INDOLILACETIC (IAA) AND ABSCISIC (ABA) ACIDS BY GROWING PROCESS OF MAIZE STEM INTERNODES (ZEA MAYS L.)

M. M. Shcherbatyuk, K. M. Sytnik


DOI: http://dx.doi.org/10.30970/sbi.0401.072

Abstract


Published data about phytohormonal regulation of growth processes of the stem were analyzed. We investigated the content of free and bound forms of indolilacetic and abscisic acids in the internodes of growing maize stem on the stage of five and seven leaves (active growth), and eleven leaves (cessation of stem growth, the beginning of the panicle flowering period). It was found that the shoot of maize is characterized by high content of free form of indolilacetic acid in the middle and upper internodes formed with physiologically young tissue. A significant concentration of bound forms indolilacetic acid is noted in the lower internodes and in zone of differentiation of individual internode, but rapidly growing internodes contains relatively high amounts of conjugated forms of indolilacetic acid. High concentration of free and bound forms of abscisic acid is marked for the lower internodes. The top internodes contain minimum level of free-form and a substantial amount of bound form. A clear difference it was showed in the balance of phytohormones in growing zones of individual internode. A tissue of elongation zone is the richest of auxi­ne, for this tissue also showed a significant content of free form of abscisic acid.


Keywords


ABA, intercalary meristem, intercalary growth, IAA, Zea mays L., internode, stem

References


1. Кулаева О.Н., Прокопцева О.С. Новейшие достижения в изучении механизма действия фитогормонов. Биохимия, 2004; 69(3): 293-310.

2. Полевой В.В. Физиология целостности растительного организма. Физиология растений, 2001; 48(4): 631-643.

3. Рокицкий П.Ф. Биологическая статистика. Минск: Вышэйшая школа, 1967. 328 с.

4. Романов Г.А., Медведев С.С. Ауксины и цитокинины в развитии растений. Последние достижения в исследовании фитогормонов: ΙΙ Междунар. симпоз. (Прага, Чехия, 7-12 июля 2005 г.). Физиология растений, 2006, 53(2): 309-319.

5. Ситник К.М., Мусатенко Л.І., Васюк В.А. та ін. Гормональний комплекс рослин і грибів. Київ: Академперіодика, 2003. 186 с.

6. Уоринг Ф. Филлипс И. Рост растений и дифференцировка. Москва: Мир, 1984. 512 с.

7. Физиология сельскохозяйственных растений. Т. 5. Физиология кукурузы и риса. Под ред. Рубина Б.А. Москва: Изд-во Моск. ун-та, 1969. 416 с.

8. Цыганкова В.А., Галкина Л.А., Мусатенко Л.И., Сытник К.М. Генетический и эпигенетический контроль роста и развития растений. Гены биосинтеза ауксинов и ауксин-регулируемые гены, контролирующие деление и растяжение клеток растений. Біополімери і клітина, 2005; 21(2): 107-133.
https://doi.org/10.7124/bc.0006E2

9. Adams P.A., Ross M.A. Interaction of indolacetic acid and gibberellic acid in the short-term growth kinetics of Oat stem segments. Plant Physiology, 1985; 73(3): 566-568.
https://doi.org/10.1104/pp.73.3.566
PMid:16663259 PMCid:PMC1066507

10. Aloni R. Role of Auxin and Gibberellin in Differentiation of Primary Phloem Fibers. Plant Physiology, 1979; 63(4): 609-614.
https://doi.org/10.1104/pp.63.4.609
PMid:16660777 PMCid:PMC542882

11. Dörfling K. Das Hormonsystem der Pflanzen. Stuttgart: Georg Thieme Verlag, 1983. 236 с.

12. Fisher J.B. Development of the intercalary meristem of Cyperus alternifolius. American Journal of Botany, 1970; 57(6): 691-703.
https://doi.org/10.2307/2441293

13. Fisher J.B. Control of intercalary meristem of Cyperus alternifolius. American Journal of Botany, 1970; 57(9): 1017-1026.
https://doi.org/10.1002/j.1537-2197.1970.tb09903.x

14. Kende H., Zeevaart J. The five "classical" plant hormones. The Plant Cell, 1997; 9(7): 1197-1210.
https://doi.org/10.1105/tpc.9.7.1197
PMid:12237383 PMCid:PMC156991

15. LeNoble M.E., Spollen W.G., Sharp R.E. Maintenance of shoot growth by endogenous ABA: genetic assessment of the involvement of ethylene suppression. Journal of Experimental Botany, 2004; 55(395): 237-245.
https://doi.org/10.1093/jxb/erh031
PMid:14673028

16. Normanly J. Auxin metabolism. Physiologia Plantarum, 1997; 100(5): 431-442.
https://doi.org/10.1111/j.1399-3054.1997.tb03047.x

17. Rapoport E.N., Heller K.E., Dayanandan P. et al. Role of indole-3-acetic acid and gibberellin in the control of internodal elongation in Avena stem segments. Plant Physiology, 1978; 62(5): 804-811.
https://doi.org/10.1104/pp.62.5.807
PMid:16660611

18. Sharp R.E., LeNoble M.E. ABA, ethylene and the control of shoot and root growth under water stress. Journal of Experimental Botany, 2002; 53(366): 33-37.
https://doi.org/10.1093/jexbot/53.366.33

19. Spollen W.G., LeNoble M.E., Samuels T.D. et al. Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. Plant Physiology, 2000; 122(4): 967-976.
https://doi.org/10.1104/pp.122.3.967
PMid:10712561 PMCid:PMC58933

20. Taiz L., Zeiger E. Plant Physiology. Sunderland, Massachusetts: Sinauer Associates Inc. Publisher, 2003. 623 с.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2010 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.