APPLICATION OF MULTI-MARKER APPROACH FOR ASSESSMENT OF STRESS SYNDROME IN TRANSPLANTED MUSSELS DREISSENA POLYMORPHA

H. I. Falfushynska, L. L. Gnatyshyna, O. B. Stoliar, O. Dedourge-Geffard, A. Geffard


DOI: http://dx.doi.org/10.30970/sbi.0401.066

Abstract


Zebra mussels Dreissena polymorpha were transferred for 14, 28, 60 and 120 days from their reference site (C) to sites with agricultural pollution (A), industrial pollution from the alcohol industry (I1), or manufactured wastes (I2). The aim for that was to determine their ability to reflect various types of stressful conditions. General temporal patterns of mussels were confirmed by Centroid grouping and Discriminant Function analysis of the battery of their biochemical markers. After 14 days of transplantation, mussels demonstrated most prominent inter-site differences. In site A, a decreasing of the activity of oxidative defense enzymes took place, demonstrating weak stress response. In both sites I, increased levels of lipid peroxidation, metallothioneins and ethoxyresorufin-O-deethylase indicated oxidative injury, pollution by heavy metals, and persistent organic compounds, respectively. Low cholinesterase activity was detected in both C and B sites, showing the pollution by agricultural discharges. Prolonged exposure to polluted environment provoked the endocrine disruption (high levels of vitello­genin-like proteins), oxidative stress and decrease of glutathione and metallothionein concentrations, especially in the industrial sites.


Keywords


Dreissena polymorpha, oxidative stress, biomarkers of exposure, pollution, field transplantation

Full Text:

PDF

References


1. Фальфушинська Г.І., Гнатишина Л.Л., Прийдун Х.Б., Столяр О.Б. Металотіонеїни дрейсени Dreissena polymorpha як біохімічні маркери забруднення середовища. Праці Наукового товариства імені Т.Шевченка. Хемія і Біохемія, 2008; 21: 282-290.

2. Aebi H. Catalase. Іn: Bergmeyer H. U. (Ed.) Methods of Enzymatic Analysis. London: Academic Press, 1974: 671-684.
https://doi.org/10.1016/B978-0-12-091302-2.50032-3

3. Anderson M.E. Determination of glutathione and glutathione disulfide in biological samples. Methods in Enzymology, 1985; 113: 548-555.
https://doi.org/10.1016/S0076-6879(85)13073-9

4. Beauchamp C., Fridovich I. Superoxide dismutase: improved assay and an assay applicable to acrylamide gels. Analytical Biochemistry, 1971; 44(1): 276-287.
https://doi.org/10.1016/0003-2697(71)90370-8

5. Binelli A., Riva C., Provini A. Biomarkers in Zebra mussel for monitoring and quality assessment of Lake Maggiore (Italy). Biomarkers, 2007; 12(4): 349-368.
https://doi.org/10.1080/13547500701197412
PMid:17564842

6. Blaise C., Gagne F., Pellerin J., Hansen P.D. Determination of Vitellogenin-Like Properties in Mya arenaria Hemolymph (Saguenay Fjord, Canada): A Potential Biomarker for Endocrine Disruption. Environmental Toxicology, 1999; 14(5): 455-465.
https://doi.org/10.1002/(SICI)1522-7278(199912)14:5<455::AID-TOX2>3.0.CO;2-8

7. Bocchetti R., Regoli F. Seasonal variability of oxidative biomarkers, lysosomal parameters, metallothioneins and peroxisomal enzymes in the Mediterranean mussel Mytilus galloprovincialis from Adriatic Sea. Chemosphere, 2006; 65(6):913-21.
https://doi.org/10.1016/j.chemosphere.2006.03.049
PMid:16678235

8. Cinti D.L., Moldeus P., Schenkman J.B. Kinetic parameters of drug metabolizing enzymes in Ca2+-sedimented microsomes from rat liver. Biochemical Pharmacology, 1972; 21(24): 3249-3256.
https://doi.org/10.1016/0006-2952(72)90089-5

9. Cossu C., Doyotte A., Babut M. et al. Antioxidant biomarkers in freshwater bivalves, Unio tumidus, in response to different contamination profiles of aquatic sediments. Ecotoxicology and Environmental Safety, 2000; 45(2): 106-121.
https://doi.org/10.1006/eesa.1999.1842
PMid:10648130

10. De Lafontaine Y., Gagne F., Blaise C. et al. Biomarkers in zebra mussels (Dreissena polymorpha) for the assessment and monitoring of water quality of the St Lawrence River (Canada). Aquatic Toxicology, 2000; 50(1-2): 51-71.
https://doi.org/10.1016/S0166-445X(99)00094-6

11. Ellman G.L., Courtney K.D., Andres V.J., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 1961; 7: 88-95.
https://doi.org/10.1016/0006-2952(61)90145-9

12. Falfushynska H.I., Delahaut L., Stolyar O.B. et al. Multi-biomarkers approach in different organs of Anodonta cygnea from the Dnister basin (Ukraine). Archives of Environmental Contamination and Toxicology, 2009; 57(1): 86-95.
https://doi.org/10.1007/s00244-008-9234-2
PMid:18841409

13. Falfushynska H.I., Romanchuk L.D., Stolyar O.B. Seasonal and spatial comparison of metallothioneins in frog Rana ridibunda from feral populations. Ecotoxicology, 2008; 17(8): 781-788.
https://doi.org/10.1007/s10646-008-0229-6
PMid:18528754

