IONOPHORE ANTIBIOTICS AND HOP CONES AS REGULATORS OF DIGESTION AND METABOLISM IN RUMINANTS

Ihor Vudmaska, Yuriy Salyha, Serhiy Sachko


DOI: http://dx.doi.org/10.30970/sbi.1801.759

Abstract


The general characteristics of ionophore antibiotics and the mechanisms of their antimicrobial action were analyzed.
Two types of ionophore antibiotics are known: those that transport ions across the membrane, and those that form a channel in the cell membrane through which ions pass. Ionophore antibiotics used in animal husbandry belong to the former group (monensin, lasalocid, salinomycin, narasin). They are synthesized by bacteria of the Streptomyces genus.
Bacterial cells and rumen fluid differ in ionic composition, which is regulated by active ion transport. As a result, the cytoplasm of bacteria contains more potassium ions, while the rumen fluid, on the contrary, has more sodium ions. Ionophores transport potassium inside the cell and remove sodium outside. The bacteria try to correct this imbalance and require ATP energy to carry out this process. Eventually, energy deficit develops in the bacterial cell and it dies.
Ionophore antibiotics affect only the Gram-positive bacteria in the rumen of ruminants, because they cannot penetrate through the cell wall of Gram-negative bacteria. Thus, there is a selective destruction of some types of bacteria, the most sensitive among which are the so-called hyper-ammonia-producing bacteria (HAB).
Ionophore antibiotics, which change the breakdown of protein and carbohydrates, change the ratio of volatile fatty acids by increasing the proportion of propionic acid and thus inhibit methanogenesis in the rumen. Ionophore antibiotics are an important antiketotic agent because they reduce the concentration of β-hydroxybutyrate and non-esterified fatty acids in the blood of ruminants.
During the transition period, cows have metabolic disorders so they are more prone to infectious diseases due to a decrease in resistance. The use of ionophore antibiotics affects the immune function and resistance to inflammatory processes, which is caused by an indirect influence associated with a lower pathological effect of ketosis and steatosis.
Ionophore antibiotics reduce the negative energy balance and its pathological impact on metabolism. The influence of ionophore antibiotics on cow’s milk productivity is mostly absent or insignificant.
The study presents characteristics of biologically active substances of hop cones. Hop cones contain biologically active components similar to ionophore antibiotics by action. These are prenylated flavonoids: humulone (α-acid), lupulone (β-acid) and their derivatives. These components of hop cones can be regarded as a potential substitute for ionophoric antibiotics. In particular, lupulone and some other components of hop cones inhibit the activity of Gram-positive bacteria, causing reactions similar to ionophore antibiotics. In addition, hop cones have many other biologically active compounds: phenols, essential oils, and resins, which have antimicrobial, antioxidant, sedative, phytoestrogen, insulin stimulating, immunomodulatory, and antitumor effects.


Keywords


ruminants, rumen, ionophore antibiotics, hop cones

Full Text:

PDF

References


Almaguer, C., Schönberger, C., Gastl, M., Arendt, E. K., & Becker, T. (2014). Humulus lupulus - a story that begs to be told. A review. Journal of the Institute of Brewing, 120(4), 289-314. doi:10.1002/jib.160
CrossrefGoogle Scholar

Appuhamy, J. A. D., Strathe, A. B., Jayasundara, S., Wagner-Riddle, C., Dijkstra, J., France, J., & Kebreab, E. (2013). Anti-methanogenic effects of monensin in dairy and beef cattle: a meta-analysis. Journal of Dairy Science, 96(8), 5161-5173. doi:10.3168/jds.2012-5923
CrossrefPubMedGoogle Scholar

Astray, G., Gullón, P., Gullón, B., Munekata, P. E. S., & Lorenzo, J. M. (2020). Humulus lupulus L. as a natural source of functional biomolecules. Applied Sciences, 10(15), 5074. doi:10.3390/app10155074
CrossrefGoogle Scholar

Azzaz, H. H., Murad, H. A., & Morsy, T. A. (2015). Utility of ionophores for ruminant animals: a review. Asian Journal of Animal Sciences, 9(6), 254-265. doi:10.3923/ajas.2015.254.265
CrossrefGoogle Scholar

