PARTICIPATION OF γ-AMINO BUTYRIC ACID IN CELL SIGNALING PROCESSES AND PLANT ADAPTATION TO ABIOTIC STRESSORS

Yuriy E. Kolupaev, Oleksandr I. Kokorev, Mykola V. Shevchenko, Mykola M. Marenych, Valeriia P. Kolomatska


DOI: http://dx.doi.org/10.30970/sbi.1801.752

Abstract


Adaptation of plants to stress factors occurs with the participation of stress phytohormones, signaling network and plant neurotransmitters. Among the latter, in particular, γ-aminobutyric acid (γ-aminobutyric acid – GABA) is a non-proteinogenic four-carbon amino acid found in many prokaryotic and eukaryotic organisms. Its functions in plants have been actively studied only in the past decade. During this period, a lot of information has been accumulated about the protective effect of exogenous GABA on plants of various taxonomic groups under the influence of stress factors of various nature. The first national review is devoted to the analysis and generalization of data on the mechanisms of stress-protective action of GABA in plants. The ways of synthesis and metabolism of GABA in plant cells and the mechanisms of activation of these processes under stressful conditions are described. It is noted that the main way of GABA formation in plants is decarboxylation of glutamate by means of glutamate decarboxy­lase. Possible mechanisms of GABA reception and signal transmission to the genetic apparatus are discussed. Special attention is paid to the analysis of new data on the role of calcium in the activation of GABA synthesis and the realization of its physiological effects. Possible mechanisms of GABA’s influence on the functioning of mitochondria, its role in maintaining redox homeostasis under stressful conditions are discussed. At the same time, data on the increase in the expression of genes encoding the catalytic subunit of NADPH oxidase under the influence of GABA are presented. Functional connections between GABA and nitric oxide as a signaling mediator are considered. The effect of exogenous GABA on the main protective reactions of plants is characte­rized: the state of the antioxidant system, the accumulation of multifunctional low-molecular protectors, the synthesis of dehydrins and chaperones. The data on the phenomeno­logy of the effects of GABA under the main abiotic stresses are presented: the effects of extreme temperatures, drought and salinity on plants. The prospects for the practical use of GABA as a compound that combines the functions of an energy metabolite and a signaling mediator are noted.


Keywords


γ-aminobutyric acid, glutamate decarboxylase, calcium, reactive oxygen species, nitric oxide, polyamines, antioxidant system, plant resistance

References


Abd El-Gawad, H. G., Mukherjee, S., Farag, R., Abd Elbar, O. H., Hikal, M., Abou El-Yazied, A., Abd Elhady, S. A., Helal, N., ElKelish, A., El Nahhas, N., Azab, E., Ismail, I. A., Mbarki, S., & Ibrahim, M. F. M. (2021). Exogenous γ-aminobutyric acid (GABA)-induced signaling events and field performance associated with mitigation of drought stress in Phaseolus vulgaris L. Plant Signaling & Behavior, 16(2), 1853384. doi:10.1080/15592324.2020.1853384
CrossrefPubMedPMCGoogle Scholar

Abdel Razik, E. S., Alharbi, B. M., Pirzadah, T. B., Alnusairi, G. S. H., Soliman, M. H., & Hakeem, K. R. (2021). γ-Aminobutyric acid (GABA) mitigates drought and heat stress in sunflower (Helianthus annuus L.) by regulating its physiological, biochemical and molecular pathways. Physiologia Plantarum, 172, 505-527. doi:10.1111/ppl.13216
CrossrefPubMedGoogle Scholar

Akula, R., & Mukherjee, S. (2020). New insights on neurotransmitters signaling mechanisms in plants. Plant Signaling & Behavior, 15(6), 1737450. doi:10.1080/15592324.2020.1737450
CrossrefPubMedPMCGoogle Scholar

Ali, M. S. & Baek, K. H. (2020). Jasmonic acid signaling pathway in response to abiotic stresses in plants. International Journal of Molecular Sciences, 21, 621. doi:10.3390/ijms21020621
CrossrefPubMedPMCGoogle Scholar

AL-Quraan, N. A. (2015). GABA shunt deficiencies and accumulation of reactive oxygen species under UV treatments: insight from Arabidopsis thaliana calmodulin mutants. Acta Physiologia Plantarum, 37(4), 86. doi:10.1007/s11738-015-1836-5
CrossrefGoogle Scholar

AL-Quraan, N., AL-Ajlouni, Z., & Obedat, D. (2019). The GABA shunt pathway in germinating seeds of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) under salt stress. Seed Science Research, 29(4), 250-260. doi:10.1017/S0960258519000230
CrossrefGoogle Scholar

Al-Quraan, N. A. & Al-Share, A. T. (2016). Characterization of the γ-aminobutyric acid shunt pathway and oxidative damage in Arabidopsis thaliana pop 2 mutants under various abiotic stresses. Biologia Plantarum, 60(1), 132-138. doi:10.1007/s10535-015-0563-5
CrossrefGoogle Scholar

