IONOPHORE ANTIBIOTICS AND HOP CONES AS REGULATORS OF DIGESTION AND METABOLISM IN RUMINANTS
DOI: http://dx.doi.org/10.30970/sbi.1801.759
Abstract
The general characteristics of ionophore antibiotics and the mechanisms of their antimicrobial action were analyzed.
Two types of ionophore antibiotics are known: those that transport ions across the membrane, and those that form a channel in the cell membrane through which ions pass. Ionophore antibiotics used in animal husbandry belong to the former group (monensin, lasalocid, salinomycin, narasin). They are synthesized by bacteria of the Streptomyces genus.
Bacterial cells and rumen fluid differ in ionic composition, which is regulated by active ion transport. As a result, the cytoplasm of bacteria contains more potassium ions, while the rumen fluid, on the contrary, has more sodium ions. Ionophores transport potassium inside the cell and remove sodium outside. The bacteria try to correct this imbalance and require ATP energy to carry out this process. Eventually, energy deficit develops in the bacterial cell and it dies.
Ionophore antibiotics affect only the Gram-positive bacteria in the rumen of ruminants, because they cannot penetrate through the cell wall of Gram-negative bacteria. Thus, there is a selective destruction of some types of bacteria, the most sensitive among which are the so-called hyper-ammonia-producing bacteria (HAB).
Ionophore antibiotics, which change the breakdown of protein and carbohydrates, change the ratio of volatile fatty acids by increasing the proportion of propionic acid and thus inhibit methanogenesis in the rumen. Ionophore antibiotics are an important antiketotic agent because they reduce the concentration of β-hydroxybutyrate and non-esterified fatty acids in the blood of ruminants.
During the transition period, cows have metabolic disorders so they are more prone to infectious diseases due to a decrease in resistance. The use of ionophore antibiotics affects the immune function and resistance to inflammatory processes, which is caused by an indirect influence associated with a lower pathological effect of ketosis and steatosis.
Ionophore antibiotics reduce the negative energy balance and its pathological impact on metabolism. The influence of ionophore antibiotics on cow’s milk productivity is mostly absent or insignificant.
The study presents characteristics of biologically active substances of hop cones. Hop cones contain biologically active components similar to ionophore antibiotics by action. These are prenylated flavonoids: humulone (α-acid), lupulone (β-acid) and their derivatives. These components of hop cones can be regarded as a potential substitute for ionophoric antibiotics. In particular, lupulone and some other components of hop cones inhibit the activity of Gram-positive bacteria, causing reactions similar to ionophore antibiotics. In addition, hop cones have many other biologically active compounds: phenols, essential oils, and resins, which have antimicrobial, antioxidant, sedative, phytoestrogen, insulin stimulating, immunomodulatory, and antitumor effects.
Keywords
Full Text:
PDFReferences
Almaguer, C., Schönberger, C., Gastl, M., Arendt, E. K., & Becker, T. (2014). Humulus lupulus - a story that begs to be told. A review. Journal of the Institute of Brewing, 120(4), 289-314. doi:10.1002/jib.160 Crossref ● Google Scholar | ||||
| ||||
Appuhamy, J. A. D., Strathe, A. B., Jayasundara, S., Wagner-Riddle, C., Dijkstra, J., France, J., & Kebreab, E. (2013). Anti-methanogenic effects of monensin in dairy and beef cattle: a meta-analysis. Journal of Dairy Science, 96(8), 5161-5173. doi:10.3168/jds.2012-5923 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Astray, G., Gullón, P., Gullón, B., Munekata, P. E. S., & Lorenzo, J. M. (2020). Humulus lupulus L. as a natural source of functional biomolecules. Applied Sciences, 10(15), 5074. doi:10.3390/app10155074 Crossref ● Google Scholar | ||||
| ||||
Azzaz, H. H., Murad, H. A., & Morsy, T. A. (2015). Utility of ionophores for ruminant animals: a review. Asian Journal of Animal Sciences, 9(6), 254-265. doi:10.3923/ajas.2015.254.265 Crossref ● Google Scholar | ||||
| ||||
