THE EFFECT OF C60 FULLERENES ON THE RECOVERY OF MUSCLE SOLEUS CONTRACTION DYNAMICS IN RATS AFTER CHRONIC ALCOHOLIZATION

Dmytro Nozdrenko, Wang Nan, Oleksandr Motuziuk, Svitlana Prylutska, Oksana Vygovska, Kateryna Bogutska, Оlena Dmytrotsa, Oksana Lynchak, Yuriy Prylutskyy


DOI: http://dx.doi.org/10.30970/sbi.1801.755

Abstract


Background. It has been shown that the available therapeutic agents do not eliminate the consequences of miotic pathologies in chronic alcoholism, the most significant of which are disturbances in the dynamics of muscle contraction. A positive effect of biocompatible water-soluble C60 fullerenes on the contraction parameters of damaged muscles has been established. In addition, administration of C60 fullerene aqueous solution during chronic alcoholization of rats protects muscle tissue from damage caused by oxidative stress.
Materials and Methods. Biomechanical parameters such as the values of the minimum and maximum contraction force and the muscle force impulse were evaluated using tensometry. The blood levels of creatine phosphokinase and lactate dehydrogenase, creatinine and lactate as well as the level of oxidative processes in muscle tissue of experimental animals (content of hydrogen peroxide, activity of catalase, glutathione peroxidase and superoxide dismutase) as markers of muscle damage were determined using methods of biochemical analysis.
Results. The C60 fullerene aqueous solution effect on the skeletal muscle contraction dynamics in rats after chronic alcoholization for 9 months and cessation of alcohol consumption for 1 month was investigated. It was established that water-soluble C60 fullerenes (daily dose of 1 mg/kg) reduce the effects of chronic alcoholization by 35–40±2 % on the studied biomechanical parameters and by 20±1 % on the studied biochemical parameters compared to the group of alcoholized animals, thus increasing the energy capabilities of the muscular system.
Conclusions. The obtained data indicate a pronounced protective effect of C60 fullerenes on the muscle soleus contraction dynamics during the development of alcoholic myopathy, which opens up the potential possibility of their use for the prevention and correction of miotic damage.


Keywords


muscle soleus, alcoholization, C60 fullerene, biomechanical parameters of skeletal muscle contraction, biochemical indicators

Full Text:

PDF

References


Adachi, J., Asano, M., Ueno, Y., Marway, J. S., Camilleri P. M., Peters T. J., & Preedy, V. R. (2001). Acute effect of ethanol on 7-hydroperoxycholesterol in muscle and liver. Lipids, 36(3), 267-271. doi:10.1007/s11745-001-0717-5
CrossrefPubMedGoogle Scholar

Adachi, J., Asano, M., Ueno, Y., Niemelä, O., Ohlendieck, K., Peters T. J., & Preedy, V. R. (2003). Alcoholic muscle disease and biomembrane perturbations (review). The Journal of Nutritional Biochemistry, 14(11), 616-625. doi:10.1016/s0955-2863(03)00114-1
CrossrefPubMedGoogle Scholar

Brand, M. D., Affourtit, C., Esteves, T. C., Green, K., Lambert, A. J., Miwa, S., Pakay, J. L., & Parker, N. (2004). Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radical Biology and Medicine, 37(6), 755-767. doi:10.1016/j.freeradbiomed.2004.05.034
CrossrefPubMedGoogle Scholar

Cofán, M., Nicolás, J. M., Fernández-Solà, J., Robert, J., Tobías, E., Sacanella, E., Estruch, R., & Urbano-Márquez, A. (2000). Acute ethanol treatment decreases intracellular calcium-ion transients inmouse single skeletal muscle fibres in vitro. Alcohol and Alcoholism, 35(2), 134-138. doi:10.1093/alcalc/35.2.134
CrossrefPubMedGoogle Scholar

