ADENINE NUCLEOTIDE CONTENT AND ACTIVITY OF AMP CATABOLISM ENZYMES IN THE KIDNEY OF RATS FED ON DIETS WITH DIFFERENT PROTEIN AND SUCROSE CONTENT

Halyna Kopylchuk, Oksana Voloshchuk


DOI: http://dx.doi.org/10.30970/sbi.1803.783

Abstract


Background. Excessive consumption of sucrose or protein deficiency in the diet can induce metabolic disorders in the kidney, whose functioning requires significant ATP energy expenditure. The study investigated the levels of the purine nucleotides ATP, ADP, AMP, and the activity of the enzymes FoF1-ATPase, 5′-nucleotidase, and AMP deaminase in the kidneys of rats exposed to different levels of protein and sucrose in their diet.
Materials and Methods. The research was conducted on white non-linear rats, which were kept under different dietary regimens for a period of 4 weeks. Quantitative evaluation of the ATP, ADP, and AMP content was performed by thin-layer chromatography on Silufol sheets. FoF1-ATPase activity was determined by the accumulation of Pi. 5′-nucleotidase activity was measured based on the amount of inorganic phosphorus released in AMP hydrolysis. AMP deaminase activity was determined by the accumulation of ammonia.
Results and Discussion. Research results revealed that in the mitochondria of the animals’ kidneys under conditions of low-protein diet, a significant reduction in AMP content was observed compared to the control, while ATP and ADP content remained unchanged. Simultaneously, the activities of 5′-nucleotidase, AMP deaminase, and FoF1-ATPase in the kidneys of animals on a low-protein diet were maintained at control levels. However, in rats maintained on a low-protein/high-sucrose diet, depletion of all adenine nucleotides is observed against an increase in the hydrolytic activity of FoF1-ATPase, AMP deaminase, and 5′-nucleotidase activities. The 5′-nucleotidase activity in animals of this group reaches maximum values in comparison with the control, indica­ting an enhanced AMP degradation mediated by 5′-nucleotidase in the conditions of low-protein/high-sucrose diet consumption.
Conclusion. Excessive sucrose consumption in the context of dietary protein deficiency is accompanied by a depletion of the adenine nucleotides pool in the mitochondrial fraction and a significantly increased activity of purine catabolism enzymes in the cytosolic fraction of rat kidneys. This may result in an imbalance in the energy supply of renal cells. The obtained results open up prospects for developing a strategy for correc­ting energy metabolism disorders in the conditions of nutritional imbalance.


Keywords


nutrients, kidney, FoF1-ATPase, 5′-nucleotidase, AMP deaminase

Full Text:

PDF

References


Alcántar-Fernández, J., González-Maciel, A., Reynoso-Robles, R., Pérez Andrade, M. E., Hernández-Vázquez, A. de J., Velázquez-Arellano, A., & Miranda-Ríos, J. (2019). High-glucose diets induce mitochondrial dysfunction in Caenorhabditis elegans. PLoS One, 14(12), e0226652. doi:10.1371/journal.pone.0226652
CrossrefPubMedPMCGoogle Scholar

de Souza, J. A., Pinto, A. B. G., de Oliveira, E. C., Coelho, D. B., Totou, N. L., de Lima, W. G., & Becker, L. K. (2021). Aerobic exercise training prevents impairment in renal parameters and in body composition of rats fed a high sucrose diet. BMC Research Notes, 14(1), 378. doi:10.1186/s13104-021-05790-7
CrossrefPubMedPMCGoogle Scholar

Fotheringham, A. K., Solon-Biet, S. M., Bielefeldt-Ohmann, H., McCarthy, D. A., McMahon, A. C., Ruohonen, K., ... Forbes, J. M. (2021). Kidney disease risk factors do not explain impacts of low dietary protein on kidney function and structure. iScience, 24(11), 103308. doi:10.1016/j.isci.2021.103308
CrossrefPubMedPMCGoogle Scholar

Gabibov, M. M. (1986). Effect of hyperbaric oxygenation on proton ATPase activity in mitochondria of various rat tissues. The Ukrainian Biochemical Journal, 58(5), 81-83. (In Russian)
PubMedGoogle Scholar

García-Arroyo, F. E., Gonzaga-Sánchez, G., Tapia, E., Muñoz-Jiménez, I., Manterola-Romero, L., Osorio-Alonso, H., ... Sánchez-Lozada, L. G. (2021). Osthol ameliorates kidney damage and metabolic syndrome induced by a high-fat/high-sugar diet. International Journal of Molecular Sciences, 22(5), 2431. doi:10.3390/ijms22052431
CrossrefPubMedPMCGoogle Scholar