Al-Quraan, N. A., Sartawe, F. A., & Qaryouti, M. M. (2013). Characterization of γ-aminobutyric acid metabolism and oxidative damage in wheat (Triticum aestivum L.) seedlings under salt and osmotic stress. Journal of Plant Physiology, 170(11), 1003-1009. doi:10.1016/j.jplph.2013.02.010
CrossrefPubMedGoogle Scholar

Ansari, M. I., Jalil, S. U., Ansari, S. A., & Hasanuzzaman, M. (2021). GABA shunt: a key-player in mitigation of ROS during stress. Plant Growth Regulation, 94(2), 131-149. doi:10.1007/s10725-021-00710-y
CrossrefGoogle Scholar

Bailey-Serres, J., & Chang R. (2005). Sensing and signalling in response to oxygen deprivation in plants and other organisms. Annals Botany, 96(4), 507-518. doi:10.1093/aob/mci206
CrossrefPubMedPMCGoogle Scholar

Bartyzel, I., Pekzar, K., & Paszkowski, A. (2003). Functioning of the γ-aminobutyrate pathway in wheat seedlings affected by ismotic stress. Biologia Plantarum, 47(2), 221-225. doi:10.1023/b:biop.0000022255.01125.99
CrossrefGoogle Scholar

Bhardwaj, A., Sita, K., Sehgal, A., Bhandari, K., Kumar, S., Prasad, P. V. V., Jha, U., Kumar, J., Siddique, K. H. M., & Nayyar, H. (2021). Heat priming of lentil (Lens culinaris Medik.) seeds and foliar treatment with γ-aminobutyric acid (GABA), confers protection to reproductive function and yield traits under high-temperature stress environments. International Journal of Molecular Sciences, 22(11), 5825. doi:10.3390/ijms22115825
CrossrefPubMedPMCGoogle Scholar

Bohnert, H. J., & Jensen, R. G. (1996). Strategies for engineering waterstress tolerance in plants. Trends in Biotechnology, 14(3), 89-97. doi:10.1016/0167-7799(96)80929-2
CrossrefGoogle Scholar

Bor, M., Seckin, B., Ozgur, R., Yılmaz, O., Ozdemir, F., & Turkan, I. (2009). Comparative effects of drought, salt, heavy metal and heat stresses on gamma-aminobutryric acid levels of sesame (Sesamum indicum L.). Acta Physiologia Plantarum, 31(3), 655-659. doi:10.1007/s11738-008-0255-2
CrossrefGoogle Scholar

Bor, M., & Turkan, I. (2019). Is there a room for GABA in ROS and RNS signalling? Environmental and Experimental Botany, 161, 67-73. doi:10.1016/j.envexpbot.2019.02.015
CrossrefGoogle Scholar

Bormann, J. (1988). Electrophysiology of GABAA and GABAB receptor subtypes. Trends Neurosci, 11(3), 112-116. doi:10.1016/0166-2236(88)90156-7
CrossrefPubMedGoogle Scholar

Bormann, J. (2000). The 'ABC' of GABA receptors. Trends in Pharmacological Sciences, 21(1), 16-19. doi:10.1016/s0165-6147(99)01413-3
CrossrefPubMedGoogle Scholar

Bose, J., Pottosin, I. I., Shabala, S. S., Palmgren, M. G., & Shabala, S. (2011). Calcium efflux systems in stress signaling and adaptation in plants. Frontiers in Plant Science, 2, 17. doi:10.3389/fpls.2011.00085
CrossrefPubMedPMCGoogle Scholar

Bouché, N., Fait, A., Bouchez, D., Møller, S. G., & Fromm, H. (2003). Mitochondrial succinic-semialdehyde dehydrogenase of the γ-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proceedings of the National Academy of Sciences of the United States of America, 100(11), 6843-6848. doi:10.1073/pnas.1037532100
CrossrefPubMedPMCGoogle Scholar

Breitkreuz, K. E., Shelp, B. J., Fischer, W. N., Schwacke, R., & Rentsch, D. (1999). Identification and characterization of GABA, proline and quaternary ammonium compound transporters from Arabidopsis thaliana. FEBS Letters, 450(3), 280-284. doi:10.1016/s0014-5793(99)00516-5
CrossrefPubMedGoogle Scholar

Chen, X., Ding, Y., Yang, Y., Song, C., Wang, B., Yang, S., Guo, Y., & Gong, Z. (2021). Protein kinases in plant responses to drought, salt, and cold stress. Journal of Integrative Plant Biology, 63(1), 53-78. doi:10.1111/jipb.13061
CrossrefPubMedGoogle Scholar

Cheng, B., Li, Z., Liang, L., Cao, Y., Zeng, W., Zhang, X., Ma, X., Huang, L., Nie, G., Liu, W., & Peng, Y. (2018). The γ-aminobutyric acid (GABA) alleviates salt stress damage during Sseeds germination of white clover associated with Na+/K+ transportation, dehydrins accumulation, and stress-related genes expression in white clover. International Journal of Molecular Sciences, 19(9), 2520. doi:10.3390/ijms19092520
CrossrefPubMedPMCGoogle Scholar

Corpas, F. J., & Barroso, J. B. (2013). Nitro-oxidative stress vs oxidative or nitrosative stress in higher plants. New Phytologist, 199(3), 633-635. doi:10.1111/nph.12380
CrossrefPubMedGoogle Scholar