D'Souza El-Guindy, N. B., Kovacs, E. J., De Witte, P., Spies, C., Littleton, J. M., de Villiers, W. J. S., Lott, A. J., Plackett, T. P., Lanzke, N., & Meadows, G. G. (2010). Laboratory models available to study alcohol-induced organ damage and immune variations: choosing the appropriate model. Alcoholism: Clinical and Experimental Research, 34(9), 1489-1511. doi:10.1111/j.1530-0277.2010.01234.x
CrossrefPubMedPMCGoogle Scholar

de la Monte, S. M., & Kril, J. J. (2014). Human alcohol-related neuropathology. Acta Neuropathology, 127(1), 71-90. doi:10.1007/s00401-013-1233-3
CrossrefPubMedPMCGoogle Scholar

Estruch, R., Nicolás, J. M., Villegas, E., Junqué, A., & Urbano-Márquez, A. (1993). Relationship between ethanol-related diseases and nutritional status in chronically alcoholic men. Alcohol and Alcoholism, 28(5), 543-550.
PubMedGoogle Scholar

Foley, S., Crowley, C., Smaihi, M., Bonfils, C., Erlanger, B. F., Seta, P., & Larroque, C. (2002). Cellular localisation of a water-soluble fullerene derivative. Biochemical and Biophysical Research Communications, 294(1), 116-119. doi:10.1016/s0006-291x(02)00445-x
CrossrefPubMedGoogle Scholar

Gharbi, M., Pressac, M., Hadchouel, M., Szwarc, H., Wilson, S. R., & Moussa, F. (2005). [60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Letters, 5(12), 2578-2585. doi:10.1021/nl051866b
CrossrefPubMedGoogle Scholar

Grebinyk, A., Prylutska, S., Buchelnikov, A., Tverdokhleb, N., Grebinyk, S., Evstigneev, M., Matyshevska, O., Cherepanov, V., Prylutskyy, Yu., Yashchuk, V., Naumovets, A., Ritter, U., Dandekar, T., & Frohme, M. (2019). C60 fullerene as effective nanoplatform of alkaloid berberine delivery into leukemic cells. Pharmaceutics, 11(11), 586. doi:10.3390/pharmaceutics11110586
CrossrefPubMedPMCGoogle Scholar

Harris, R. C., & Sale, C. (2012). Beta-alanine supplementation in high-intensity exercise. Medicine and Sport Science, 59, 1-17. doi:10.1159/000342372
CrossrefPubMedGoogle Scholar

Hong-Brown, L. Q., Frost, R. A., & Lang, C. H. (2001). Alcohol impairs protein synthesis and degradation in cultured skeletal muscle cells. Alcoholism: Clinical and Experimental Research, 25(9), 1373-1382. doi:10.1111/j.1530-0277.2001.tb02361.x
CrossrefPubMedGoogle Scholar

Ji, Z. Q., Sun, H., Wang, H., Xie, Q., Liu, Y., & Wang, Z. (2006). Biodistribution and tumor uptake of C60(OH)x in mice. Journal of Nanoparticle Research, 8(1), 53-63. doi:10.1007/s11051-005-9001-5
CrossrefGoogle Scholar

Jung, M. K., Callaci, J. J., Lauing, K. L., Otis, J. S., Radek, K. A., Jones, M. K., & Kovacs, E. J. (2011). Alcohol exposure and mechanisms of tissue injury and repair. Alcohol: Clinical and Experimental Research, 35(3), 392-399. doi:10.1111/j.1530-0277.2010.01356.x
CrossrefPubMedPMCGoogle Scholar

Lejay, A., Charles, A. L., Zoll, J., Bouitbir, J., Thaveau, F., Piquard, F., & Geny, B. (2012). Skeletal muscle mitochondrial function in peripheral arterial disease: usefulness of muscle biopsy. In: C. Sundaram (Ed.), Muscle biopsy (pp. 133-154). InTech. doi:10.5772/31674
Crossref