14. Falfushynska H.I., Stoliar O.B. Function of metallothioneins in carp Cyprinus carpio from two field sites in Western Ukraine. Ecotoxicology and Environmental Safety, 2009; 72(5): 1425-1432.
https://doi.org/10.1016/j.ecoenv.2009.02.013
PMid:19356800

15. Frenzilli G., Bocchetti R., Pagliarecci M. et al. Time-course evaluation of ROS-mediated toxicity in mussels, Mytilus galloprovincialis, during a field translocation experiment. Marine Environmental Research, 2004; 58(2-5): 609-613.
https://doi.org/10.1016/j.marenvres.2004.03.050
PMid:15178087

16. Gagnon C., Gagne F., Turcotte P. et al. Exposure of caged mussels to metals in a primary-treated municipal wastewater plume. Chemosphere, 2006; 62(6): 998-1010.
https://doi.org/10.1016/j.chemosphere.2005.06.055
PMid:16143365

17. Geffard A., Amiard-Triquet C., Amiard J.C. Do seasonal changes affect metallothionein induction by metals in mussels, Mytilus edulis? Ecotoxicology and Environmental Safety, 2005; 61(2): 209-220.
https://doi.org/10.1016/j.ecoenv.2005.01.004
PMid:15883092

18. Klotz A.V., Stegeman J.J., Walsh C. An alternative 7-Ethoxyresorufin O-Deethylase activity assay: a continuous visible spectrophotometric method for measurement of cytochrome P-450 monooxygenase activity. Analytical Biochemistry, 1984; 140(1): 138-145.
https://doi.org/10.1016/0003-2697(84)90144-1

19. Lebedenets M., Sprynskyy M., Kowalkowski T., Buszewski B. State of environment in the Dniester River basin (West Ukraine). Environmental Science and Pollution Research, 2004; 11 (4): 279-280.
https://doi.org/10.1007/BF02979638

20. Lionetto M.G., Caricato R., Giordano M.E. et al. Integrated use of biomarkers (acetylcholinesterase and antioxidant enzymes activities) in Mytilus galloprovincialis and Mullus barbatus in an Italian coastal marine area. Marine Pollution Bulletin, 2003; 46(3): 324-330.
https://doi.org/10.1016/S0025-326X(02)00403-4

21. Lowry O.H., Rosebrough H.J., Farr A.L., Randall R.J. Protein measurement with Folin phenol reagent. Journal of Biological Chemistry, 1951; 193: 265-275.

22. Marie V., Baudrimont M., Boudou A. Cadmium and zinc bioaccumulation and metallothionein response in two freshwater bivalves (Corbicula fluminea and Dreissena polymorpha) transplanted along a polymetallic gradient. Chemosphere, 2006; 65 (4): 609-617.
https://doi.org/10.1016/j.chemosphere.2006.01.074
PMid:16545425

23. Matozzo V., Da Ros L., Ballarin L. et al. Functional responses of haemocytes in the clam Tapes philippinarum from the Lagoon of Venice: fishing impact and seasonal variations. Canadian Journal of Fisheries and Aquatic Sciences, 2003; 60(8): 949-958.
https://doi.org/10.1139/f03-084

24. Matozzo V., Gagne F., Marin M.G. et al. Vitellogenin as a biomarker of exposure to estrogenic compounds in aquatic invertebrates: a review. Environment International, 2008; 34(4): 531-545.
https://doi.org/10.1016/j.envint.2007.09.008
PMid:18029015

25. Monserrat J.M., Martínez P.E., Geracitano L.A. et al. Pollution biomarkers in estuarine animals: Critical review and new perspectives. Comparative Biochemistry and Physiology, 2007; 146C (1-2): 221-234.
https://doi.org/10.1016/j.cbpc.2006.08.012
PMid:17045848

26. Nigro M., Falleni A., Barga I.D. et al. Cellular biomarkers for monitoring estuarine environments: transplanted versus native mussels. Aquatic Toxicology, 2006; 77(4): 339-347.
https://doi.org/10.1016/j.aquatox.2005.12.013
PMid:16480782

27. Ohkawa H., Onishi N., Yagi K. Assay for lipid peroxidation in animal tissue by thiobarbituric acid reaction. Analytical Biochemistry, 1979; 95: 351-358.
https://doi.org/10.1016/0003-2697(79)90738-3

28. Perez E., Blasco J., Sole M. Biomarker responses to pollution in two invertebrate species: Scrobicularia plana and Nereis diversicolor from the Cadiz bay (SW Spain). Marine Environmental Research, 2004; 58(2-5): 275-279.
https://doi.org/10.1016/j.marenvres.2004.03.071
PMid:15178044

29. Romero-Ruiz A., Amezcua O., Rodríguez-Ortega M.J. et al. Oxidative stress biomarkers in bivalves transplanted to the Guadalquivir estuary after Aznalcуllar spill. Environmental Toxicology and Chemistry, 2003; 22(1): 92-100.
https://doi.org/10.1002/etc.5620220112
PMid:12503751

30. Temperature in Ukraine. [Electronic resource] / Access mode: http://www.apk-inform.com/showart.php?id=47947

31. Viarengo A., Lowe D., Bolognesi C. et al. The use of biomarkers in biomonitoring: a 2-tier approach assessing the level of pollutant-induced stress syndrome in sentinel organisms. Comparative Biochemistry and Physiology, 2007; 146C (3): 281-300.
https://doi.org/10.1016/j.cbpc.2007.04.011
PMid:17560835

32. Viarengo A., Ponzano E., Dondero F., Fabbri R. A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Marine Environmental Research, 1997; 44(1): 69-84.
https://doi.org/10.1016/S0141-1136(96)00103-1


Refbacks

  • There are currently no refbacks.


Copyright (c) 2010 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.