Couve, A., Moss, S. J., & Pangalos, M. N. (2000). GABAB receptors: a new paradigm in G protein signaling. Molecular and Cellular Neurosciences, 16(4), 296-312. doi:10.1006/mcne.2000.0908
CrossrefPubMedGoogle Scholar

Dabravolski, S. A., & Isayenkov, S. V. (2023). The role of the γ-aminobutyric acid (GABA) in plant salt stress tolerance. Horticulturae, 9(2), 230. doi:10.3390/horticulturae902023
CrossrefGoogle Scholar

Daryanto, S., Wang, L., & Jacinthe, P. A. (2016). Global synthesis of drought effects on maize and wheat production. PLoS One, 11(5), e0156362. doi:10.1371/journal.pone.0156362
CrossrefPubMedPMCGoogle Scholar

Derkach, I. V. & Romaniuk, N. D. (2016). The impact of soil salinity on plants. Scientific Issue Ternopil Volodymyr Hnatiuk National Pedagogical University, Series Biology, 3-4(67), 91-106. (In Ukrainian)
Google Scholar

Domingos, P., Dias, P. N., Tavares, B., Portes, M. T., Wudick, M. M., Konrad, K. R., Gilliham, M., Bicho, A., & Feijo, J. A. (2019). Molecular and electrophysiological characterization of anion transport in Arabidopsis thaliana pollen reveals regulatory roles for pH, Ca2+ and GABA. New Phytologist, 223(3), 1353-1371. doi:10.1111/nph.15863
CrossrefPubMedGoogle Scholar

Dubrovna, O. V., Mykhalska, S. I., & Komisarenko, A. G. (2022). Using proline metabolism genes in plant genetic engineering. Cytology & Genetics, 56(4), 361-378. doi:10.3103/s009545272204003x
CrossrefGoogle Scholar

Farooq, M., Nawaz, A., Chaudhry, M. A. M., Indrasti, R., & Rehman, A. (2017). Improving resistance against terminal drought in bread wheat by exogenous application of proline and gamma-aminobutyric acid. Journal of Agronomy and Crop Science, 203(6), 464-472. doi:10.1111/jac.12222
CrossrefGoogle Scholar

Finka, A., & Goloubinoff, P. (2014). The CNGCb and CNGCd genes from Physcomitrella patens moss encode for thermosensory calcium channels responding to fluidity changes in the plasma membrane. Cell Stress Chaperones, 19(1), 83-90. doi:10.1007/s12192-013-0436-9
CrossrefPubMedPMCGoogle Scholar

Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.x
CrossrefPubMedGoogle Scholar

Gao, F., Han, X., Wu, J., Zheng, S., Shang, Z., Sun, D., Zhou, R., & Li, B. (2012). A heat-activated calcium-permeable channel - Arabidopsis cyclic nucleotide-gated ion channel 6 - is involved in heat shock responses. The Plant Journal: for Cell and Molecular Biology, 70(6), 1056-1069. doi:10.1111/j.1365-313X.2012.04969.x
CrossrefPubMedGoogle Scholar

Gao, Y., & Zhang, G. (2019). A calcium sensor calcineurin B-like 9 negatively regulates cold tolerance via calcium signaling in Arabidopsis thaliana. Plant Signaling & Behavior, 14(3), e1573099. doi:10.1080/15592324.2019.1573099
CrossrefPubMedPMCGoogle Scholar

Garoosi, M. K., Sanjarian, F., & Chaichi, M. (2023). The role of γ-aminobutyric acid and salicylic acid in heat stress tolerance under salinity conditions in Origanum vulgare L. PLoS One, 18(7), e0288169. doi:10.1371/journal.pone.0288169
CrossrefPubMedPMCGoogle Scholar

Gilliham, M., & Tyerman, S. D. (2016). Linking metabolism to membrane signaling: the GABA-malate connection. Trends in Plant Science, 21(4), 295-301. doi:10.1016/j.tplants.2015.11.011
CrossrefPubMedGoogle Scholar

Hasan, M. M., Alabdallah, N. M., Alharbi, B. M., Waseem, M., Yao, G., Liu, X.-D., Abd El-Gawad, H. G., El-Yazied, A. A., Ibrahim, M. F. M., Jahan, M. S., & Fang, X. W. (2021). GABA: a key player in drought stress resistance in plants. International Journal of Molecular Sciences, 22, 10136. doi:10.3390/ijms221810136
CrossrefPubMedPMCGoogle Scholar

Isayenkov, S. V. (2012). Physiological and molecular aspects of salt stress in plants. Cytology & Genetics, 46(5), 302-318. doi:10.3103/S0095452712050040
CrossrefGoogle Scholar

Janse van Rensburg, H. C., & Van den Ende, W. (2020). Priming with γ-aminobutyric acid against Botrytis cinerea reshuffles metabolism and reactive oxygen species: dissecting signalling and metabolism. Antioxidants, 9(12), 1174. doi:10.3390/antiox9121174
CrossrefPubMedPMCGoogle Scholar