Bassolé, I. H. N., & Juliani, H. R. (2012). Essential oils in combination and their antimicrobial properties. Molecules, 17(4), 3989-4006. doi:10.3390/molecules17043989 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Beck, P., Galyen, W., Galloway, D., Kegley, E. B., Rorie, R., Hubbell, D., Tucker, J., Hess, T., Cravey, M., Hill, J., & Nichols, C. (2016). Effect of supplementation of developing replacement heifers with monensin or bambermycins on gain and pregnancy rates. The Professional Animal Scientist, 32(5), 619-626. doi:10.15232/pas.2016-01525 Crossref ● Google Scholar | ||||
| ||||
Bell, N. L., Anderson, R. C., Callaway, T. R., Franco, M. O., Sawyer, J. E., & Wickersham, T. A. (2017). Effect of monensin inclusion on intake, digestion, and ruminal fermentation parameters by Bos taurus indicus and Bos taurus taurus steers consuming bermudagrass hay. Journal of Animal Sciences, 95(6), 2736-2746. doi:10.2527/jas.2016.1011 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Blaxland, J. A., Watkins, A. J., & Baillie, L. W. J. (2021). The ability of hop extracts to reduce the methane production of Methanobrevibacter ruminantium. Archaea, 2021, 5510063. doi:10.1155/2021/5510063 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Bradford, B. J., Yuan, K., Farney, J. K., Mamedova, L. K., & Carpenter, A. J. (2015). Invited review: inflammation during the transition to lactation: new adventures with an old flame. Journal of Dairy Science, 98(10), 6631-6650. doi:10.3168/jds.2015-9683 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Compton, C. W. R., Young, L., & McDougall, S. (2015). Efficacy of controlled-release capsules containing monensin for the prevention of subclinical ketosis in pasture-fed dairy cows. New Zealand Veterinary Journal, 63(5), 249-253. doi:10.1080/00480169.2014.999842 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Daglia, M. (2012). Polyphenols as antimicrobial agents. Current Opinion in Biotechnology, 23(2), 174-181. doi:10.1016/j.copbio.2011.08.007 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Dembitsky, V. M. (2022). Natural polyether ionophores and their pharmacological profile. Marine Drugs, 20(5), 292. doi:10.3390/md20050292 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Díaz-Gómez, R., Toledo-Araya, H., López-Solís, R., & Obreque-Slier, E. (2014). Combined effect of gallic acid and catechin against Escherichia coli. LWT - Food Science and Technology, 59(2), 896-900. doi:10.1016/j.lwt.2014.06.049 Crossref ● Google Scholar | ||||
| ||||
Drong, C., Meyer, U., von Soosten, D., Frahm, J., Rehage, J., Breves, G., & Dänicke, S. (2016). Effect of monensin and essential oils on performance and energy metabolism of transition dairy cows. Journal of Animal Physiology and Animal Nutrition, 100(3), 537-551. doi:10.1111/jpn.12401 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Drong, C., Meyer, U., von Soosten, D., Frahm, J., Rehage, J., Schirrmeier, H., Beer, M., & Dänicke, S. (2017). Effects of monensin and essential oils on immunological, haematological and biochemical parameters of cows during the transition period. Journal of Animal Physiology and Animal Nutrition, 101(4), 791-806. doi:10.1111/jpn.12494 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Duffield, T. F., Merrill, J. K., & Bagg, R. N. (2012). Meta-analysis of the effects of monensin in beef cattle on feed efficiency, body weight gain, and dry matter intake. Journal of Animal Science, 90(10), 4583-4592. doi:10.2527/jas.2011-5018 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Ellis, J. L., Dijkstra, J., Bannink, A., Kebreab, E., Hook, S. E., Archibeque, S., & France, J. (2012). Quantifying the effect of monensin dose on the rumen volatile fatty acid profile in high-grain-fed beef cattle. Journal of Animal Science, 90(8), 2717-2726. doi:10.2527/jas.2011-3966 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Ensley, S. (2020). Ionophore use and toxicosis in cattle. Veterinary Clinics of North America: Food Animal Practice, 36(3), 641-652. doi:10.1016/j.cvfa.2020.07.001 Crossref ● PubMed ● Google Scholar | ||||
| ||||
