, A. O., Garamus, V. M., Lesyk, R. B., Volyanyuk, K. A., Izhyk, O. M., & Zaichenko, O. S. (2020). Morphology of the micelles formed by a comb-like PEG-containing copolymer loaded with antitumor substances with different water solubilities. Ukrainian Journal of Physics, 65(8), 670-678. doi:10.15407/ujpe65.8.670 Crossref ● Google Scholar | ||||
| ||||
Moreira, D. A., Santos, S. D., Leiro, V., & Pêgo, A. P. (2023). Dendrimers and derivatives as multifunctional nanotherapeutics for Alzheimer's disease. Pharmaceutics, 15(4), 1054. doi:10.3390/pharmaceutics15041054 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Nakagawa, M., & Ueno, K. (2003). Production of chimeric loach by cell transplantation from genetically pigmented to orange embryos. Zoological Science, 20(3), 333-338. doi:10.2108/zsj.20.333 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Nam, Y. K., Noh, J. K., Cho, Y. S., Cho, H. J., Cho, K.-N., Kim, C. G., & Kim, D. S. (2001). Dramatically accelerated growth and extraordinary gigantism of transgenic mud loach Misgurnus mizolepis. Transgenic Research, 10(4), 353-362. doi:10.1023/a:1016696104185 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Ooya, T., Arizono, K., & Yui, N. (2000). Synthesis and characterization of an oligopeptide - terminated polyrotaxane as a drug carrier. Polymers for Advanced Technologies, 11(8-12), 642-651. doi:10.1002/1099-1581(200008/12)11:8/12<642::aid-pat15>3.0.co;2-8 Crossref ● Google Scholar | ||||
| ||||
Pasut, G., Sergi, M., & Veronese, F. M. (2008). Anti-cancer PEG-enzymes: 30 years old, but still a current approach. Advanced Drug Delivery Reviews, 60(1), 69-78. doi:10.1016/j.addr.2007.04.018 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Popovych, M. V., Shalai, Ya. R., Hreniukh, V. P., Kulachkovskyy, O. R., Mandzynets, S. M., Mitina, N. E., Zaichenko, O. S., & Babsky, A. M. (2021). Effect of thiazole derivative complexed with nanoscale polymeric carriers on cellular ultrastructure of murine lymphoma cells in vivo. Studia Biologica, 15(2), 15-24. doi:10.30970/sbi.1502.653 Crossref ● Google Scholar | ||||
| ||||
Santos, E. C. da S., Somfai, T., Appeltant, R., Dang-Nguyen, T. Q., Noguchi, J., Kaneko, H., & Kikuchi, K. (2017). Effects of polyethylene glycol and a synthetic ice blocker during vitrification of immature porcine oocytes on survival and subsequent embryo development. Animal Science Journal, 88(8), 1042-1048. doi:10.1111/asj.12730 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Sears, M. E., & Genuis, S. J. (2012). Environmental determinants of chronic disease and medical approaches: recognition, avoidance, supportive therapy, and detoxification. Journal of Environmental and Public Health, 2012, 356798. doi:10.1155/2012/356798 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Semoсhko, О., Bura, М., Mandzynets, S., Ferensovich, Y., Bilyj, О., & Sanagurski, D. (2010). Morphological changes loach embryos and larvae Misgurnus fossilis L. for action with led blue type light. Bіophysical Bulletin, 24, 103-10. Retrieved from https://periodicals.karazin.ua/biophysvisnyk/article/view/3998/3557 (In Ukrainian) Google Scholar | ||||
| ||||
Smyth, H. F. Jr, Carpenter, C. P., & Weil, C. S. (1950). The toxicology of the polyethylene glycols. Journal of the American Pharmaceutical Association (Scientific Ed.), 39(6), 349-354. doi:10.1002/jps.3030390615 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Somfai, T., Nakai, M., Tanihara, F., Noguchi, J., Kaneko, H., Kashiwazaki, N., Egerszegi, I., Nagai, T., & Kikuchi, K. (2013). Comparison of ethylene glycol and propylene glycol for the vitrification of immature porcine oocytes. Journal of Reproduction and Development, 59(4), 378-384. doi:10.1262/jrd.2013-015 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Stasolla, C., van Zyl, L., Egertsdotter, U., Craig, D., Liu, W., & Sederoff, R. R. (2003). The effects of polyethylene glycol on gene expression of developing white spruce somatic embryos. Plant Physiology, 131(1), 49-60. doi:10.1104/pp.015214 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Steiner, T., & Saenger, W. (1996). Crystal structure of anhydrous hexakis-(2,3,6-tri-O-methyl)-cyclomaltohexaose (permethyl-α-cyclodextrin) grown from hot water and from cold NaCl solutions. Carbohydrate Research, 282(1), 53-63. doi:10.1016/0008-6215(95)00364-9 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Sung, Y. K., & Kim, S. W. (2020). Recent advances in polymeric drug delivery systems. Biomaterials Research, 24(1), 12. doi:10.1186/s40824-020-00190-7 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Yan, L., Shen, J., Wang, J., Yang, X., Dong, S., & Lu, S. (2020). Nanoparticle-based drug delivery system: a patient-friendly chemotherapy for oncology. Dose-Response, 18(3), 155932582093616. doi:10.1177/1559325820936161 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Yang, C., Liu, H.-Z., & Fu, Z.-X. (2012). Effects of PEG-liposomal oxaliplatin on apoptosis, and expression of cyclin A and cyclin D1 in colorectal cancer cells. Oncology Reports, 28(3),1006-1012. doi:10.3892/or.2012.1868 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Yui, N., Ooya, T., & Kumeno, T. (1998). Effect of biodegradable polyrotaxanes on platelet activation. Bioconjugate Chemistry, 9(1), 118-125. doi:10.1021/bc970189c Crossref ● PubMed ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Marta Bura, Oleg Hohol, Yaryna Shalai, Liliya Batyuk, Svitlana Mandzynets, Oleksandr Zaichenko
This work is licensed under a Creative Commons Attribution 4.0 International License.