Jin, W., & Wu, F. (2016). Proteome-wide identification of lysine succinylation in the proteins of tomato (Solanum lycopersicum). PLoS One, 11(2), e0147586. doi:10.1371/journal.pone.0147586
CrossrefPubMedPMCGoogle Scholar

Jin, X., Liu, T., Xu, J., Gao, Z., & Hu, X. (2019). Exogenous GABA enhances muskmelon tolerance to salinity-alkalinity stress by regulating redox balance and chlorophyll biosynthesis. BMC Plant Biology, 19(1), 48. doi:10.1186/s12870-019-1660-y
CrossrefPubMedPMCGoogle Scholar

Jurkonienė, S., Mockevičiūtė, R., Gavelienė, V., Šveikauskas, V., Zareyan, M., Jankovska-Bortkevič, E., Jankauskienė, J., Žalnierius, T., & Kozeko, L. (2023). Proline enhances resistance and recovery of oilseed rape after a simulated prolonged drought. Plants, 12(14), 2718. doi:10.3390/plants12142718
CrossrefPubMedPMCGoogle Scholar

Karpets, Y. V., Kolupaev, Y. E., Yastreb, T. O., & Dmitriev, O. P. (2012). Possible pathways of heat resistance induction in plant cells by exogenous nitrogen oxide. Cytology & Genetics, 46(6), 354-359. doi:10.3103/S0095452712060059
CrossrefGoogle Scholar

Kaspal, M., Kanapaddalagamage, M. H., & Ramesh, S. A. (2021). Emerging roles of γ aminobutyric acid (GABA) gated channels in plant stress tolerance. Plants, 10(10), 2178. doi:10.3390/plants10102178
CrossrefPubMedPMCGoogle Scholar

Kaur, N., & Gupta, A. K. (2005). Signal transduction pathways under abiotic stresses in plants. Current Science, 88(11), 1771-1780. Retrieved from http://www.jstor.org/stable/24110354
Google Scholar

Kavulych, Y., Kobyletska, M., Romanyuk, N., & Terek, O. (2023). Stress-protective and regulatory properties of salicylic acid and prospects of its use in plant production. Studia Biologica, 17(2), 173-200. doi:10.30970/sbi.1702.718
CrossrefGoogle Scholar

Khanna, R. R., Jahan, B., Iqbal, N., Khan, N. A., AlAjmi, M. F., Tabish Rehman, M., & Khan, M. I. R. (2021). GABA reverses salt-inhibited photosynthetic and growth responses through its influence on NO-mediated nitrogen-sulfur assimilation and antioxidant system in wheat. Journal of Biotechnology, 325, 73-82. doi:10.1016/j.jbiotec.2020.11.015
CrossrefPubMedGoogle Scholar

Kiriziy, D. A. (2023). Priming and cross-adaptation of plants to abiotic stresses: state of the problem and prospects. Fiziolgia Rastenii i Genetika, 55(2), 95-118. doi:10.15407/frg2023.02.095 (In Ukrainian)
CrossrefGoogle Scholar

Kobyletska, M., Kavulych, Y., Romanyuk, N., Korchynska, O., & Terek, O. (2023). Exogenous salicylic acid modifies cell wall lignification, total phenolic content, PAL-activity in wheat (Triticum aestivum L.) and buckwheat (Fagopyrum esculentum Moench) plants under cadmium chloride impac. Biointerface Research in Applied Chemistry, 13(2), 117. doi:10.33263/briac132.117
CrossrefGoogle Scholar

Kohli, S. K., Khanna, K., Bhardwaj, R., Abd Allah, E. F., Ahmad, P., & Corpas, F. J. (2019). Assessment of subcellular ROS and NO metabolism in higher plants: multifunctional signaling molecules. Antioxidants, 8(12), 641. doi:10.3390/antiox8120641
CrossrefPubMedPMCGoogle Scholar

Kolupaev, Y. E., & Karpets, Y. V. (2014). Reactive oxygen species and stress signaling in plants. Ukrainian Biochemical Journal, 86(4), 18-35. doi:10.15407/ubj86.04.018 (In Russian)
CrossrefPubMedGoogle Scholar

Kolupaev, Y. E., Karpets, Y. V., & Dmitriev, A. P. (2015). Signal mediators in plants in response to abiotic stress: calcium, reactive oxygen and nitrogen species. Cytology & Genetics, 49(5), 338-348. doi:10.3103/S0095452715050047
CrossrefGoogle Scholar

Kolupaev, Y. E., Karpets, Y. V., Shkliarevskyi, M. A., Yastreb, T. O., Plohovska, S. H., Yemets, A. I., & Blume, Y. B. (2022a). Gasotransmitters in plants: mechanisms of participation in adaptive responses. The Open Agriculture Journal, 16 (1), e187433152207050. doi:10.2174/18743315-v16-e2207050
CrossrefGoogle Scholar

Kolupaev, Y. E., Kokorev, A. I., & Dmitriev, A. P. (2022b). Polyamines: involvement in cellular signaling and plant adaptation to the effect of abiotic stressors. Cytology & Genetics, 56(2), 148-163. doi:10.3103/S0095452722020062
CrossrefGoogle Scholar

