DIETARY PROTEIN-TO-CARBOHYDRATE RATIO AFFECTS DEVELOPMENT AND METABOLISM IN DROSOPHILA LARVAE AND IMAGO
DOI: http://dx.doi.org/10.30970/sbi.1801.753
Abstract
Background. Nutrition during growth and development affects various traits not only in larvae but also imago including lifespan, reproduction, feeding, metabolism, and stress resistance. In this study, we have tested the hypothesis of whether the dietary protein-to-carbohydrate (P:C) ratio in the developmental diet could be related to subsequent changes in metabolic profile and physiological parameters in Drosophila larvae and imago.
Materials and Methods. Drosophila melanogaster Canton-S strain were used in this study. Larvae were fed diets with different P:C ratios. Experimental media were composed of either 2 % or 5 % dry yeast and 0 %, 1 %, or 10 % of sucrose. We tested developmental rate, wet or dry body weight and the levels of certain metabolites including glucose, glycogen, triacylglycerides and total lipids. The developmental rate was assessed by counting the number of generated pupae every 6/6/12 hours. For wet or dry weight measurement, 20 larvae or flies were weighed and transferred to plastic vial with a cut bottom. The flies were dried at 60 °C with the subsequent weighing after two days. Another two-day flies cohort were separated by sex and frozen in liquid nitrogen for further biochemical assays. Hemolymph glucose, total lipid concentration, triacylglycerides (TAG), body glucose and glycogen contents were determined spectrophotometrically.
Results. We found that a low 0.08 P:C ratio in the diet slowed down pupation by ~20 % and decreased body weight in larvae. Hemolymph glucose levels in both larvae and imago were inversely associated with dietary P:C. Larvae developing on a diet with a low P:C ratio displayed a lower level of glycogen pool, but a higher level of lipids. Developmental dietary P:C ratio also influences metabolic traits such as hemolymph glucose, glycogen, TAG and total lipids in male and female imago. A higher total protein intake combined with restriction of sucrose consumption had glucose-lowering and lipids-lowering effects.
Conclusions. Our study demonstrated that nutritional conditions during larval development trigger adaptive changes that provide a level of regulation necessary to surpass dietary stress in Drosophila imago.
Keywords
Full Text:
PDFReferences
Birse, R. T., Choi, J., Reardon, K., Rodriguez, J., Graham, S., Diop, S., Ocorr, K., Bodmer, R., & Oldham, S. (2010). High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metabolism, 12(5), 533-544. doi:10.1016/j.cmet.2010.09.014 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Bond, N. D., Hoshizaki, D. K., & Gibbs, A. G. (2010). The role of 20-hydroxyecdysone signaling in Drosophila pupal metabolism. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 157(4), 398-404. doi:10.1016/j.cbpa.2010.08.025 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Bruce, K. D., Hoxha, S., Carvalho, G. B., Yamada, R., Wang, H. D., Karayan. P., He, S., Brummel, T., Kapahi, P., & Ja, W. W. (2013). High carbohydrate-low protein consumption maximizes Drosophila lifespan. Experimental Gerontology, 48(10), 1129-1135. doi:10.1016/j.exger.2013.02.003 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Chng, W. A., Hietakangas, V., & Lemaitre, B. (2017). Physiological adaptations to sugar intake: new paradigms from Drosophila melanogaster. Trends in Endocrinology & Metabolism, 28(2), 131-142. doi:10.1016/j.tem.2016.11.003 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Flatt, T., Tu, M. P., & Tatar, M. (2005). Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. Bioessays, 27(10), 999-1010. doi:10.1002/bies.20290 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Graham, P., & Pick, L. (2017). Drosophila as a model for diabetes and diseases of insulin resistance. Current Topics in Developmental Biology, 121, 397-419. doi:10.1016/bs.ctdb.2016.07.011 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Klepsatel, P., Knoblochová, D., Girish, T. N., Dircksen, H., & Gáliková, M. (2020). The influence of developmental diet on reproduction and metabolism in Drosophila. BMC Ecology and Evolution, 20(1), 93. doi:10.1186/s12862-020-01663-y Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Krittika, S., Lenka, A., & Yadav, P. (2019). Evidence of dietary protein restriction regulating pupation height, development time and lifespan in Drosophila melanogaster. Biology Open, 8(6), bio042952. doi:10.1242/bio.042952 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Lee, K. P., Simpson, S. J., Clissold, F. J., Brooks, R., Ballard, J. W., Taylor, P. W., Soran, N., & Raubenheimer, D. (2008). Lifespan and reproduction in Drosophila: new insights from nutritional geometry. Proceedings of the National Academy of Sciences of the United States of America, 105(7), 2498-2503. doi:10.1073/pnas.0710787105 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Lozinsky, O. V., Lushchak, O. V., Storey, J. M., Storey, K. B., & Lushchak, V. I. (2012). Sodium nitroprusside toxicity in Drosophila melanogaster: delayed pupation, reduced adult emergence, and induced oxidative/nitrosative stress in eclosed flies. Archives of Insect Biochemistry & Physiology, 80(3), 166-185. doi:10.1002/arch.21033 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Lushchak, O. V., Gospodaryov, D. V., Rovenko, B. M., Glovyak, A. D., Yurkevych, I. S., Klyuba, V. P., Shcherbij, M. V., & Lushchak, V. I. (2012). Balance between macronutrients affects life span and functional senescence in fruit fly Drosophila melanogaster. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 67A(2), 118-125. doi:10.1093/gerona/glr184 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Lushchak, O., Strilbytska, O., Piskovatska, V., Storey, K. B., Koliada, A., & Vaiserman, A. (2017). The role of the TOR pathway in mediating the link between nutrition and longevity. Mechanisms of Ageing and Development, 164, 127-138. doi:10.1016/j.mad.2017.03.005 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Lushchak, O., Strilbytska, O., & Storey, K. B. (2023). Gender-specific effects of pro-longevity interventions in Drosophila. Mechanisms of Ageing and Development, 209, 111754. doi:10.1016/j.mad.2022.111754 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Mirth, C., Truman, J. W., & Riddiford, L. M. (2005). The role of the prothoracic gland in determining critical weight for metamorphosis in Drosophila melanogaster. Current Biology, 25, 15(20), 1796-1807. doi:10.1016/j.cub.2005.09.017 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Morris, S. N., Coogan, C., Chamseddin, K., Fernandez-Kim, S. O., Kolli, S., Keller, J. N., & Bauer, J. H. (2012). Development of diet-induced insulin resistance in adult Drosophila melanogaster. Biochimica et Biophysica Acta, 1822(8), 1230-1237. doi:10.1016/j.bbadis.2012.04.012 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Musselman, L. P., Fink, J. L., Narzinski, K., Ramachandran, P. V., Hathiramani, S. S., Cagan, R. L., & Baranski, T. J. (2011). A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Disease Models & Mechanisms, 4(6), 842-849. doi:10.1242/dmm.007948 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Rovenko, B. M., Kubrak, O. I., Gospodaryov, D. V., Perkhulyn, N. V., Yurkevych, I. S., Sanz, A., Lushchak, O. V., & Lushchak, V. I. (2015). High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster. Journal of Insect Physiology, 79, 42-54. doi:10.1016/j.jinsphys.2015.05.007 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Semaniuk, U., Piskovatska, V., Strilbytska, O., Strutynska, T., Burdyliuk, N., Vaiserman, A., Bubalo, V., Storey, K. B., & Lushchak, O. (2021). Drosophila insulin-like peptides: from expression to functions - a review. Entomologia Experimentalis et Applicata, 169(2), 195-208. doi:10.1111/eea.12981 Crossref ● Google Scholar | ||||
| ||||
Semaniuk, U., Strilbytska, O., Malinovska, K., Storey, K. B., Vaiserman, A., Lushchak, V., & Lushchak, O. (2021). Factors that regulate expression patterns of insulin-like peptides and their association with physiological and metabolic traits in Drosophila. Insect Biochemistry and Molecular Biology, 135, 103609. doi:10.1016/j.ibmb.2021.103609 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Stefana, M. I., Driscoll, P. C., Obata, F., Pengelly, A. R., Newell, C. L., MacRae, J. I., & Gould, A. P. (2017). Developmental diet regulates Drosophila lifespan via lipid autotoxins. Nature Communications, 8(1), 1384. doi: 10.1038/s41467-017-01740-9 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Strilbytska, O. M., Semaniuk, U. V., Burdyliyk, N. I., Bubalo, V., & Lushchak, O. V. (2022). Developmental diet defines metabolic traits in larvae and adult Drosophila. The Ukrainian Biochemical Journal, 94(1), 53-63. doi:10.15407/ubj94.01.053 Crossref ● Google Scholar | ||||
| ||||
Teleman, A. A., Chen, Y. W., & Cohen, S. M. (2005). Drosophila Melted modulates FOXO and TOR activity. Developmental Cell, 9(2), 271-281. doi:10.1016/j.devcel.2005.07.004 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Vaiserman, A., Koliada, A., & Lushchak, O. (2018). Developmental programming of aging trajectory. Ageing Research Review, 47, 105-122. doi:10.1016/j.arr.2018.07.007 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Vaiserman, A., & Lushchak, O. (2019). Developmental origins of type 2 diabetes: focus on epigenetics. Ageing Research Review, 55, 100957. doi:10.1016/j.arr.2019.100957 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Wawrik, B., & Harriman, B. H. (2010). Rapid, colorimetric quantification of lipid from algal cultures. Journal of Microbiology Methods, 80(3), 262-266. doi:10.1016/j.mimet.2010.01.016 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Zhu, Z., Cao, F., & Li, X. (2019). Epigenetic programming and fetal metabolic programming. Frontiers in Endocrinology, 10, 764. doi:10.3389/fendo.2019.00764 Crossref ● PubMed ● PMC ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Nadya Stefanyshyn, Olha Strilbytska, Nadia Burdyliuk, Olena Zadorozhna, Volodymyr Bubalo, Ihor Yurkevych, Oleh Lushchak
This work is licensed under a Creative Commons Attribution 4.0 International License.