European Medicine Agency. (2019). Advice on implementing measures under Article 57(3) of Regulation (EU) 2019/6 on veterinary medicinal products - Report on specific requirements for the collection of data on antimicrobial medicinal products used in animals. Retrieved from https://www.ema.europa.eu/en/documents/report/advice-implementing-measures-under-article-573-regulation-eu-2019/6-veterinary-medicinal-products-report-specific-requirements-collection-data-antimicrobial-medicinal_en.pdf (Accessed on 13 January 2021) | ||||
| ||||
Fiore, E., Perillo, L., Gianesella, M., Giannetto, C., Giudice, E., Piccione, G., & Morgante, M. (2021). Comparison between two preventive treatments for hyperketonaemia carried out pre-partum: effects on non-esterified fatty acids, β-hydroxybutyrate and some biochemical parameters during peripartum and early lactation. Journal of Dairy Research, 88(1), 38-44. doi:10.1017/s0022029921000108 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Flythe, M. D. (2009). The antimicrobial effects of hops (Humulus lupulus L.) on ruminal hyper ammonia-producing bacteria. Letters in Applied Microbiology, 48(6), 712-717. doi:10.1111/j.1472-765x.2009.02600.x Crossref ● PubMed ● Google Scholar | ||||
| ||||
Flythe, M. D., & Aiken, G. E. (2010). Effects of hops (Humulus lupulus L.) extract on volatile fatty acid production by rumen bacteria. Journal of Applied Microbiology, 109(4), 1169-1176. doi:10.1111/j.1365-2672.2010.04739.x Crossref ● PubMed ● Google Scholar | ||||
| ||||
Flythe, M. D., Kagan, I. A., Wang, Y., & Narvaez, N. (2017). Hops (Humulus lupulus L.) bitter acids: modulation of rumen fermentation and potential as an alternative growth promoter. Frontiers in Veterinary Science, 4, 131. doi:10.3389/fvets.2017.00131 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Fouani, L., Kovacevic, Z., & Richardson, D. R. (2019). Targeting oncogenic nuclear factor kappa B signaling with redox-active agents for cancer treatment. Antioxidants & Redox Signaling, 30(8), 1096-1123. doi:10.1089/ars.2017.7387 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Gerhäuser, C. (2005). Broad spectrum antiinfective potential of xanthohumol from hop (Humulus lupulus L.) in comparison with activities of other hop constituents and xanthohumol metabolites. Molecular Nutrition & Food Research, 49(9), 827-831. doi:10.1002/mnfr.200500091 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Girisa, S., Saikia, Q., Bordoloi, D., Banik, K., Monisha, J., Daimary, U. D., Verma, E., Ahn, K. S., & Kunnumakkara, A. B. (2021). Xanthohumol from hop: hope for cancer prevention and treatment. IUBMB Life, 73(8), 1016-1044. doi:10.1002/iub.2522 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Golder, H. M., & Lean, I. J. (2016). A meta-analysis of lasalocid effects on rumen measures, beef and dairy performance, and carcass traits in cattle. Journal of Animal Science, 94(1), 306-326. doi:10.2527/jas.2015-9694 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Hsu, C. C., Lai, W. L., Chuang, K. C., Lee, M. H., & Tsai, Y. C. (2013). The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans. Medical Mycology, 51(5), 473-482. doi:10.3109/13693786.2012.743051 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Jiang, C. H., Sun, T. L., Xiang, D. X., Wei, S. S., & Li, W. Q. (2018). Anticancer activity and mechanism of xanthohumol: a prenylated flavonoid from hops (Humulus lupulus L.). Frontiers in Pharmacology, 9, 530. doi:10.3389/fphar.2018.00530 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Karabín, M., Hudcová, T., Jelínek, L., & Dostálek, P. (2016). Biologically active compounds from hops and prospects for their use. Comprehensive Reviews in Food Science and Food Safety, 15(3), 542-567. doi:10.1111/1541-4337.12201 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Karabin, M., Hudcova, T., Jelinek, L., & Dostalek, P. (2015). Biotransformations and biological activities of hop flavonoids. Biotechnology Advances, 33(6), 1063-1090. doi:10.1016/j.biotechadv.2015.02.009 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Kasap, S., Erturk, M., Mecitoglu, Z., Dulger, H., Babaeski, S., & Kennerman, E. (2020). Determination of the efficacy of monensin capsule (continuous release capsule) on metabolic parameters in transition dairy cows. Medycyna Weterynaryjna, 76(9), 512-516. doi:10.21521/mw.6435 Crossref ● Google Scholar | ||||
| ||||
