THE EFFECT OF NETTLE EXTRACT ON ANTIOXIDANT DEFENSE SYSTEM IN PIGLETS AFTER WEANING

Oksana Buchko, Viktoriya Havryliak, Olena Yaremkevych, Vasyl Pryimych, Vitaliy Tkachuk


DOI: http://dx.doi.org/10.30970/sbi.1801.756

Abstract


Background. The effect of common nettle (Urtica dioica L.) extracts on the free radical processes and antioxidant system in piglets during the critical period of weaning from sows has been studied.
Materials and Methods. 
Large white piglets were divided into 2 groups (control and experimental), 9 animals in each. Piglets of the experimental group from 14 days of age and before weaning received the standard diet and the nettle extract in the dose of 6 mg/kg of body weight for 22 days. The blood, as well as erythrocyte hemolysates and plasma of piglets obtained at 14, 36, and 42 days of age, were studied.
Results.
Our results have shown that weaning causes an oxidative stress in piglets. This state leads to an increase in the concentration of metabolites of free radical damage to protein molecules – carbonyl groups of proteins on the first day and primary products of lipid peroxidation on the seventh day after weaning. This activation of oxidative damage occurs in piglets against the background of a physiologically immature antioxidant system and is characterized by a decrease in the activity of the enzymatic chain – superoxide dismutase, glutathione peroxidase and catalase, as well as the concentration of its non-enzymatic antioxidant – reduced glutathione.
Feeding piglets with nettle extract leads to activation of the antioxidant defense system in erythrocytes (higher activity of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and an increased reduced glutathione level compared to the control values) and a decrease in the concentration of oxidative damage products in the plasma (the content of lipid hydroperoxides, TBA-active products and carbonyl groups of proteins).
Conclusion. The positive effect of nettle extract on the inhibition of free radical processes and activation of antioxidant systems indicates that this extract can be added to the standard diet of young animals to increase stress resistance and adaptability of their organism in critical periods of ontogenesis.


Keywords


antioxidant system, oxidative damage products, nettle extract, piglets, weaning stress

Full Text:

PDF

References


Bacou, E., Walk, C., Rider, S., Litta, G., & Perez-Calvo, E. (2021). Dietary oxidative distress: a review of nutritional challenges as models for poultry, swine and fish. Antioxidants, 10(4), 525. doi:10.3390/antiox10040525
CrossrefPubMedPMCGoogle Scholar

Basak, G., Malakar, R., Sharma, A., Bharti, S. K., & Sharma, B. (2020). Medicinal herbs – boon for modern veterinary therapeutics. International Journal of Bio-Resource and Stress Management, 11(2), 188–194. doi:10.23910/ijbsm/2020.11.2.2081b
CrossrefGoogle Scholar

Buchko, O., Havryliak, V., Yaremkevych, O., Konechna, R., & Ohorodnyk, N. (2019). Metabolic processes in the organism of animals under the action of plant extract. Regulatory Mechanisms in Biosystems, 10(2), 149-158. doi:10.15421/021922
CrossrefGoogle Scholar

Ciampi, F., Sordillo, L. M., Gandy, J. C., Caroprese, M., Sevi, A., Albenzio, M., & Santillo, A. (2020). Evaluation of natural plant extracts as antioxidants in a bovine in vitro model of oxidative stress. Journal of Dairy Science, 103(10), 8938-8947. doi:10.3168/jds.2020-18182
CrossrefPubMedGoogle Scholar

Gāliņa, D., Ansonska, L., & Valdovska, A. (2020). Effect of probiotics and herbal products on intestinal histomorphological and immunological development in piglets. Veterinary Medicine International, 2020, 1-14. doi:10.1155/2020/3461768
CrossrefPubMedPMCGoogle Scholar

Gęgotek, A., & Skrzydlewska, E. (2022). Antioxidative and anti-inflammatory activity of ascorbic acid. Antioxidants, 11(10), 1993. doi:10.3390/antiox11101993
CrossrefPubMedPMCGoogle Scholar

Gessner, D. K., Ringseis, R., & Eder, K. (2016). Potential of plant polyphenols to combat oxidative stress and inflammatory processes in farm animals. Journal of Animal Physiology and Animal Nutrition, 101(4), 605-628. doi:10.1111/jpn.12579
CrossrefPubMedGoogle Scholar

Grauso, L., de Falco, B., Lanzotti, V., & Motti, R. (2020). Stinging nettle, Urtica dioica L.: botanical, phytochemical and pharmacological overview. Phytochemistry Reviews, 19(6), 1341-1377. doi:10.1007/s11101-020-09680-x
CrossrefGoogle Scholar

Hao, Y., Xing, M., & Gu, X. (2021). Research progress on oxidative stress and its nutritional regulation strategies in pigs. Animals, 11(5), 1384. doi:10.3390/ani11051384
CrossrefPubMedPMCGoogle Scholar

Jaiswal, V., & Lee, H.-J. (2022). Antioxidant activity of Urtica dioica: an important property contributing to multiple biological activities. Antioxidants, 11(12), 2494. doi:10.3390/antiox11122494
CrossrefPubMedPMCGoogle Scholar

Keleş, R., Şen, A., Ertaş, B., Kayalı, D., Eker, P., Şener, T. E., Doğan, A., Çetinel, Ş., & Şener, G. (2020). The effects of Urtica dioica L. ethanolic extract against urinary calculi in rats. Journal of Research in Pharmacy, 24(2), 205-217. doi:10.35333/jrp.2020.137
CrossrefGoogle Scholar