Bassolé, I. H. N., & Juliani, H. R. (2012). Essential oils in combination and their antimicrobial properties. Molecules, 17(4), 3989-4006. doi:10.3390/molecules17043989
CrossrefPubMedPMCGoogle Scholar

Beck, P., Galyen, W., Galloway, D., Kegley, E. B., Rorie, R., Hubbell, D., Tucker, J., Hess, T., Cravey, M., Hill, J., & Nichols, C. (2016). Effect of supplementation of developing replacement heifers with monensin or bambermycins on gain and pregnancy rates. The Professional Animal Scientist, 32(5), 619-626. doi:10.15232/pas.2016-01525
CrossrefGoogle Scholar

Bell, N. L., Anderson, R. C., Callaway, T. R., Franco, M. O., Sawyer, J. E., & Wickersham, T. A. (2017). Effect of monensin inclusion on intake, digestion, and ruminal fermentation parameters by Bos taurus indicus and Bos taurus taurus steers consuming bermudagrass hay. Journal of Animal Sciences, 95(6), 2736-2746. doi:10.2527/jas.2016.1011
CrossrefPubMedGoogle Scholar

Blaxland, J. A., Watkins, A. J., & Baillie, L. W. J. (2021). The ability of hop extracts to reduce the methane production of Methanobrevibacter ruminantium. Archaea, 2021, 5510063. doi:10.1155/2021/5510063
CrossrefPubMedPMCGoogle Scholar

Bradford, B. J., Yuan, K., Farney, J. K., Mamedova, L. K., & Carpenter, A. J. (2015). Invited review: inflammation during the transition to lactation: new adventures with an old flame. Journal of Dairy Science, 98(10), 6631-6650. doi:10.3168/jds.2015-9683
CrossrefPubMedGoogle Scholar

Compton, C. W. R., Young, L., & McDougall, S. (2015). Efficacy of controlled-release capsules containing monensin for the prevention of subclinical ketosis in pasture-fed dairy cows. New Zealand Veterinary Journal, 63(5), 249-253. doi:10.1080/00480169.2014.999842
CrossrefPubMedGoogle Scholar

Daglia, M. (2012). Polyphenols as antimicrobial agents. Current Opinion in Biotechnology, 23(2), 174-181. doi:10.1016/j.copbio.2011.08.007
CrossrefPubMedGoogle Scholar

Dembitsky, V. M. (2022). Natural polyether ionophores and their pharmacological profile. Marine Drugs, 20(5), 292. doi:10.3390/md20050292
CrossrefPubMedPMCGoogle Scholar

Díaz-Gómez, R., Toledo-Araya, H., López-Solís, R., & Obreque-Slier, E. (2014). Combined effect of gallic acid and catechin against Escherichia coli. LWT - Food Science and Technology, 59(2), 896-900. doi:10.1016/j.lwt.2014.06.049
CrossrefGoogle Scholar

Drong, C., Meyer, U., von Soosten, D., Frahm, J., Rehage, J., Breves, G., & Dänicke, S. (2016). Effect of monensin and essential oils on performance and energy metabolism of transition dairy cows. Journal of Animal Physiology and Animal Nutrition, 100(3), 537-551. doi:10.1111/jpn.12401
CrossrefPubMedGoogle Scholar

Drong, C., Meyer, U., von Soosten, D., Frahm, J., Rehage, J., Schirrmeier, H., Beer, M., & Dänicke, S. (2017). Effects of monensin and essential oils on immunological, haematological and biochemical parameters of cows during the transition period. Journal of Animal Physiology and Animal Nutrition, 101(4), 791-806. doi:10.1111/jpn.12494
CrossrefPubMedGoogle Scholar

Duffield, T. F., Merrill, J. K., & Bagg, R. N. (2012). Meta-analysis of the effects of monensin in beef cattle on feed efficiency, body weight gain, and dry matter intake. Journal of Animal Science, 90(10), 4583-4592. doi:10.2527/jas.2011-5018
CrossrefPubMedGoogle Scholar