Kevin II, D. A., Meujo, D. A. F., & Hamann, M. T. (2009). Polyether ionophores: broad-spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites. Expert Opinion on Drug Discovery, 4(2), 109-146. doi:10.1517/17460440802661443 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kim, D. O., Lee, K. W., Lee, H. J., & Lee, C. Y. (2002). Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. Journal of Agricultural & Food Chemistry, 50(13), 3713-3717. doi:10.1021/jf020071c Crossref ● PubMed ● Google Scholar | ||||
| ||||
Koetter, U., & Biendl, M. (2010). Hops (Humulus lupulus): a review of its historic and medicinal uses. HerbalGram. 87, 44-57. Retrieved from https://www.herbalgram.org/resources/herbalgram/issues/87/table-of-contents/article3559 Google Scholar | ||||
| ||||
Limede, A. C., Marques, R. S., Polizel, D. M., Cappellozza, B. I., Miszura, A. A., Barroso, J. P. R., Storti Martins, A., Sardinha, L. A., Baggio, M., & Pires, A. V. (2021). Effects of supplementation with narasin, salinomycin, or flavomycin on performance and ruminal fermentation characteristics of Bos indicus Nellore cattle fed with forage-based diets. Journal of Animal Science, 99(4), skab005. doi:10.1093/jas/skab005 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Liu, H., Lin, S., Jacobsen, K. M., & Poulsen, T. B. (2019). Chemical syntheses and chemical biology of carboxyl polyether ionophores: recent highlights. Angewandte Chemie. International Edition, 58(39), 13630-13642. doi:10.1002/anie.201812982 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Macchioni, V., Picchi, V., & Carbone, K. (2022). Hop leaves as an alternative source of health-active compounds: effect of genotype and drying conditions. Plants, 11(1), 99. doi:10.3390/plants11010099 Crossref ● PubMed ● PMC ● Google Scholar https://doi.org/10.3390/plants11010099 PMid:35009102 PMCid:PMC8747731 | ||||
| ||||
Mammi, L. M. E., Guadagnini, M., Mechor, G., Cainzos, J. M., Fusaro, I., Palmonari, A., & Formigoni, A. (2021). The use of monensin for ketosis prevention in dairy cows during the transition period: a systematic review. Animals, 11(7), 1988. doi:10.3390/ani11071988 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Markantonatos, X., & Varga, G. A. (2017). Effects of monensin on glucose metabolism in transition dairy cows. Journal of Dairy Science, 100(11), 9020-9035. doi:10.3168/jds.2016-12007 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Marques, R. D. S., & Cooke, R. F. (2021). Effects of ionophores on ruminal function of beef cattle. Animals, 11(10), 2871. doi:10.3390/ani11102871 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
McCarthy, M. M., Yasui, T., Ryan, C. M., Pelton, S. H., Mechor, G. D., & Overton, T. R. (2015). Metabolism of early-lactation dairy cows as affected by dietary starch and monensin supplementation. Journal of Dairy Science, 98(5), 3351-3365. doi:10.3168/jds.2014-8821 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Mezzetti, M., Piccioli-Cappelli, F., Bani, P., Amadori, M., Calamari, L., Minuti, A., Loor, J. J., Bionaz, M., & Trevisi, E. (2019). Monensin controlled-release capsule administered in late-pregnancy differentially affects rumination patterns, metabolic status, and cheese-making properties of the milk in primiparous and multiparous cows. Italian Journal of Animal Science, 18(1), 1271-1283. doi:10.1080/1828051X.2019.1645623 Crossref ● Google Scholar | ||||
| ||||
Miranda, C. L., Stevens, J. F., Ivanov, V., McCall, M., Frei, B., Deinzer, M. L., & Buhler, D. R. (2000). Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavanones in vitro. Journal of Agricultural & Food Chemistry, 48(9), 3876-3884. doi:10.1021/jf0002995 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Mukai, R. (2018). Prenylation enhances the biological activity of dietary flavonoids by altering their bioavailability. Bioscience, Biotechnology & Biochemistry, 82(2), 207-215. doi:10.1080/09168451.2017.1415750 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Mullins, C. R., Mamedova, L. K., Brouk, M. J., Moore, C. E., Green, H. B., Perfield, K. L., Smith, J. F., Harner, J. P., & Bradford, B. J. (2012). Effects of monensin on metabolic parameters, feeding behavior, and productivity of transition dairy cows. Journal of Dairy Science, 95(3), 1323-1336. doi:10.3168/jds.2011-4744 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Muzykiewicz, A., Nowak, A., Zielonka-Brzezicka, J., Florkowska, K., Duchnik, W., & Klimowicz, A. (2019). Comparison of antioxidant activity of extracts of hop leaves harvested in different years. Herba Polonica, 65(3), 1-9. doi:10.2478/hepo-2019-0013 Crossref ● Google Scholar | ||||