Kolupaev, Y. E., Yastreb, T. O., & Dmitriev, A. P. (2023a). Signal mediators in the Ismplementation of jasmonic acid's protective effect on plants under abiotic stresses. Plants, 12(14), 2631. doi:10.3390/plants12142631
CrossrefPubMedPMCGoogle Scholar

Kolupaev, Y. E., Yastreb, T. O., Ryabchun, N. I., Yemets, A. I., Dmitriev, O. P., & Blume, Y. B. (2023b). Cellular mechanisms of the formation of plant adaptive responses to high temperatures. Cytology & Genetics, 57(1), 55-75. doi:10.3103/S0095452723010048
CrossrefGoogle Scholar

Kolupaev, Y. E., Yastreb, T. O., Ryabchun, N. I., Kokorev, A. I., Kolomatska, V. P., & Dmitriev, A. P. (2023c). Redox homeostasis of cereals during acclimation to drought. Theoretical and Experimental Plant Physiology, 35(2), 133-168. doi:10.1007/s40626-023-00271-7
CrossrefGoogle Scholar

Kosakivska, I. V., Vedenicheva, N. P., Babenko, L. M., Voytenko, L. V., Romanenko, K. O., & Vasyuk, V. A. (2022). Exogenous phytohormones in the regulation of growth and development of cereals under abiotic stresses. Molecular Biology Reports, 49(1), 617-628. doi:10.1007/s11033-021-06802-2
CrossrefPubMedGoogle Scholar

Li, Z., Yu, J., Peng, Y., & Huang, B. (2017). Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera). Physiologia Plantarum, 159(1), 42-58. doi:10.1111/ppl.12483
CrossrefPubMedGoogle Scholar

Li, Z., Yong, B., Cheng, B., Wu, X., Zhang, Y., Zhang, X., & Peng, Y. (2019a). Nitric oxide, γ-aminobutyric acid, and mannose pretreatment influence metabolic profiles in white clover under water stress. Journal of Integrative Plant Biology, 61(12), 1255-1273. doi:10.1111/jipb.12770
CrossrefPubMedGoogle Scholar

Li, Z., Huang, T., Tang, M., Cheng, B., Peng, Y., & Zhang, X. (2019b). iTRAQ-based proteomics reveals key role of γ-aminobutyric acid (GABA) in regulating drought tolerance in perennial creeping bentgrass (Agrostis stolonifera). Plant Physiology and Biochemistry, 145, 216-226. doi:10.1016/j.plaphy.2019.10.018
CrossrefPubMedGoogle Scholar

Li, Z., Zeng, W., Cheng, B., Huang, T., Peng, Y., & Zhang, X. (2020a). γ-Aminobutyric acid enhances heat tolerance associated with the change of proteomic profiling in creeping bentgrass. Molecules, 25(18), 4270. doi:10.3390/molecules25184270
CrossrefPubMedPMCGoogle Scholar

Li, Z., Cheng, B., Peng, Y., & Zhang, Y. (2020b). Adaptability to abiotic stress regulated by γ-aminobutyric acid in relation to alterations of endogenous polyamines and organic metabolites in creeping bentgrass. Plant Physiology and Biochemistry, 157, 185-194. doi:10.1016/j.plaphy.2020.10.025
CrossrefPubMedGoogle Scholar

Li, Z., Cheng, B., Zeng, W., Zhang, X., & Peng, Y. (2020c). Proteomic and metabolomic profilings reveal crucial functions of γ-aminobutyric acid in regulating ionic, water, and metabolic homeostasis in creeping bentgrass under salt stress. Journal of Proteome Research, 19(2), 769-780. doi:10.1021/acs.jproteome.9b00627
CrossrefPubMedGoogle Scholar

Li, L., Dou, N., Zhang, H., & Wu, C. (2021a). The versatile GABA in plants. Plant Signaling & Behavior, 16(3), e1862565. doi:10.1080/15592324.2020.1862565
CrossrefPubMedPMCGoogle Scholar

Li, Z., Tang, M., Hassan, M. J., Zhang, Y., Han, L., & Peng, Y. (2021b). Adaptability to high temperature and stay-green genotypes associated with variations in antioxidant, chlorophyll metabolism, and γ-aminobutyric acid accumulation in creeping bentgrass species. Frontiers in Plant Science, 12, 750728, doi:10.3389/fpls.2021.750728
CrossrefPubMedPMCGoogle Scholar

Li, Z., Burgess, P., Peng, Y., & Huang, B. (2022). Regulation of nutrient accumulation by γ-aminobutyric acid associated with GABA primingenhanced heat tolerance in creeping bentgrass. Grass Research, 2(1), 1-8. doi:10.48130/GR-2022-0005
CrossrefGoogle Scholar

Ma, Y., Dai, X., Xu, Y., Luo, W., Zheng, X., Zeng, D., Pan, Y., Lin, X., Liu, H., Zhang, D., Xiao, J., Guo, X., Xu, S., Niu, Y., Jin, J., Zhang, H., Xu, X., Li, L., Wang, W., Qian, Q., Ge, S., Chong, K. (2015). COLD1 confers chilling tolerance in rice. Cell, 160(6), 1209-1221. doi:10.1016/j.cell.2015.01.046
CrossrefPubMedGoogle Scholar