Ellis, J. L., Dijkstra, J., Bannink, A., Kebreab, E., Hook, S. E., Archibeque, S., & France, J. (2012). Quantifying the effect of monensin dose on the rumen volatile fatty acid profile in high-grain-fed beef cattle. Journal of Animal Science, 90(8), 2717-2726. doi:10.2527/jas.2011-3966
CrossrefPubMedGoogle Scholar

Ensley, S. (2020). Ionophore use and toxicosis in cattle. Veterinary Clinics of North America: Food Animal Practice, 36(3), 641-652. doi:10.1016/j.cvfa.2020.07.001
CrossrefPubMedGoogle Scholar

European Medicine Agency. (2019). Advice on implementing measures under Article 57(3) of Regulation (EU) 2019/6 on veterinary medicinal products - Report on specific requirements for the collection of data on antimicrobial medicinal products used in animals. Retrieved from https://www.ema.europa.eu/en/documents/report/advice-implementing-measures-under-article-573-regulation-eu-2019/6-veterinary-medicinal-products-report-specific-requirements-collection-data-antimicrobial-medicinal_en.pdf (Accessed on 13 January 2021)

Fiore, E., Perillo, L., Gianesella, M., Giannetto, C., Giudice, E., Piccione, G., & Morgante, M. (2021). Comparison between two preventive treatments for hyperketonaemia carried out pre-partum: effects on non-esterified fatty acids, β-hydroxybutyrate and some biochemical parameters during peripartum and early lactation. Journal of Dairy Research, 88(1), 38-44. doi:10.1017/s0022029921000108
CrossrefPubMedGoogle Scholar

Flythe, M. D. (2009). The antimicrobial effects of hops (Humulus lupulus L.) on ruminal hyper ammonia-producing bacteria. Letters in Applied Microbiology, 48(6), 712-717. doi:10.1111/j.1472-765x.2009.02600.x
CrossrefPubMedGoogle Scholar

Flythe, M. D., & Aiken, G. E. (2010). Effects of hops (Humulus lupulus L.) extract on volatile fatty acid production by rumen bacteria. Journal of Applied Microbiology, 109(4), 1169-1176. doi:10.1111/j.1365-2672.2010.04739.x
CrossrefPubMedGoogle Scholar

Flythe, M. D., Kagan, I. A., Wang, Y., & Narvaez, N. (2017). Hops (Humulus lupulus L.) bitter acids: modulation of rumen fermentation and potential as an alternative growth promoter. Frontiers in Veterinary Science, 4, 131. doi:10.3389/fvets.2017.00131
CrossrefPubMedPMC Google Scholar

Fouani, L., Kovacevic, Z., & Richardson, D. R. (2019). Targeting oncogenic nuclear factor kappa B signaling with redox-active agents for cancer treatment. Antioxidants & Redox Signaling, 30(8), 1096-1123. doi:10.1089/ars.2017.7387
CrossrefPubMedGoogle Scholar

Gerhäuser, C. (2005). Broad spectrum antiinfective potential of xanthohumol from hop (Humulus lupulus L.) in comparison with activities of other hop constituents and xanthohumol metabolites. Molecular Nutrition & Food Research, 49(9), 827-831. doi:10.1002/mnfr.200500091
CrossrefPubMedGoogle Scholar

Girisa, S., Saikia, Q., Bordoloi, D., Banik, K., Monisha, J., Daimary, U. D., Verma, E., Ahn, K. S., & Kunnumakkara, A. B. (2021). Xanthohumol from hop: hope for cancer prevention and treatment. IUBMB Life, 73(8), 1016-1044. doi:10.1002/iub.2522
CrossrefPubMedGoogle Scholar

Golder, H. M., & Lean, I. J. (2016). A meta-analysis of lasalocid effects on rumen measures, beef and dairy performance, and carcass traits in cattle. Journal of Animal Science, 94(1), 306-326. doi:10.2527/jas.2015-9694
CrossrefPubMedGoogle Scholar