Lillehoj, H., Liu, Y., Calsamiglia, S., Fernandez-Miyakawa, M. E., Chi, F., Cravens, R. L., Oh, S., & Gay, C. G. (2018). Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Veterinary Research, 49(1), 76. doi:10.1186/s13567-018-0562-6
CrossrefPubMedPMCGoogle Scholar

Liu, Y., Espinosa, C. D., Abelilla, J. J., Casas, G. A., Lagos, L. V., Lee, S. A., Kwon, W. B., Mathai, J. K., Navarro, D. M. D. L., Jaworski, N. W., & Stein, H. H. (2018). Non-antibiotic feed additives in diets for pigs: a review. Animal Nutrition, 4(2), 113-125. doi:10.1016/j.aninu.2018.01.007
CrossrefPubMedPMCGoogle Scholar

López-Gálvez, G., López-Alonso, M., Pechova, A., Mayo, B., Dierick, N., & Gropp, J. (2021). Alternatives to antibiotics and trace elements (copper and zinc) to improve gut health and zootechnical parameters in piglets: a review. Animal Feed Science and Technology, 271, 114727. doi:10.1016/j.anifeedsci.2020.114727
CrossrefGoogle Scholar

Marotti, I., Frassineti, E., Trebbi, G., Alpi, M., D'Amen, E., & Dinelli, G. (2022). Health-promoting phytochemicals of stinging nettle (Urtica dioica L.) grown under organic farming in Italian environments. Industrial Crops and Products, 182, 114903. doi:10.1016/j.indcrop.2022.114903
CrossrefGoogle Scholar

Morozyuk, S., & Protopopova, V. (2007). Travianysti roslyny Ukrainy [Herbaceous plants of Ukraine]. Ternopil: Navchalna knyha - Bohdan. (In Ukrainian)
Google Scholar

Novais, A. K., Martel-Kennes, Y., Roy, C., Deschêne, K., Beaulieu, S., Bergeron, N., Laforest, J.-P., Lessard, M., Matte, J. J., & Lapointe, J. (2020). Tissue-specific profiling reveals modulation of cellular and mitochondrial oxidative stress in normal- and low-birthweight piglets throughout the peri-weaning period. Animal, 14(5), 1014-1024. doi:10.1017/s1751731119002829
CrossrefPubMedGoogle Scholar

Parraguez, V. H., Sales, F., Peralta, O. A., De los Reyes, M., Campos, A., González, J., Peralta, W., Cabezón, C., & González-Bulnes, A. (2021). Maternal supplementation with herbal antioxidants during pregnancy in swine. Antioxidants, 10(5), 658. doi:10.3390/antiox10050658
CrossrefPubMedPMCGoogle Scholar

Paskudska, A., Kołodziejczyk, D., & Socha, S. (2018). The use of herbs in animal nutrition. Acta Scientiarum Polonorum Zootechnica, 17(2), 3-14. doi:10.21005/asp.2018.17.2.01
CrossrefGoogle Scholar

Piao, M., Tu, Y., Zhang, N., Diao, Q., & Bi, Y. (2023). Advances in the application of phytogenic extracts as antioxidants and their potential mechanisms in ruminants. Antioxidants, 12(4), 879. doi:10.3390/antiox12040879
CrossrefPubMedPMCGoogle Scholar

Radzikowski, D., & Milczarek, A. (2021). Selected feed additives used in pig nutrition. Journal of Central European Agriculture, 22(1), 54–65. doi:10.5513/jcea01/22.1.2927
CrossrefGoogle Scholar

Santibáñez-Andrade, M., Quezada-Maldonado, E. M., Rivera-Pineda, A., Chirino, Y. I., García-Cuellar, C. M., & Sánchez-Pérez, Y. (2023). The road to malignant cell transformation after particulate matter exposure: from oxidative stress to genotoxicity. International Journal of Molecular Sciences, 24(2), 1782. doi:10.3390/ijms24021782
CrossrefPubMedPMCGoogle Scholar

Szczepanik, K., Oczkowicz, M., Dobrowolski, P., & Świątkiewicz, M. (2023). The protective effects of astaxanthin (AST) in the lver of weaned piglets. Animals, 13(20), 3268. doi:10.3390/ani13203268
CrossrefPubMedPMCGoogle Scholar

Sies, H., & Jones, D. P. (2020). Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature Reviews Molecular Cell Biology, 21(7), 363–383. doi:10.1038/s41580-020-0230-3
CrossrefPubMedGoogle Scholar

Tveden-Nyborg, P. (2021). Vitamin C deficiency in the young brain – findings from experimental animal models. Nutrients, 13(5), 1685. doi:10.3390/nu13051685
CrossrefPubMedPMCGoogle Scholar

Vlizlo, V. V. (Ed.). (2012). Laboratorni metody doslidzhen u biolohiyi, tvarynnytstvi ta veterynarniy medytsyni [Laboratory methods of research in biology, animal husbandry and veterinary medicine]. Lviv: Spolom. Retrieved from https://www.inenbiol.com/index.php/diialnist/publikatsii/knyhy/63-diyalnist/publikaciii/knyhy/349-laboratorni-metody-doslidzhen-u-biolohii-tvarynnytstvi-ta-veterynarnii-medytsyni (In Ukrainian)
Google Scholar

Xiong, X., Tan, B., Song, M., Ji, P., Kim, K., Yin, Y., & Liu, Y. (2019). Nutritional intervention for the intestinal development and health of weaned pigs. Frontiers in Veterinary Science, 6. doi:10.3389/fvets.2019.00046
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Oksana Buchko, Viktoriya Havryliak, Olena Yaremkevych, Vasyl Pryimych, Vitaliy Tkachuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.