Macdonald, R. L., & Olsen, R. W. (1994). GABAA receptor channels. Annual Review of Neuroscience, 17(1), 569-602. doi:10.1146/annurev.ne.17.030194.003033
CrossrefPubMedGoogle Scholar

Mazzucotelli, E., Tartari, A., Cattivelli, L., & Forlani, G. (2006). Metabolism of γ-aminobutyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat. Journal of Experimental Botany, 57(14), 3755-3766. doi:10.1093/jxb/erl141
CrossrefPubMedGoogle Scholar

Meyer, A., Eskandari, S., Grallath, S., & Rentsch, D. (2006). AtGAT1, a high affinity transporter for γ-aminobutyric acid in Arabidopsis thaliana. Journal of Biological Chemistry, 281, 7197-7204. doi:10.1074/jbc.m510766200
CrossrefPubMedPMCGoogle Scholar

Misgeld, U., Bijak, M., & Jarolimek, W. (1995). A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system. Progress in Neurobiology, 46(4), 423-462. doi:10.1016/0301-0082(95)00012-k
CrossrefPubMedGoogle Scholar

Mittler, R., Zandalinas, S. I., Fichman, Y., & Van Breusegem, F. (2022). Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology, 2(10), 663-679. doi:10.1038/s41580-022-00499-2
CrossrefPubMedGoogle Scholar

Mur, L. A., Mandon, J., Persijn, S., Cristescu, S. M., Moshkov, I. E., Novikova, G. V., Hall, M. A., Harren, F. J., Hebelstrup, K. H., & Gupta, K. J. (2013). Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants, 5, pls052. doi:10.1093/aobpla/pls052
CrossrefPubMedPMCGoogle Scholar

Nayyar, H., Kaur, R., & Kaur Singh, S. R. (2014). γ-Aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants. Journal of Plant Growth Regulation, 33(2), 408-419. doi:10.1007/s00344-013-9389-6
CrossrefGoogle Scholar

Palanivelu, R., Brass, L., Edlund, A. F., & Preuss, D. (2003). Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell, 114(1), 47-59. doi:10.1016/s0092-8674(03)00479-3
CrossrefPubMedGoogle Scholar

Ramesh, S. A., Tyerman, S. D., Xu, B., Bose, J., Kaur, S., Conn, V., Domingos, P., Ullah, S., Wege, S., Shabala, S., Feijó, J. A., Ryan, P. R., & Gilliham, M. (2015). GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters. Nature Communications, 6(1), 7879. doi:10.1038/ncomms8879
CrossrefPubMedPMCGoogle Scholar

Ramesh, S. A., Tyerman, S. D., Gilliham, M., & Xu, B. (2017). γ-Aminobutyric acid (GABA) signalling in plants. Cellular and Molecular Life Sciences, 74(9), 1577-1603. doi:10.1007/s00018-016-2415-7
CrossrefPubMedGoogle Scholar

Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants, 8(2), 34. doi:10.3390/plants8020034
CrossrefPubMedPMCGoogle Scholar

Romanenko, K. O., Babenko, L. M., & Kosakivska, I. V. (2023). Amino acids in regulation of abiotic stress tolerance in cereal crops: a review. Cereal Research Communications. doi:10.1007/s42976-023-00418-x
CrossrefGoogle Scholar

Sears, S. M., & Hewett, S. J. (2021). Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Experimental Biology and Medicine, 246(9), 1069-1083. doi:10.1177/1535370221989263
CrossrefPubMedPMCGoogle Scholar

Shelp, B. J., Bozzo, G. G., Trobacher, C. P., Zarei, A., Deyman, K. L., & Brikis, C. J. (2012). Hypothesis/review: contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Science, 193-194, 130-135. doi:10.1016/j.plantsci.2012.06.00
CrossrefPubMedGoogle Scholar

Sheteiwy, M. S., Shao, H., Qi, W., Hamoud, Y. A., Shaghaleh, H., Khan, N. U., Yang, R., & Tang, B. (2019). GABA-alleviated oxidative injury induced by salinity, osmotic stress and their combination by regulating cellular and molecular signals in rice. International Journal of Molecular Sciences, 20(22), 5709. doi:10.3390/ijms20225709
CrossrefPubMedPMCGoogle Scholar

Shi, S. Q., Shi, Z., Jiang, Z. P., Qi, L. W., Sun, X. M., Li, C. X., Liu, J. F., Xiao, W. F., & Zhang, S. G. (2010). Effects of exogenous GABA on gene expression of Caragana intermedia roots under NaCl stress: regulatory roles for H2O2 and ethylene production. Plant, Cell & Environment, 33(2), 149-162. doi:10.1111/j.1365-3040.2009.02065.x
CrossrefPubMedGoogle Scholar

Signorelli, S., Dans, P. D., Coitiño, E. L., Borsani, O., & Monza, J. (2015). Connecting proline and γ-aminobutyric acid in stressed plants through non-enzymatic reactions. PLoS One, 10(3), e0115349. doi:10.1371/journal.pone.0115349
CrossrefPubMedPMCGoogle Scholar