Mach, J., Midgley, A. W., Dank, S., Grant, R., & Bentley, D. J. (2010). The effect of antioxidant supplementation on fatigue during exercise: potential role for NAD+(H). Nutrients, 2(3), 319-329. doi:10.3390/nu2030319
CrossrefPubMedPMCGoogle Scholar

Motuziuk, O., Nozdrenko, D., Prylutska, S., Bogutska, K., Korotkyi, O., & Prylutskyy, Yu. (2023). Biochemical parameters of blood and tissue of the gastrocnemius muscle in chronically alcoholized rats under oral administration of C60 fullerene aqueous solution. The Ukrainian Biochemical Journal, 95(2), 58-67. doi:10.15407/ubj95.02.058
Crossref

Motuziuk, O., Nozdrenko, D., Prylutska, S., Vareniuk, I., Bogutska, K., Braniuk, S., Korotkyi, O., Prylutskyy, Yu., Ritter, U., & Piosik, J. (2023). The effect of C60 fullerene on the mechanokinetics of muscle gastrocnemius contraction in chronically alcoholized rats. Heliyon, 9(8), e18745. doi:10.1016/j.heliyon.2023.e18745
CrossrefPubMedPMCGoogle Scholar

Moussa, F., Trivin, F., Céolin, R., Hadchouel, M., Sizaret, P. Y., Greugny, V., Fabre, C., Rassat, A., & Szwarc, H. (1996). Early effects of C60 administration in swiss mice: a preliminary account for in vivo C60 toxicity. Fullerene Science and Technology, 4(1), 21-29. doi:10.1080/10641229608001534
CrossrefGoogle Scholar

Nikolić, N., Vranješ-Ðurić, S., Janković, D., Ðokić, D., Mirković, M., Bibić, N., & Trajković, V. (2009). Preparation and biodistribution of radiolabeled fullerene C60 nanocrystals. Nanotechnology, 20(38), 385102. doi:10.1088/0957-4484/20/38/385102
CrossrefPubMedGoogle Scholar

Nozdrenko, D. N., & Bogutska, K. I. (2005). About molecular mechanisms of fiber muscle contraction at transition to new equilibrium state: analysis of experimental data using three-componential electrical stimulating signal. Biopolymers & Cell, 21(3), 283-286. doi:10.7124/bc.0006F3
CrossrefGoogle Scholar

Nozdrenko, D. N., Matvienko, T. Yu., Vygovska, O. V., Soroca, V. M., Bogutska, K. I., Nuryshchenko, N. E., Prylutskyy, Yu. I., & Zholos, А. V. (2020). Activation of the cold and menthol receptor TRPM8 improves the post-traumatic recovery of rat muscle soleus during fullerene treatment. Nanosistemi, Nanomateriali, Nanotehnologii, 18(1), 205-216. doi:10.15407/nnn.18.01.205 (In Russian)
CrossrefGoogle Scholar

Nozdrenko, D. N., Shut, A. N., & Prylutskyy, Yu. I. (2005). The possible molecular mechanism of the nonlinearity muscle contraction and its experimental substantiation. Biopolymers & Cell, 21(1), 80-83. doi:10.7124/bc.0006e0
CrossrefGoogle Scholar

Nozdrenko, D. М., Bogutska, K. I., Аrtemenko, О. Yu., Nurishchenko N. Ye., & Prylutskyy, Yu. I. (2018). Impact of water-soluble C60 fullerenes on the mechanokinetic features of formation of a smooth tetanic contraction of ischemic skeletal muscle of rats. Nanosistemi, Nanomateriali, Nanotehnologii, 16(4), 745-755. doi:10.15407/nnn.16.04.745 (In Ukrainian)
CrossrefGoogle Scholar

Preedy, V. R., Adachi, J., Ueno, Y., Ahmed, S., Mantle, D., Mullatti, N., Rajendram, R., & Peters, T. J. (2001). Alcoholic skeletal muscle myopathy: definitions, features, contribution of neuropathy, impact and diagnosis. European Journal of Neurology, 8(6), 677-687. doi:10.1046/j.1468-1331.2001.00303.x
CrossrefPubMedGoogle Scholar

