DIETARY PROTEIN-TO-CARBOHYDRATE RATIO AFFECTS DEVELOPMENT AND METABOLISM IN DROSOPHILA LARVAE AND IMAGO

Nadya Stefanyshyn, Olha Strilbytska, Nadia Burdyliuk, Olena Zadorozhna, Volodymyr Bubalo, Ihor Yurkevych, Oleh Lushchak


DOI: http://dx.doi.org/10.30970/sbi.1801.753

Abstract


Background. Nutrition during growth and development affects various traits not only in larvae but also imago including lifespan, reproduction, feeding, metabolism, and stress resistance. In this study, we have tested the hypothesis of whether the dietary protein-to-carbohydrate (P:C) ratio in the developmental diet could be related to subsequent changes in metabolic profile and physiological parameters in Drosophila larvae and imago.
Materials and Methods. Drosophila melanogaster Canton-S  strain were used in this study. Larvae were fed diets with different P:C ratios. Experimental media were composed of either 2 % or 5 % dry yeast and 0 %, 1 %, or 10 % of sucrose. We tested developmental rate, wet or dry body weight and the levels of certain metabolites inclu­ding glucose, glycogen, triacylglycerides and total lipids. The developmental rate was assessed by counting the number of generated pupae every 6/6/12 hours. For wet or dry weight measurement, 20 larvae or flies were weighed and transferred to plastic vial with a cut bottom. The flies were dried at 60 °C with the subsequent weighing after two days. Another two-day flies cohort were separated by sex and frozen in liquid nitrogen for further biochemical assays. Hemolymph glucose, total lipid concentration, triacyl­glycerides (TAG), body glucose and glycogen contents were determined spectrophotometrically.
Results. We found that a low 0.08 P:C ratio in the diet slowed down pupation by ~20 % and decreased body weight in larvae. Hemolymph glucose levels in both larvae and imago were inversely associated with dietary P:C. Larvae developing on a diet with a low P:C ratio displayed a lower level of glycogen pool, but a higher level of lipids. Developmental dietary P:C ratio also influences metabolic traits such as hemolymph glucose, glycogen, TAG and total lipids in male and female imago. A higher total protein intake combined with restriction of sucrose consumption had glucose-lowering and lipids-lowering effects.
Conclusions. Our study demonstrated that nutritional conditions during larval development trigger adaptive changes that provide a level of regulation necessary to surpass dietary stress in Drosophila imago.


Keywords


development, nutrition, macronutrients, calories, fruit fly

Full Text:

PDF

References


Birse, R. T., Choi, J., Reardon, K., Rodriguez, J., Graham, S., Diop, S., Ocorr, K., Bodmer, R., & Oldham, S. (2010). High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metabolism, 12(5), 533-544. doi:10.1016/j.cmet.2010.09.014
CrossrefPubMedPMCGoogle Scholar

Bond, N. D., Hoshizaki, D. K., & Gibbs, A. G. (2010). The role of 20-hydroxyecdysone signaling in Drosophila pupal metabolism. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 157(4), 398-404. doi:10.1016/j.cbpa.2010.08.025
CrossrefPubMedGoogle Scholar

Bruce, K. D., Hoxha, S., Carvalho, G. B., Yamada, R., Wang, H. D., Karayan. P., He, S., Brummel, T., Kapahi, P., & Ja, W. W. (2013). High carbohydrate-low protein consumption maximizes Drosophila lifespan. Experimental Gerontology, 48(10), 1129-1135. doi:10.1016/j.exger.2013.02.003
CrossrefPubMedPMCGoogle Scholar

Chng, W. A., Hietakangas, V., & Lemaitre, B. (2017). Physiological adaptations to sugar intake: new paradigms from Drosophila melanogaster. Trends in Endocrinology & Metabolism, 28(2), 131-142. doi:10.1016/j.tem.2016.11.003
CrossrefPubMedGoogle Scholar

Flatt, T., Tu, M. P., & Tatar, M. (2005). Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. Bioessays, 27(10), 999-1010. doi:10.1002/bies.20290
CrossrefPubMedGoogle Scholar

Graham, P., & Pick, L. (2017). Drosophila as a model for diabetes and diseases of insulin resistance. Current Topics in Developmental Biology, 121, 397-419. doi:10.1016/bs.ctdb.2016.07.011
CrossrefPubMedPMCGoogle Scholar

Klepsatel, P., Knoblochová, D., Girish, T. N., Dircksen, H., & Gáliková, M. (2020). The influence of developmental diet on reproduction and metabolism in Drosophila. BMC Ecology and Evolution, 20(1), 93. doi:10.1186/s12862-020-01663-y
CrossrefPubMedPMCGoogle Scholar

Krittika, S., Lenka, A., & Yadav, P. (2019). Evidence of dietary protein restriction regulating pupation height, development time and lifespan in Drosophila melanogaster. Biology Open, 8(6), bio042952. doi:10.1242/bio.042952
CrossrefPubMedPMCGoogle Scholar

Lee, K. P., Simpson, S. J., Clissold, F. J., Brooks, R., Ballard, J. W., Taylor, P. W., Soran, N., & Raubenheimer, D. (2008). Lifespan and reproduction in Drosophila: new insights from nutritional geometry. Proceedings of the National Academy of Sciences of the United States of America, 105(7), 2498-2503. doi:10.1073/pnas.0710787105
CrossrefPubMedPMCGoogle Scholar

Lozinsky, O. V., Lushchak, O. V., Storey, J. M., Storey, K. B., & Lushchak, V. I. (2012). Sodium nitroprusside toxicity in Drosophila melanogaster: delayed pupation, reduced adult emergence, and induced oxidative/nitrosative stress in eclosed flies. Archives of Insect Biochemistry & Physiology, 80(3), 166-185. doi:10.1002/arch.21033
CrossrefPubMedGoogle Scholar