Singh, S., Kumar, V., Kapoor, D., Kumar, S., Singh, S., Dhanjal, D. S., Datta, S., Samuel, J., Dey, P., Wang, S., Prasad, R., & Singh, J. (2020). Revealing on hydrogen sulfide and nitric oxide signals co-ordination for plant growth under stress conditions. Physiologia plantarum, 168(2), 301-317. doi:10.1111/ppl.13002
CrossrefPubMedGoogle Scholar

Sita, K., & Kumar, V. (2020). Role of gamma amino butyric acid (GABA) against abiotic stress tolerance in legumes: a review. Plant Physiology Reports, 25(4), 654-663. doi:10.1007/s40502-020-00553-1
CrossrefPMCGoogle Scholar

Skopelitis, D. S., Paranychianakis, N. V., Paschalidis, K. A., Pliakonis, E. D., Delis, I. D., Yakoumakis, D. I., Kouvarakis, A., Papadakis, A. K., Stephanou, E. G., & Roubelakis-Angelakis, K. A. (2006). Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. The Plant Cell, 18(10), 2767-2781. doi:10.1105/tpc.105.038323
CrossrefPubMedPMCGoogle Scholar

Steward, F. C., Thompson, J. F., & Dent, C. E. (1949). γ-Aminobutyric acid: a constituent of the potato tuber? Science, 110, 439-440.
Google Scholar

Suhel, M., Husain, T., Pandey, A., Singh, S., Dubey, N. K., Prasad, S. M., & Singh, V. P. (2023a). An appraisal of ancient molecule GABA in abiotic stress tolerance in plants, and its crosstalk with other signaling molecules. Journal of Plant Growth Regulation, 42(2), 614-629. doi:10.1007/s00344-022-10610-8
CrossrefGoogle Scholar

Suhel, M., Husain, T., Prasad, S. M., & Singh V. P. (2023b). GABA requires nitric oxide for alleviating arsenate stress in tomato and brinjal seedlings. Journal of Plant Growth Regulation, 42(2), 670-683. doi:10.1007/s00344-022-10576-7
CrossrefGoogle Scholar

Tan, M., Hassan, M.J., Peng, Y., Feng, G., Huang, L., Liu, L., Liu, W., Han, L., & Li, Z. (2022). Polyamines metabolism interacts with γ-aminobutyric acid, proline and nitrogen metabolisms to affect drought tolerance of creeping bentgrass. International Journal of Molecular Sciences, 23(5), 2779. doi:10.3390/ijms23052779
CrossrefPubMedPMCGoogle Scholar

Tang, M., Li, Z., Luo, L., Cheng, B., Zhang, Y., Zeng, W., & Peng, Y. (2020). Nitric oxide signal, nitrogen metabolism, and water balance affected by γ-aminobutyric acid (GABA) in relation to enhanced tolerance to water stress in creeping bentgrass. International Journal of Molecular Sciences, 21(20), 7460. doi:10.3390/ijms21207460
CrossrefPubMedPMCGoogle Scholar

Ullah, A., Ali, I., Noor, J., Zeng, F., Bawazeer, S., Eldin, S. M., Asghar, M. A., Javed, H. H., Saleem, K., Ullah, S., & Ali, H. (2023). Exogenous γ-aminobutyric acid (GABA) mitigated salinity-induced impairments in mungbean plants by regulating their nitrogen metabolism and antioxidant potential. Frontiers in Plant Science, 13, 1081188. doi:10.3389/fpls.2022.1081188
CrossrefPubMedPMCGoogle Scholar

Verma, S., Kumar, N., Verma, A., Singh, Hukum., Siddique, K. H. M., & Singh, N. P. (2020). Novel approaches to mitigate heat stress impacts on crop growth and development. Plant Physiology Reports, 25(4), 627-644. doi:10.1007/s40502-020-00550-4
CrossrefGoogle Scholar

Wang, Y., Luo, Z., Mao, L., & Ying, T. (2016). Contribution of polyamines metabolism and GABA shunt to chilling tolerance induced by nitric oxide in cold-stored banana fruit. Food Chemistry, 197, 333-339. doi:10.1016/j.foodchem.2015.10.118
CrossrefPubMedGoogle Scholar

Wang, Y., Xiong, F., Nong, S., Liao, J., Xing, A., Shen, Q., Ma, Y., Fang, W., & Zhu, X. (2020). Effects of nitric oxide on the GABA, polyamines, and proline in tea (Camellia sinensis) roots under cold stress. Scientific Reports, 10(1), 12240. doi:10.1038/s41598-020-69253-y
CrossrefPubMedPMCGoogle Scholar

Wang, W., Liu, S., & Yan, M. (2022). Synthesis of γ-aminobutyric acid-modified chitooligosaccharide derivative and enhancing salt resistance of wheat seedlings. Molecules, 27(10), 3068. doi:10.3390/molecules27103068
CrossrefPubMedPMCGoogle Scholar