Prylutska, S. V., Matyshevska, O. P., Grynyuk, I. I., Prylutskyy, Yu. I., Ritter, U., & Scharff, P. (2007). Biological effects of C60 fullerenes in vitro and in a model system. Molecular Crystals and Liquid Crystals, 468(1), 265-274. doi:10.1080/15421400701230105
CrossrefGoogle Scholar

Prylutska, S. V., Grynyuk, I. I., Grebinyk, S. M., Matyshevska, O. P., Prylutskyy, Yu. I., Ritter, U., Siegmund, C., & Scharff, P. (2009). Comparative study of biological action of fullerenes C60 and carbon nanotubes in thymus cells. Materialwissenschaft und Werkstofftechnik, 40(4), 238-241. doi:10.1002/mawe.200900433
CrossrefGoogle Scholar

Prylutska, S. V., Grebinyk, A. G., Lynchak, O. V., Byelinska, I. V., Cherepanov, V. V., Tauscher, E., Matyshevska, O. P., Prylutskyy, Yu. I., Rybalchenko, V. K., Ritter, U., & Frohme, M. (2019). In vitro and in vivo toxicity of pristine C60 fullerene aqueous colloid solution. Fullerenes, Nanotubes and Carbon Nanostructures, 27, 715-728. doi:10.1080/1536383X.2019.1634055
CrossrefGoogle Scholar

Prilutski, Yu. I., Durov, S. S., Yashchuk, V. N., Ogul'chansky, T. Yu., Pogorelov, V. E., Astashkin, Yu. A., Buzaneva, E. V., Kirghizov, Yu. D., Andrievsky, G. V., & Scharff, P. (1999). Theoretical predictions and experimental studies of self-organization C60 nanoparticles in water solution and on the support. The European Physical Journal D, 9(1-4), 341-343. doi:10.1007/s100530050452
CrossrefGoogle Scholar

Prylutskyy, Yu., Nozdrenko, D., Gonchar, O., Prylutska, S., Bogutska, K., Täuscher, E., Scharff, P., & Ritter, U. (2023). The residual effect of C60 fullerene on biomechanical and biochemical markers of the muscle soleus fatigue development in rats. Journal of Nanomaterials, 2023, 2237574. doi:10.1155/2023/2237574
CrossrefGoogle Scholar

Rehm, J., Mathers, C., Popova, S., Thavorncharoensap, M., Teerawattananon, Y., & Patra, J. (2009). Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. The Lancet, 373(9682), 2223-2233. doi: 10.1016/S0140-6736(09)60746-7
CrossrefPubMedGoogle Scholar

Tolkachov, M., Sokolova, V., Loza, K., Korolovych, V., Prylutskyy, Y., Epple, M., Ritter, U., & Scharff, P. (2016). Study of biocompatibility effect of nanocarbon particles on various cell types in vitro. Materialwissenschaft und Werkstofftechnik, 47(2-3), 216-221. doi:10.1002/mawe.201600486
CrossrefGoogle Scholar

Tseyslyer, Yu. V., Podpalova, О. M., Nurishchenko, N. Е., & Маrtyniuk, V. S. (2014). Actomyosin ATPase activity of skeletal muscles and the markers of tissue damage in the blood of rats under prolonged chronic alcoholization. The Ukrainian Biochemical Journal, 86(5), 56-64. doi:10.15407/ubj86.05.056 (In Ukrainian)
CrossrefGoogle Scholar

World Health Organization's Global status report on alcohol and health, Geneva, 2014. Retrieved from http//www.who.int/nmh/publications/ncd_report2014


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Dmytro Nozdrenko, Wang Nan, Oleksandr Motuziuk, Svitlana Prylutska, Oksana Vygovska, Kateryna Bogutska, Оlena Dmytrotsa, Oksana Lynchak, Yuriy Prylutskyy

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.