Lushchak, O. V., Gospodaryov, D. V., Rovenko, B. M., Glovyak, A. D., Yurkevych, I. S., Klyuba, V. P., Shcherbij, M. V., & Lushchak, V. I. (2012). Balance between macronutrients affects life span and functional senescence in fruit fly Drosophila melanogaster. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 67A(2), 118-125. doi:10.1093/gerona/glr184
CrossrefPubMedGoogle Scholar

Lushchak, O., Strilbytska, O., Piskovatska, V., Storey, K. B., Koliada, A., & Vaiserman, A. (2017). The role of the TOR pathway in mediating the link between nutrition and longevity. Mechanisms of Ageing and Development, 164, 127-138. doi:10.1016/j.mad.2017.03.005
CrossrefPubMedGoogle Scholar

Lushchak, O., Strilbytska, O., & Storey, K. B. (2023). Gender-specific effects of pro-longevity interventions in Drosophila. Mechanisms of Ageing and Development, 209, 111754. doi:10.1016/j.mad.2022.111754
CrossrefPubMedGoogle Scholar

Mirth, C., Truman, J. W., & Riddiford, L. M. (2005). The role of the prothoracic gland in determining critical weight for metamorphosis in Drosophila melanogaster. Current Biology, 25, 15(20), 1796-1807. doi:10.1016/j.cub.2005.09.017
CrossrefPubMedGoogle Scholar

Morris, S. N., Coogan, C., Chamseddin, K., Fernandez-Kim, S. O., Kolli, S., Keller, J. N., & Bauer, J. H. (2012). Development of diet-induced insulin resistance in adult Drosophila melanogaster. Biochimica et Biophysica Acta, 1822(8), 1230-1237. doi:10.1016/j.bbadis.2012.04.012
CrossrefPubMedPMCGoogle Scholar

Musselman, L. P., Fink, J. L., Narzinski, K., Ramachandran, P. V., Hathiramani, S. S., Cagan, R. L., & Baranski, T. J. (2011). A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Disease Models & Mechanisms, 4(6), 842-849. doi:10.1242/dmm.007948
CrossrefPubMedPMCGoogle Scholar

Rovenko, B. M., Kubrak, O. I., Gospodaryov, D. V., Perkhulyn, N. V., Yurkevych, I. S., Sanz, A., Lushchak, O. V., & Lushchak, V. I. (2015). High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster. Journal of Insect Physiology, 79, 42-54. doi:10.1016/j.jinsphys.2015.05.007
CrossrefPubMedGoogle Scholar

Semaniuk, U., Piskovatska, V., Strilbytska, O., Strutynska, T., Burdyliuk, N., Vaiserman, A., Bubalo, V., Storey, K. B., & Lushchak, O. (2021). Drosophila insulin-like peptides: from expression to functions - a review. Entomologia Experimentalis et Applicata, 169(2), 195-208. doi:10.1111/eea.12981
CrossrefGoogle Scholar

Semaniuk, U., Strilbytska, O., Malinovska, K., Storey, K. B., Vaiserman, A., Lushchak, V., & Lushchak, O. (2021). Factors that regulate expression patterns of insulin-like peptides and their association with physiological and metabolic traits in Drosophila. Insect Biochemistry and Molecular Biology, 135, 103609. doi:10.1016/j.ibmb.2021.103609
CrossrefPubMedGoogle Scholar

Stefana, M. I., Driscoll, P. C., Obata, F., Pengelly, A. R., Newell, C. L., MacRae, J. I., & Gould, A. P. (2017). Developmental diet regulates Drosophila lifespan via lipid autotoxins. Nature Communications, 8(1), 1384. doi: 10.1038/s41467-017-01740-9
CrossrefPubMedPMCGoogle Scholar

Strilbytska, O. M., Semaniuk, U. V., Burdyliyk, N. I., Bubalo, V., & Lushchak, O. V. (2022). Developmental diet defines metabolic traits in larvae and adult Drosophila. The Ukrainian Biochemical Journal, 94(1), 53-63. doi:10.15407/ubj94.01.053
CrossrefGoogle Scholar

Teleman, A. A., Chen, Y. W., & Cohen, S. M. (2005). Drosophila Melted modulates FOXO and TOR activity. Developmental Cell, 9(2), 271-281. doi:10.1016/j.devcel.2005.07.004
CrossrefPubMedGoogle Scholar

Vaiserman, A., Koliada, A., & Lushchak, O. (2018). Developmental programming of aging trajectory. Ageing Research Review, 47, 105-122. doi:10.1016/j.arr.2018.07.007
CrossrefPubMedGoogle Scholar

Vaiserman, A., & Lushchak, O. (2019). Developmental origins of type 2 diabetes: focus on epigenetics. Ageing Research Review, 55, 100957. doi:10.1016/j.arr.2019.100957
CrossrefPubMedGoogle Scholar

Wawrik, B., & Harriman, B. H. (2010). Rapid, colorimetric quantification of lipid from algal cultures. Journal of Microbiology Methods, 80(3), 262-266. doi:10.1016/j.mimet.2010.01.016
CrossrefPubMedGoogle Scholar

Zhu, Z., Cao, F., & Li, X. (2019). Epigenetic programming and fetal metabolic programming. Frontiers in Endocrinology, 10, 764. doi:10.3389/fendo.2019.00764
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Nadya Stefanyshyn, Olha Strilbytska, Nadia Burdyliuk, Olena Zadorozhna, Volodymyr Bubalo, Ihor Yurkevych, Oleh Lushchak

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.