Giusti, G., & Galanti, B. (1984). Colorimetric method. In: H. U. Bergmeyer (Ed.). Methods of enzymatic analysis (1st ed.). Weinheim, Germany: Verlag Chemie.
Google Scholar

Gómez-Sámano, M. Á., Almeda-Valdes, P., Cuevas-Ramos, D., Navarro-Flores, M. F., Espinosa-Salazar, H. D., Martínez-Saavedra, M., … Gómez-Pérez, F. J. (2018). A higher fructose intake is associated with greater albuminuria in subjects with type 2 diabetes mellitus. International Journal of Nephrology, 2018, 5459439. doi:10.1155/2018/5459439
CrossrefPubMedPMCGoogle Scholar

Guo, W., Xiang, Q., Mao, B., Tang, X., Cui, S., Li, X., Zhao, J., Zhang, H., & Chen, W. (2021). Protective effects of inosine on lipopolysaccharide-induces acute liver damage and inflammation in mice via mediating the TLR-4/NF-kB pathway. Journal of Agricultural and Food Chemistry, 69(27), 7619-7628. doi:10.1021/acs.jafc.1c01781
CrossrefPubMedGoogle Scholar

Hallan, S., & Sharma, K. (2016). The role of mitochondria in diabetic kidney disease. Current Diabetes Reports, 16(7), 61. doi:10.1007/s11892-016-0748-0
CrossrefPubMedGoogle Scholar

He, L., Zhou, X., Huang, N., Li, H., Tian, J., Li, T., Yao, K., Nyachoti, C. M., Kim, S. W., & Yin, Y. (2017). AMPK regulation of glucose, lipid and protein metabolism: mechanisms and nutritional significance. Current Protein & Peptide Science, 18(6), 562-570. doi:10.2174/1389203717666160627071125
CrossrefPubMedGoogle Scholar

IItoh, H., Komatsuda, A., Ohtani, H., Wakui, H., Imai, H., Sawada, K., Otaka, M., Ogura, M., Suzuki, A., & Hamada, F. (2002). Mammalian HSP60 is quickly sorted into the mitochondria under conditions of dehydration. European Journal of Biochemistry, 269(23), 5931-5938. doi:10.1046/j.1432-1033.2002.03317.x
CrossrefPubMedGoogle Scholar

Kang, H. M., Ahn, S. H., Choi, P., Ko, Y.-A., Han, S. H., Chinga, F., Park, A. S. D., Tao, J., Sharma, K., Pullman, J., Bottinger, E. P., Goldberg, I. J., & Susztak, K. (2015). Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nature Medicine, 21(1), 37-46. doi:10.1038/nm.3762
CrossrefPubMedPMCGoogle Scholar

Kim, J., Yang, G., Kim, Y., Kim, J., & Ha, J. (2016). AMPK activators: mechanisms of action and physiological activities. Experimental & Molecular Medicine, 48(4), e224. doi:10.1038/emm.2016.16
CrossrefPubMedPMCGoogle Scholar

Kopylchuk, H. P., Buchkovska, I. M., & Voloschuk, O. M. (2009). 5′-Nucleotidase and AMP-deaminase activities of liver postnuclear fraction and blood serum of rats with transplanted Guerin's carcinoma. Studia Biologica, 3(3), 69-74. doi:10.30970/sbi.0303.034 (In Ukrainian)
CrossrefGoogle Scholar

Kopylchuk, H. P., & Voloshchuk O. M. (2023). Activity of respiratory chain cytochrome complexes and cytochromes content in the rat kidney mitochondria under different nutrients content in a diet. The Ukrainian Biochemical Journal, 95(1), 64-72. doi:10.15407/ubj95.01.064
CrossrefGoogle Scholar

Kruger, N. J. (2002). The Bradford method for protein quantitation. In: J. M. Walker (Ed.). The protein protocols handbook (pp. 15-21). Springer Protocols Handbooks. Humana Press. doi:10.1385/1-59259-169-8:15
CrossrefGoogle Scholar

Mise, K., Galvan, D. L., & Danesh, F. R. (2020). Shaping up mitochondria in diabetic nephropathy. Kidney360, 1(9), 982-992. doi:10.34067/kid.0002352020
CrossrefPubMedPMCGoogle Scholar

Naber, T., & Purohit, S. (2021). Chronic kidney disease: role of diet for a reduction in the severity of the disease. Nutrients, 2021, 13(9), 3277. doi:10.3390/nu13093277
CrossrefPubMedPMCGoogle Scholar

Pandey, S., Aggarwal, D., Gupta, K., Kumari, A., Sen, P., Singh, R., Joshi, J. C., Sharma, V. V., Mehra, K., & Singh, G. (2021). "Adenosine an old player with new possibilities in kidney diseases": preclinical evidences and clinical perspectives. Life Sciences, 265, 118834. doi:10.1016/j.lfs.2020.118834
CrossrefPubMedGoogle Scholar