| ||||
National Academies of Sciences, Engineering and Medicine (NASEM). (2016). Nutrient requirements of beef cattle (8th ed.). Washington, The National Academies Press: DC, USA. doi.org/10.17226/19014 Crossref ● Google Scholar | ||||
| ||||
Nagaraja, T. G. Ionophores and antibiotics in ruminants. (1995). In R. J. Wallace & A. Chesson (Eds.), Biotechnology in animal feeds and animal feeding (pp. 173-204). Wiley-VCH Verlag GmbH, Weinheim. doi:10.1002/9783527615353.ch9 Crossref ● Google Scholar | ||||
| ||||
Nesse, L. L., Bakke, A. M., Eggen, T., Hoel, K., Kaldhusdal, M., Ringø, E., Yazdankhah, S. P., Lock, E. J., Olsen, R. E., Ørnsrud, R., & Krogdahl, Å. (2015). The risk of development of antimicrobial resistance with the use of coccidiostats in poultry diets. European Journal of Nutrition & Food Safety, 11(1), 40-43. doi:10.9734/ejnfs/2019/v11i130127 Crossref ● Google Scholar | ||||
| ||||
Nowak, B., Poźniak, B., Popłoński, J., Bobak, Ł., Matuszewska, A., Kwiatkowska, J., Dziewiszek, W., Huszcza, E., & Szeląg, A. (2020). Pharmacokinetics of xanthohumol in rats of both sexes after oral and intravenous administration of pure xanthohumol and prenylflavonoid extract. Advances in Clinical and Experimental Medicine, 29(9), 1101-1109. doi:10.17219/acem/126293 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Paraiso, I. L., Tran, T. Q., Magana, A. A., Kundu, P., Choi, J., Maier, C. S., Bobe, G., Raber, J., Kioussi, C., & Stevens, J. F. (2021). Xanthohumol ameliorates diet-induced liver dysfunction via farnesoid x receptor-dependent and independent signaling. Frontiers in Pharmacology, 12, 643857. doi:10.3389/fphar.2021.643857 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Polizel, D. M., Cappellozza, B. I., Hoe, F., Lopes, C. N., Barroso, J. P., Miszura, A., Oliveira, G. B., Gobato, L., & Pires, A. V. (2020). Effects of narasin supplementation on dry matter intake and rumen fermentation characteristics of Bos indicus steers fed a high-forage diet. Translational Animal Science, 4(1), 118-128. doi:10.1093/tas/txz164 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Quiñones, M., Miguel, M., & Aleixandre, A. (2013). Beneficial effects of polyphenols on cardiovascular disease. Pharmacological Research, 68(1), 125-131. doi:10.1016/j.phrs.2012.10.018 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Raboisson, D., & Barbier, M. (2017). Economic synergy between dry cow diet improvement and monensin bolus use to prevent subclinical ketosis: an experimental demonstration based on available literature. Frontiers in Veterinary Science, 4, 35. doi:10.3389/fvets.2017.00035 Crossref ● Google Scholar | ||||
| ||||
Robinson, P. H. (2020). Impacts of feeding monensin sodium on production and the efficiency of milk production in dairy cows fed total mixed rations: evaluation of a confounded literature. Canadian Journal of Animal Science, 100(3), 391-401. doi:10.1139/cjas-2019-0184 Crossref ● Google Scholar | ||||
| ||||
Roy, A., & Talukdar, P. (2021). Recent advances in bioactive artificial ionophores. ChemBioChem, 22(20), 2925-2940. doi:10.1002/cbic.202100112 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Rozalski, M., Micota, B., Sadowska, B., Stochmal, A., Jedrejek, D., Wieckowska-Szakiel, M., & Rozalska, B. (2013). Antiadherent and antibiofilm activity of Humulus lupulus L. derived products: new pharmacological properties. BioMed Research International, 2013, 101089. doi:10.1155/2013/101089 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Russell, J. B., & Houlihan, A. J. (2003). Ionophore resistance of ruminal bacteria and its potential impact on human health. FEMS Microbiology Reviews, 27(1), 65-74. doi:10.1016/S0168-6445(03)00019-6 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Sachko, S. R. (2023). The effect of therapeutic feed additive on rumen fermentation in cows with ketosis. The Animal Biology, 25(1), 39-45. doi:10.15407/animbiol25.01.039 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