Hsu, C. C., Lai, W. L., Chuang, K. C., Lee, M. H., & Tsai, Y. C. (2013). The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans. Medical Mycology, 51(5), 473-482. doi:10.3109/13693786.2012.743051
CrossrefPubMedGoogle Scholar

Jiang, C. H., Sun, T. L., Xiang, D. X., Wei, S. S., & Li, W. Q. (2018). Anticancer activity and mechanism of xanthohumol: a prenylated flavonoid from hops (Humulus lupulus L.). Frontiers in Pharmacology, 9, 530. doi:10.3389/fphar.2018.00530
CrossrefPubMedPMCGoogle Scholar

Karabín, M., Hudcová, T., Jelínek, L., & Dostálek, P. (2016). Biologically active compounds from hops and prospects for their use. Comprehensive Reviews in Food Science and Food Safety, 15(3), 542-567. doi:10.1111/1541-4337.12201
CrossrefPubMedGoogle Scholar

Karabin, M., Hudcova, T., Jelinek, L., & Dostalek, P. (2015). Biotransformations and biological activities of hop flavonoids. Biotechnology Advances, 33(6), 1063-1090. doi:10.1016/j.biotechadv.2015.02.009
CrossrefPubMedGoogle Scholar

Kasap, S., Erturk, M., Mecitoglu, Z., Dulger, H., Babaeski, S., & Kennerman, E. (2020). Determination of the efficacy of monensin capsule (continuous release capsule) on metabolic parameters in transition dairy cows. Medycyna Weterynaryjna, 76(9), 512-516. doi:10.21521/mw.6435
CrossrefGoogle Scholar

Kevin II, D. A., Meujo, D. A. F., & Hamann, M. T. (2009). Polyether ionophores: broad-spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites. Expert Opinion on Drug Discovery, 4(2), 109-146. doi:10.1517/17460440802661443
CrossrefPubMedPMCGoogle Scholar

Kim, D. O., Lee, K. W., Lee, H. J., & Lee, C. Y. (2002). Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. Journal of Agricultural & Food Chemistry, 50(13), 3713-3717. doi:10.1021/jf020071c
CrossrefPubMedGoogle Scholar

Koetter, U., & Biendl, M. (2010). Hops (Humulus lupulus): a review of its historic and medicinal uses. HerbalGram. 87, 44-57. Retrieved from https://www.herbalgram.org/resources/herbalgram/issues/87/table-of-contents/article3559
Google Scholar

Limede, A. C., Marques, R. S., Polizel, D. M., Cappellozza, B. I., Miszura, A. A., Barroso, J. P. R., Storti Martins, A., Sardinha, L. A., Baggio, M., & Pires, A. V. (2021). Effects of supplementation with narasin, salinomycin, or flavomycin on performance and ruminal fermentation characteristics of Bos indicus Nellore cattle fed with forage-based diets. Journal of Animal Science, 99(4), skab005. doi:10.1093/jas/skab005
CrossrefPubMedPMCGoogle Scholar

Liu, H., Lin, S., Jacobsen, K. M., & Poulsen, T. B. (2019). Chemical syntheses and chemical biology of carboxyl polyether ionophores: recent highlights. Angewandte Chemie. International Edition, 58(39), 13630-13642. doi:10.1002/anie.201812982
CrossrefPubMedGoogle Scholar

Macchioni, V., Picchi, V., & Carbone, K. (2022). Hop leaves as an alternative source of health-active compounds: effect of genotype and drying conditions. Plants, 11(1), 99. doi:10.3390/plants11010099
Crossref ● PubMed ● PMC ● Google Scholar
https://doi.org/10.3390/plants11010099
PMid:35009102 PMCid:PMC8747731

Mammi, L. M. E., Guadagnini, M., Mechor, G., Cainzos, J. M., Fusaro, I., Palmonari, A., & Formigoni, A. (2021). The use of monensin for ketosis prevention in dairy cows during the transition period: a systematic review. Animals, 11(7), 1988. doi:10.3390/ani11071988
CrossrefPubMedPMCGoogle Scholar

Markantonatos, X., & Varga, G. A. (2017). Effects of monensin on glucose metabolism in transition dairy cows. Journal of Dairy Science, 100(11), 9020-9035. doi:10.3168/jds.2016-12007
CrossrefPubMedGoogle Scholar