Wojcik, W. J., & Neff, N. H. (1984). Gamma-aminobutyric acid B receptors are negatively coupled to adenylate cyclase in brain, and in the cerebellum these receptors may be associated with granule cells. Molecular Pharmacology, 25(1), 24-28. Retrieved from https://molpharm.aspetjournals.org/content/25/1/24.short
PubMedGoogle Scholar

Xing, S. G., Jun, Y. B., Hau, Z. W., & Liang, L. Y. (2007). Higher accumulation of γ-aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in Glycine max (L.) Merr. roots. Plant Physiology and Biochemistry, 45(8), 560-556. doi:10.1016/j.plaphy.2007.05.007
CrossrefPubMedGoogle Scholar

Xu, B., Sai, N., & Gilliham, M. (2021a). The emerging role of GABA as a transport regulator and physiological signal. Plant Physiology, 187(4), 2005-2016. doi:10.1093/plphys/kiab347
CrossrefPubMedPMCGoogle Scholar

Xu, B., Long, Y., Feng, X., Zhu, X., Sai, N., Chirkova, L., Betts, A., Herrmann, J., Edwards, E. J., Okamoto, M., Hedrich, R., & Gilliham, M. (2021b). GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. Nature Communications, 12(1), 1952. doi:10.1038/s41467-021-21694-3
CrossrefPubMedPMCGoogle Scholar

Xu, J., Liu, T., Qu, F., Jin, X., Huang, N., Wang, J., & Hu, X. (2021c). Nitric oxide mediates γ-aminobutyric acid-enhanced muskmelon tolerance to salinity-alkalinity stress conditions. Scientia Horticulturae, 286, 110229. doi:10.1016/j.scienta.2021.110229
CrossrefGoogle Scholar

Yang, R., Guo, Q., & Gu, Z. (2013). GABA shunt and polyamine degradation pathway on γ-aminobutyric acid accumulation in germinating fava bean (Vicia faba L.) under hypoxia. Food Chemistry, 136(1), 152-159. doi:10.1016/j.foodchem.2012.08.008
CrossrefPubMedGoogle Scholar

Yemets, A. I., Karpets, Y. V., Kolupaev, Y. E., & Blume, Y. B. (2019). Emerging technologies for enhancing ROS/RNS homeostasis. In M. Hasanuzzaman, V. Fotopoulos, K. Nahar, & M. Fujita (Eds.), Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms (Vol. 2, pp. 873-922). John Wiley & Sons Ltd. doi:10.1002/9781119468677.ch39
CrossrefGoogle Scholar

Yong, B., Xie, H., Li, Z., Li, Y.-P., Zhang, Y., Nie, G., Zhang, X.-Q., Ma, X., Huang, L.-K., Yan, Y.-H., & Peng, Y. (2017). Exogenous application of GABA smprove polyamines PEG-induced drought tolerance positively associated with GABA-shunt, and proline metabolism in white clover. Frontiers in Physiology, 8, 1107. doi:10.3389/fphys.2017.01107
CrossrefPubMedPMCGoogle Scholar

Yu, G.-H., Zou, J., Feng, J., Peng, X.-B., Wu, J.-Y., Wu, Y.-L., Palanivelu, R., & Sun, M.-X. (2014). Exogenous γ-aminobutyric acid (GABA) affects pollen tube growth via modulating putative Ca2+-permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase. Journal of Experimental Botany, 65(12), 3235-3248. doi:10.1093/jxb/eru171
CrossrefPubMedPMCGoogle Scholar

Zeng, W., Hassan, M. J., Kanga, D., Peng, Y., & Li, Z. (2021). Photosynthetic maintenance and heat shock protein accumulation relating to γ-aminobutyric acid (GABA)-regulated heat tolerance in creeping bentgrass (Agrostis stolonifera). South African Journal of Botany, 141, 405-413. doi:10.1016/j.sajb.2021.05.028
CrossrefGoogle Scholar

Zhao, Q., Ma, Y., Huang, X., Song, L., Li, N., Qiao, M., Li, T., Hai, D., & Cheng, Y. (2023). GABA Application enhances drought stress tolerance in wheat seedlings (Triticum aestivum L.). Plants, 12(13), 2495. doi:10.3390/plants12132495
CrossrefPubMedPMCGoogle Scholar

Zhou, M., Hassan, M. J., Peng, Y., Liu, L., Liu, W., Zhang, Y., & Li, Z. (2021). γ-Aminobutyric acid (GABA) priming improves seed germination and seedling stress tolerance associated with enhanced antioxidant metabolism, DREB expression, and dehydrin accumulation in white clover under water stress. Frontiers in Plant Science, 12, 776939. doi:10.3389/fpls.2021.776939
CrossrefPubMedPMCGoogle Scholar

Zhou, C, Dong, W., Jin, S., Liu, Q., Shi, L., Cao, S., Li, S., Chen, W., & Yang, Z. (2022). γ-Aminobutyric acid treatment induced chilling tolerance in postharvest peach fruit by upregulating ascorbic acid and glutathione contents at the molecular level. Frontiers in Plant Science, 13, 1059979. doi:10.3389/fpls.2022.1059979
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Yuriy E. Kolupaev, Oleksandr I. Kokorev, Mykola V. Shevchenko, Mykola M. Marenych, Valeriia P. Kolomatska

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.