Reeves, P. G., Nielsen, F. H., & Fahey, G. C. (1993). AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. The Journal of Nutrition, 123(11), 1939-1951. doi:10.1093/jn/123.11.1939
CrossrefPubMedGoogle Scholar

Rieger, B., Arroum, T., Borowski, M., Villalta, J., & Busch, K. B. (2021). Mitochondrial F1FO ATP synthase determines the local proton motive force at cristae rims. EMBO Reports, 22(12), e52727. doi:10.15252/embr.202152727
CrossrefPubMedPMCGoogle Scholar

Ruiz-Ramírez, A., Barrios-Maya, M., Quezada-Pablo, H., López-Acosta, O., & El-Hafidi, M. (2020). Kidney dysfunction induced by a sucrose-rich diet in rat involves mitochondria ROS generation, cardiolipin changes, and the decline of autophagy protein markers. American Journal of Physiology-Renal Physiology, 318(1), F53-F66. doi:10.1152/ajprenal.00208.2019
CrossrefPubMedGoogle Scholar

Sánchez-Solís, C. N., Cuevas-Romero, E., Munoz, A., Cervantes-Rodríguez, M., Rodríguez-Antolín, J., & Nicolás-Toledo, L. (2018). Morphometric changes and AQP2 expression in kidneys of young male rats exposed to chronic stress and a high-sucrose diet. Biomedicine & Pharmacotherapy, 105, 1098-1105. doi:10.1016/j.biopha.2018.06.086
CrossrefPubMedGoogle Scholar

Shen, Y., Tang, G., Gao, P., Zhang, B., Xiao, H., & Si, L.-Y. (2018). Activation of adenosine A2b receptor attenuates high glucose-induced apoptosis in H9C2 cells via PI3K/Akt signaling. In Vitro Cellular & Developmental Biology. Animal, 54(5), 384-391. doi:10.1007/s11626-018-0241-y
CrossrefPubMedGoogle Scholar

Srivastava, S. P., Kanasaki, K., & Goodwin, J. E. (2020). Loss of mitochondrial control impacts renal health. Frontiers in Pharmacology, 11, 543973. doi:10.3389/fphar.2020.543973
CrossrefPubMedPMCGoogle Scholar

Tapbergenov, S. O., Sovetov, B. S., & Smailova, Z. K. (2022). Adrenergic receptors in the mechanism of regulation of mitochondrial and cytoplasmic enzymes of cardiomyocytes by catecholamines. Bulletin of Experimental Biology and Medicine, 173(3), 330-334. doi:10.1007/s10517-022-05544-w
CrossrefPubMedGoogle Scholar

Tian, D., Shi, X., Zhao, Y., Peng, X., & Zou, L. (2019). The effect of A1 adenosine receptor in diabetic megalin loss with caspase-1/IL18 signaling. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 12, 1583-1596. doi:10.2147/dmso.s215531
CrossrefPubMedPMCGoogle Scholar

Voloshchuk, O. M., & Kopylchuk, G. P. (2021). Indicators of the energy supply system in the liver of rats under the conditions of different nutrients content in a diet. Biopolymers and Cell, 37(3), 259-269. doi:10.7124/bc.000a58
CrossrefGoogle Scholar

Wilding, J. P. H. (2014). The role of the kidneys in glucose homeostasis in type 2 diabetes: clinical implications and therapeutic significance through sodium glucose co-transporter 2 inhibitors. Metabolism, 63(10), 1228-1237. doi:10.1016/j.metabol.2014.06.018
CrossrefPubMedGoogle Scholar

Yap, S. C., & Lee, H. T. (2012). Adenosine and protection from acute kidney injury. Current Opinion in Nephrology and Hypertension, 21(1), 24-32. doi:10.1097/mnh.0b013e32834d2ec9
CrossrefPubMedPMCGoogle Scholar
Zabielska, M. A., Borkowski, T., Slominska, E. M., & Smolenski R. T. (2015). Inhibition of AMP deaminase as therapeutic target in cardiovascular pathology. Pharmacological Reports, 67(4), 682-688. doi:10.1016/j.pharep.2015.04.007
CrossrefPubMedGoogle Scholar

Zarubina, I. V., & Krivoruchko, B. I. (1982). Razdelenie i priamoe kolichestvennoe opredelenie adeninnukleotidov na silufole [Separation and direct quantitative estimation of adenine nucleotides on silufol]. The Ukrainian Biochemical Journal, 54(4), 437-439. (In Russian)
PubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Halyna Kopylchuk, Oksana Voloshchuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.