Marques, R. D. S., & Cooke, R. F. (2021). Effects of ionophores on ruminal function of beef cattle. Animals, 11(10), 2871. doi:10.3390/ani11102871
CrossrefPubMedPMCGoogle Scholar

McCarthy, M. M., Yasui, T., Ryan, C. M., Pelton, S. H., Mechor, G. D., & Overton, T. R. (2015). Metabolism of early-lactation dairy cows as affected by dietary starch and monensin supplementation. Journal of Dairy Science, 98(5), 3351-3365. doi:10.3168/jds.2014-8821
CrossrefPubMedGoogle Scholar

Mezzetti, M., Piccioli-Cappelli, F., Bani, P., Amadori, M., Calamari, L., Minuti, A., Loor, J. J., Bionaz, M., & Trevisi, E. (2019). Monensin controlled-release capsule administered in late-pregnancy differentially affects rumination patterns, metabolic status, and cheese-making properties of the milk in primiparous and multiparous cows. Italian Journal of Animal Science, 18(1), 1271-1283. doi:10.1080/1828051X.2019.1645623
CrossrefGoogle Scholar

Miranda, C. L., Stevens, J. F., Ivanov, V., McCall, M., Frei, B., Deinzer, M. L., & Buhler, D. R. (2000). Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavanones in vitro. Journal of Agricultural & Food Chemistry, 48(9), 3876-3884. doi:10.1021/jf0002995
CrossrefPubMedGoogle Scholar

Mukai, R. (2018). Prenylation enhances the biological activity of dietary flavonoids by altering their bioavailability. Bioscience, Biotechnology & Biochemistry, 82(2), 207-215. doi:10.1080/09168451.2017.1415750
CrossrefPubMedGoogle Scholar

Mullins, C. R., Mamedova, L. K., Brouk, M. J., Moore, C. E., Green, H. B., Perfield, K. L., Smith, J. F., Harner, J. P., & Bradford, B. J. (2012). Effects of monensin on metabolic parameters, feeding behavior, and productivity of transition dairy cows. Journal of Dairy Science, 95(3), 1323-1336. doi:10.3168/jds.2011-4744
CrossrefPubMedGoogle Scholar

Muzykiewicz, A., Nowak, A., Zielonka-Brzezicka, J., Florkowska, K., Duchnik, W., & Klimowicz, A. (2019). Comparison of antioxidant activity of extracts of hop leaves harvested in different years. Herba Polonica, 65(3), 1-9. doi:10.2478/hepo-2019-0013
CrossrefGoogle Scholar

National Academies of Sciences, Engineering and Medicine (NASEM). (2016). Nutrient requirements of beef cattle (8th ed.). Washington, The National Academies Press: DC, USA. doi.org/10.17226/19014
CrossrefGoogle Scholar

Nagaraja, T. G. Ionophores and antibiotics in ruminants. (1995). In R. J. Wallace & A. Chesson (Eds.), Biotechnology in animal feeds and animal feeding (pp. 173-204). Wiley-VCH Verlag GmbH, Weinheim. doi:10.1002/9783527615353.ch9
CrossrefGoogle Scholar

Nesse, L. L., Bakke, A. M., Eggen, T., Hoel, K., Kaldhusdal, M., Ringø, E., Yazdankhah, S. P., Lock, E. J., Olsen, R. E., Ørnsrud, R., & Krogdahl, Å. (2015). The risk of development of antimicrobial resistance with the use of coccidiostats in poultry diets. European Journal of Nutrition & Food Safety, 11(1), 40-43. doi:10.9734/ejnfs/2019/v11i130127
CrossrefGoogle Scholar

Nowak, B., Poźniak, B., Popłoński, J., Bobak, Ł., Matuszewska, A., Kwiatkowska, J., Dziewiszek, W., Huszcza, E., & Szeląg, A. (2020). Pharmacokinetics of xanthohumol in rats of both sexes after oral and intravenous administration of pure xanthohumol and prenylflavonoid extract. Advances in Clinical and Experimental Medicine, 29(9), 1101-1109. doi:10.17219/acem/126293
CrossrefPubMedGoogle Scholar

