ENDOPLASMIC RETICULUM–NUKLEI SIGNALING ENZYME-1 KNOCKDOWN MODULATES EFFECT OF HYPOXIA AND ISCHEMIA ON THE EXPRESSION OF CIRCADIAN GENES IN GLIOMA CELLS

L. L. Karbovskyi, D. O. Minchenko, S. V. Danylovsky, M. Moenner, O. H. Minchenko


DOI: http://dx.doi.org/10.30970/sbi.0502.151

Abstract


The main molecular components of circadian clock system are proteins which play a significant role in the control of both metabolism and malignant tumor growth. Endoplasmic reticulum stress as well as hypoxia and ischemia are important factors for tumor neovascularization and growth. We have studied the expression of circadian genes in the glioma cell line U87 under knockdown of endoplasmic reticulum–nuclei-1 (ERN1) sensing and signaling enzyme. It was shown that blockade of ERN1 leads to increase in the expression levels of PER1, PER3 and CLOCK mRNA; but the CRY1, PER2, BMAL1, BMAL2 and DEC2 mRNA levels are decreased. Moreover, the expression levels of most of the studied genes are increased under glucose or glutamine deprivation conditions both in control and ERN1-deficient glioma cells; however knockdown of ERN1 modifies the effect of these ischemic conditions. Hypoxia has different effects on the expression levels of circadian genes and these effects are dependent on ERN1 function. Hypoxia induces the expression of PER1, BMAL1 and DEC2 and decreased – PER3, CLOCK, CRY1 and BMAL2 mRNA in control glioma cells, while in genetically modified cells it induces the expression of BMAL1 mRNA only. Thus, the expression of circadian genes is dependent on ERN1 signaling enzyme function in normal, hypoxic and ischaemic conditions.


Keywords


mRNA expression, PER1, PER2, PER3, CLOCK, BMAL1, BMAL2, CRY1, DEC2, glioma cells, endoplasmic reticulum–nuclei-1 knockdown, hypoxia, glucose and glutamine deprivation

Full Text:

PDF

References


1. Gonze D., Goldbeter A. Circadian rhythms and molecular noise. Chaos, 2006; 16(2): 026110 (1-11).
https://doi.org/10.1063/1.2211767
PMid:16822042

2. Hastings M.H., Maywood E.S., Reddy A.B. Two decades of circadian time. Journal of Neuroendocrinology, 2008; 20(6): 812-819.
https://doi.org/10.1111/j.1365-2826.2008.01715.x
PMid:18601704

3. Kovac J., Husse J., Oster H. A time to fast, a time to feast: the crosstalk between metabolism and the circadian clock. Molecules and Cells, 2009; 28(2): 75-80.
https://doi.org/10.1007/s10059-009-0113-0
PMid:19714310

4. Pfeffer M., Muller C.M., Mordel J. et al. The mammalian molecular clockwork controls rhythmic expression of its own input pathway components. Journal of Neuroscience, 2009; 29(19): 6114- 6123.
https://doi.org/10.1523/JNEUROSCI.0275-09.2009
PMid:19439589

5. Карбовський Л.Л., Мінченко Д.О., Гармаш Я.А., Мінченко О.Г. Молекулярні механізми функціонування циркадіального годинника. Український біохімічний журнал, 2010; 83(3): 5-25.

6. Rudic R.D., McNamara P., Curtis A.M. et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biology, 2004; 2(11): E377.
https://doi.org/10.1371/journal.pbio.0020377
PMid:15523558 PMCid:PMC524471

7. Moenner M., Pluquet O., Bouchecareilh M., Chevet E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Research, 2007; 67(22): 10631-10634.
https://doi.org/10.1158/0008-5472.CAN-07-1705
PMid:18006802

8. Drogat B., Auguste P., Nguyen D.T. et al. IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Research, 2007; 67: 6700-6707.
https://doi.org/10.1158/0008-5472.CAN-06-3235
PMid:17638880

9. Auf G., Jabouille A., Guérit S. et al. A shift from an angiogenic to invasive phenotype induced in malignant glioma by inhibition of the unfolded protein response sensor IRE1. Proceedings of the National Academy of Sciences of the U.S.A., 2010; 107(35): 15553-15558.
https://doi.org/10.1073/pnas.0914072107
PMid:20702765 PMCid:PMC2932600