Sachko, S, & Vudmaska, I. (2019). Use of hop cones and vitamin E to prevent metabolic disorders in transition dairy cows. Proceedings of the XIX Middle-European Buiatrics Congress, May 22-25, 2019, Lviv, Ukraine. The Animal Biology, 21(2), 132. doi:10.15407/animbiol21.02 Crossref ● Google Scholar | ||||
| ||||
Sakamoto, K., & Konings, W. N. (2003). Beer spoilage bacteria and hop resistance. International Journal of Food Microbiology, 89(2-3), 105-124. doi:10.1016/S0168-1605(03)00153-3 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Sandoval-Acuña, C., Ferreira, J., & Speisky, H. (2014). Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions. Archives of Biochemistry and Biophysics, 559, 75-90. doi:10.1016/j.abb.2014.05.017 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Schären, M., Drong, C., Kiri, K., Riede, S., Gardener, M., Meyer, U., Hummel, J., Urich, T., Breves, G., & Dänicke, S. (2017). Differential effects of monensin and a blend of essential oils on rumen microbiota composition of transition dairy cows. Journal of Dairy Science, 100(4), 2765-2783. doi:10.3168/jds.2016-11994 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Sendamangalam, V., Choi, O. K., Kim, D., & Seo, Y. (2011). The anti-biofouling effect of polyphenols against Streptococcus mutans. Biofouling, 27(1), 13-19. doi:10.1080/08927014.2010.535897 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Sigel, E., & Steinmann, M. E. (2012). Structure, function, and modulation of GABAA receptors. Journal of Biological Chemistry, 287(48), 40224-40231. doi:10.1074/jbc.R112.386664 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Sławińska-Brych, A., Mizerska-Kowalska, M., Król, S. K., Stepulak, A., & Zdzisińska, B. (2021). Xanthohumol impairs the PMA-driven invasive behaviour of lung cancer cell line A549 and exerts anti-EMT action. Cells, 10(6), 1484. doi:10.3390/cells10061484 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Vudmaska, I., Petrukh, I., Sachko, S., Vlizlo, V., Kosenko, Y., Kozak, M., & Petruk, A. (2020). Using hop cones, vitamin E, methionine, choline and carnitine for treatment of subclinical ketosis in transition dairy cows. Advances in Animal and Veterinary Sciences, 9(1). 55-62. doi:10.17582/journal.aavs/2021/9.1.55.62 Crossref ● Google Scholar | ||||
| ||||
Wei, S., Sun, T., Du, J., Zhang, B., Xiang, D., & Li, W. (2018). Xanthohumol, a prenylated flavonoid from Hops, exerts anticancer effects against gastric cancer in vitro. Oncology Reports, 40(6), 3213-3222. doi:10.3892/or.2018.6723 Crossref ● Google Scholar | ||||
| ||||
Weiskirchen, R., Mahli, A., Weiskirchen, S., & Hellerbrand, C. (2015). The hop constituent xanthohumol exhibits hepatoprotective effects and inhibits the activation of hepatic stellate cells at different levels. Frontiers in Physiology, 6, 140. doi:10.3389/fphys.2015.00140 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Yap, P. S. Y., Yiap, B. C., Ping, H. C., & Lim, S. H. E. (2014). Essential oils, a new horizon in combating bacterial antibiotic resistance. The Open Microbiologicy Journal, 8, 6-14. doi:10.2174/1874285801408010006 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zhang, N., Liu, Z. W., Han, Q. Y., Chen, J. H., & Lv, Y. (2010). Xanthohumol enhances antiviral effect of interferon α-2b against bovine viral diarrhea virus, a surrogate of hepatitis C virus. Phytomedicine, 17(5), 310-316. doi:10.1016/j.phymed.2009.08.005 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Zhang, Y., Bobe, G., Miranda, C. L., Lowry, M. B., Hsu, V. L., Lohr, C. V., Wong, C. P., Jump, D. B., Robinson, M. M., Sharpton, T. J., Maier, C. S., Stevens, J. F., & Gombart, A. F. (2021). Tetrahydroxanthohumol, a xanthohumol derivative, attenuates high-fat diet-induced hepatic steatosis by antagonizing PPARγ. eLife. 10, e66398. doi:10.7554/eLife.66398 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zugravu, C. A., Bohiltea, R. E., Salmen, T., Pogurschi, E., & Otelea, M. R. (2022). Antioxidants in hops: bioavailability, health effects and perspectives for new products. Antioxidants, 11(2), 241. doi:10.3390/antiox11020241 Crossref ● PubMed ● PMC ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Ihor Vudmaska, Yuriy Salyha, Serhiy Sachko
This work is licensed under a Creative Commons Attribution 4.0 International License.