Paraiso, I. L., Tran, T. Q., Magana, A. A., Kundu, P., Choi, J., Maier, C. S., Bobe, G., Raber, J., Kioussi, C., & Stevens, J. F. (2021). Xanthohumol ameliorates diet-induced liver dysfunction via farnesoid x receptor-dependent and independent signaling. Frontiers in Pharmacology, 12, 643857. doi:10.3389/fphar.2021.643857
CrossrefPubMedPMCGoogle Scholar

Polizel, D. M., Cappellozza, B. I., Hoe, F., Lopes, C. N., Barroso, J. P., Miszura, A., Oliveira, G. B., Gobato, L., & Pires, A. V. (2020). Effects of narasin supplementation on dry matter intake and rumen fermentation characteristics of Bos indicus steers fed a high-forage diet. Translational Animal Science, 4(1), 118-128. doi:10.1093/tas/txz164
CrossrefPubMedPMCGoogle Scholar

Quiñones, M., Miguel, M., & Aleixandre, A. (2013). Beneficial effects of polyphenols on cardiovascular disease. Pharmacological Research, 68(1), 125-131. doi:10.1016/j.phrs.2012.10.018
CrossrefPubMedGoogle Scholar

Raboisson, D., & Barbier, M. (2017). Economic synergy between dry cow diet improvement and monensin bolus use to prevent subclinical ketosis: an experimental demonstration based on available literature. Frontiers in Veterinary Science, 4, 35. doi:10.3389/fvets.2017.00035
CrossrefGoogle Scholar

Robinson, P. H. (2020). Impacts of feeding monensin sodium on production and the efficiency of milk production in dairy cows fed total mixed rations: evaluation of a confounded literature. Canadian Journal of Animal Science, 100(3), 391-401. doi:10.1139/cjas-2019-0184
CrossrefGoogle Scholar

Roy, A., & Talukdar, P. (2021). Recent advances in bioactive artificial ionophores. ChemBioChem, 22(20), 2925-2940. doi:10.1002/cbic.202100112
CrossrefPubMedPMCGoogle Scholar

Rozalski, M., Micota, B., Sadowska, B., Stochmal, A., Jedrejek, D., Wieckowska-Szakiel, M., & Rozalska, B. (2013). Antiadherent and antibiofilm activity of Humulus lupulus L. derived products: new pharmacological properties. BioMed Research International, 2013, 101089. doi:10.1155/2013/101089
CrossrefPubMedPMCGoogle Scholar

Russell, J. B., & Houlihan, A. J. (2003). Ionophore resistance of ruminal bacteria and its potential impact on human health. FEMS Microbiology Reviews, 27(1), 65-74. doi:10.1016/S0168-6445(03)00019-6
CrossrefPubMedGoogle Scholar

Sachko, S. R. (2023). The effect of therapeutic feed additive on rumen fermentation in cows with ketosis. The Animal Biology, 25(1), 39-45. doi:10.15407/animbiol25.01.039 (In Ukrainian)
CrossrefGoogle Scholar

Sachko, S, & Vudmaska, I. (2019). Use of hop cones and vitamin E to prevent metabolic disorders in transition dairy cows. Proceedings of the XIX Middle-European Buiatrics Congress, May 22-25, 2019, Lviv, Ukraine. The Animal Biology, 21(2), 132. doi:10.15407/animbiol21.02
CrossrefGoogle Scholar

Sakamoto, K., & Konings, W. N. (2003). Beer spoilage bacteria and hop resistance. International Journal of Food Microbiology, 89(2-3), 105-124. doi:10.1016/S0168-1605(03)00153-3
CrossrefPubMedGoogle Scholar

Sandoval-Acuña, C., Ferreira, J., & Speisky, H. (2014). Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions. Archives of Biochemistry and Biophysics, 559, 75-90. doi:10.1016/j.abb.2014.05.017
CrossrefPubMedGoogle Scholar