10. Bi M., Naczki C., Koritzinsky M. et al. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO Journal, 2005; 24(19): 3470-3481.
https://doi.org/10.1038/sj.emboj.7600777
PMid:16148948 PMCid:PMC1276162

11. Blais J.D., Filipenko V., Bi M. et al. Transcription factor 4 is translationally regulated by hypoxic stress. Molecular and Cellular Biology, 2004; 24: 7469-7482.
https://doi.org/10.1128/MCB.24.17.7469-7482.2004
PMid:15314157 PMCid:PMC506979

12. Fels D.R., Koumenis C. The PERK/eIF2a/ATF4 module of the UPR in hypoxia resistance and tumor growth. Cancer Biology & Therapy, 2006; 5(7): 723-728.
https://doi.org/10.4161/cbt.5.7.2967
PMid:16861899

13. Luo D., He Y., Zhang H., Yu L. et al. AIP1 is critical in transducing IRE1-mediated endoplasmic reticulums response. The Journal of Biological Chemistry, 2010; 285(18): 11905 -11912.
https://doi.org/10.1074/jbc.M710557200
PMid:18281285 PMCid:PMC2335342

14. Korennykh A.V., Egea P.F., Korostelev A.A. et al. The unfolded protein response signals through high-order assembly of Ire1. Nature, 2009; 457(7230): 687-693.
https://doi.org/10.1038/nature07661
PMid:19079236 PMCid:PMC2846394

15. Aragón T., van Anken E., Pincus D. et al. Messenger RNA targeting to endoplasmic reticulum stress signalling sites. Nature, 2009; 457(7230): 736-740.
https://doi.org/10.1038/nature07641
PMid:19079237 PMCid:PMC2768538

16. Acosta-Alvear D., Zhou Y., Blais A. et al. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Molecular Cell, 2007; 27: 53-66.
https://doi.org/10.1016/j.molcel.2007.06.011
PMid:17612490

17. Hollien J., Lin J.H., Li H. et al. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. Journal of Cell Biology, 2009; 186(3): 323-331.
https://doi.org/10.1083/jcb.200903014
PMid:19651891 PMCid:PMC2728407

18. Greenman C., Stephans P., Smith R. et al. Patterns of somatic mutation in human genomes. Nature, 2007; 446: 153-158.
https://doi.org/10.1038/nature05610
PMid:17344846 PMCid:PMC2712719

19. Hunt T., Sassone-Corsi P. Riding tandem: Circadian clocks and the cell cycle. Cell, 2007; 129: 461-464.
https://doi.org/10.1016/j.cell.2007.04.015
PMid:17482541

20. Hua H., Wang Y., Wan C. et al. Circadian gene mPer2 overexpression induces cancer cell apoptosis. Cancer Science, 2006; 97: 589-596.
https://doi.org/10.1111/j.1349-7006.2006.00225.x
PMid:16827798 PMCid:PMC2662332

21. Cao Q., Gery S., Dashti A. et al. A role for the clock gene per1 in prostate cancer. Cancer Research, 2009; 69(19): 7619-7625.
https://doi.org/10.1158/0008-5472.CAN-08-4199
PMid:19752089 PMCid:PMC2756309

22. Taniguchi H., Fernandez A.F., Setien F. et al. Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies. Cancer Research, 2009; 69(21): 8447-8454.
https://doi.org/10.1158/0008-5472.CAN-09-0551
PMid:19861541

23. Chen S. T., Choo K. B., Hou M. F. et al. Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers. Carcinogenesis, 2005; 26(7): 1241-1246.
https://doi.org/10.1093/carcin/bgi075
PMid:15790588

24. Climent J., Perez-Losada J., Quigley D.A. et al. Deletion of the PER3 gene on chromosome 1p36 in recurrent ER-positive breast cancer. Journal of Clinical Oncology, 2010; 28(23): 3770-3778.
https://doi.org/10.1200/JCO.2009.27.0215
PMid:20625127 PMCid:PMC2917310

25. Ramsey K.M., Marcheva B., Kohsaka A., Bass J. The clockwork of metabolism. Annual Review of Nutrition, 2007; 27: 219-240.
https://doi.org/10.1146/annurev.nutr.27.061406.093546
PMid:17430084


Refbacks

  • There are currently no refbacks.


Copyright (c) 2011 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.