Schären, M., Drong, C., Kiri, K., Riede, S., Gardener, M., Meyer, U., Hummel, J., Urich, T., Breves, G., & Dänicke, S. (2017). Differential effects of monensin and a blend of essential oils on rumen microbiota composition of transition dairy cows. Journal of Dairy Science, 100(4), 2765-2783. doi:10.3168/jds.2016-11994
CrossrefPubMedGoogle Scholar

Sendamangalam, V., Choi, O. K., Kim, D., & Seo, Y. (2011). The anti-biofouling effect of polyphenols against Streptococcus mutans. Biofouling, 27(1), 13-19. doi:10.1080/08927014.2010.535897
CrossrefPubMedGoogle Scholar

Sigel, E., & Steinmann, M. E. (2012). Structure, function, and modulation of GABAA receptors. Journal of Biological Chemistry, 287(48), 40224-40231. doi:10.1074/jbc.R112.386664
CrossrefPubMedPMCGoogle Scholar

Sławińska-Brych, A., Mizerska-Kowalska, M., Król, S. K., Stepulak, A., & Zdzisińska, B. (2021). Xanthohumol impairs the PMA-driven invasive behaviour of lung cancer cell line A549 and exerts anti-EMT action. Cells, 10(6), 1484. doi:10.3390/cells10061484
CrossrefPubMedPMCGoogle Scholar

Vudmaska, I., Petrukh, I., Sachko, S., Vlizlo, V., Kosenko, Y., Kozak, M., & Petruk, A. (2020). Using hop cones, vitamin E, methionine, choline and carnitine for treatment of subclinical ketosis in transition dairy cows. Advances in Animal and Veterinary Sciences, 9(1). 55-62. doi:10.17582/journal.aavs/2021/9.1.55.62
CrossrefGoogle Scholar

Wei, S., Sun, T., Du, J., Zhang, B., Xiang, D., & Li, W. (2018). Xanthohumol, a prenylated flavonoid from Hops, exerts anticancer effects against gastric cancer in vitro. Oncology Reports, 40(6), 3213-3222. doi:10.3892/or.2018.6723
CrossrefGoogle Scholar

Weiskirchen, R., Mahli, A., Weiskirchen, S., & Hellerbrand, C. (2015). The hop constituent xanthohumol exhibits hepatoprotective effects and inhibits the activation of hepatic stellate cells at different levels. Frontiers in Physiology, 6, 140. doi:10.3389/fphys.2015.00140
CrossrefPubMedPMCGoogle Scholar

Yap, P. S. Y., Yiap, B. C., Ping, H. C., & Lim, S. H. E. (2014). Essential oils, a new horizon in combating bacterial antibiotic resistance. The Open Microbiologicy Journal, 8, 6-14. doi:10.2174/1874285801408010006
CrossrefPubMedPMCGoogle Scholar

Zhang, N., Liu, Z. W., Han, Q. Y., Chen, J. H., & Lv, Y. (2010). Xanthohumol enhances antiviral effect of interferon α-2b against bovine viral diarrhea virus, a surrogate of hepatitis C virus. Phytomedicine, 17(5), 310-316. doi:10.1016/j.phymed.2009.08.005
CrossrefPubMedGoogle Scholar

Zhang, Y., Bobe, G., Miranda, C. L., Lowry, M. B., Hsu, V. L., Lohr, C. V., Wong, C. P., Jump, D. B., Robinson, M. M., Sharpton, T. J., Maier, C. S., Stevens, J. F., & Gombart, A. F. (2021). Tetrahydroxanthohumol, a xanthohumol derivative, attenuates high-fat diet-induced hepatic steatosis by antagonizing PPARγ. eLife. 10, e66398. doi:10.7554/eLife.66398
CrossrefPubMedPMCGoogle Scholar

Zugravu, C. A., Bohiltea, R. E., Salmen, T., Pogurschi, E., & Otelea, M. R. (2022). Antioxidants in hops: bioavailability, health effects and perspectives for new products. Antioxidants, 11(2), 241. doi:10.3390/antiox11020241
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Ihor Vudmaska, Yuriy Salyha, Serhiy Sachko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.