THE STRUCTURE AND FUNCTION OF MITOCHONDRIA-ASSOCIATED ENDOPLASMIC RETICULUM MEMBRANES AND THEIR ROLE IN PANCREATIC β-CELLS DYSREGULATION
DOI: http://dx.doi.org/10.30970/sbi.1704.745
Abstract
Membrane trafficking and organelle contact sites are important for regulating cell metabolism and survival. The highly specialized regions of close contacts between mitochondria and endoplasmic reticulum (ER), called mitochondria associated membranes (MAMs), are crucial signaling hubs for the lipid and calcium homeostasis, reactive oxygen species delivery, regulation of autophagy and mitochondrial dynamics. In recent years, MAMs have been the focus of multiple studies for identifying the MAMs proteins and defining their signaling mechanisms. Many studies have proved the importance of MAMs in maintaining the normal function of both organelles. Excessive MAM formation is known to trigger the cascade of pathological events, such as mitochondria calcium overload, aberrant lipid levels, autophagosome formation, and eventually, cell apoptosis. In this article, we focus on the composition and function of MAMs, more specifically, the role of MAMs in Ca2+ uptake, ER stress, mitochondrial fusion and fission and autophagy. The altered interaction between ER and mitochondria results in the amendment of pancreatic tissues, revealing the role of MAMs in glucose homeostasis and the development of diabetes. The development of mitochondrial dysfunction, ER stress and oxidative stress are co-related with β-cell dysfunction. MAMs are likely to play an important role of the functional state regulation in pancreatic cells under pathologies by regulating the signaling of the two organelles and the crosstalk of the two pathological events. It was found that under streptozotocin-induced diabetes, the increased level of mitophagy in pancreatic tissue is connected with tight junctions of MAMs.
Keywords
Full Text:
PDFReferences
Achleitner, G., Gaigg, B., Krasser, A., Kainersdorfer, E., Kohlwein, S. D., Perktold, A., Zellnig, G., & Daum, G. (1999). Association between the endoplasmic reticulum and mitochondria of yeast facilitates interorganelle transport of phospholipids through membrane contact. European Journal of Biochemistry, 264(2), 545-553. doi:10.1046/j.1432-1327.1999.00658.x Crossref ● PubMed ● Google Scholar | ||||
| ||||
Almanza, A., Carlesso, A., Chintha, C., Creedican, S., Doultsinos, D., Leuzzi, B., Luís, A., McCarthy, N., Montibeller, L., More, S., Papaioannou, A., Püschel, F., Sassano, M. L., Skoko, J., Agostinis, P., de Belleroche, J., Eriksson, L. A., Fulda, S., Gorman, A. M., … Samali, A. (2018). Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. The FEBS Journal, 286(2), 241-278. doi:10.1111/febs.14608 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Anastasia, I., Ilacqua, N., Raimondi, A., Lemieux, P., Ghandehari-Alavijeh, R., Faure, G., Mekhedov, S. L., Williams, K. J., Caicci, F., Valle, G., Giacomello, M., Quiroga, A. D., Lehner, R., Miksis, M. J., Toth, K., de Aguiar Vallim, T. Q., Koonin, E. V., Scorrano, L., & Pellegrini, L. (2021). Mitochondria-rough-ER contacts in the liver regulate systemic lipid homeostasis. Cell Reports, 34(11), 108873. doi:10.1016/j.celrep.2021.108873 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Arruda, A. P., & Parlakgül, G. (2022). Endoplasmic reticulum architecture and inter-organelle communication in metabolic health and disease. Cold Spring Harbor Perspectives in Biology, 15(2), a041261. doi:10.1101/cshperspect.a041261 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Bai, T., Lei, P., Zhou, H., Liang, R., Zhu, R., Wang, W., Zhou, L., & Sun, Y. (2019). Sigma-1 receptor protects against ferroptosis in hepatocellular carcinoma cells. Journal of Cellular and Molecular Medicine, 23(11), 7349-7359. doi:10.1111/jcmm.14594 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Balsa, E., Soustek, M. S., Thomas, A., Cogliati, S., García-Poyatos, C., Martín-García, E., Jedrychowski, M., Gygi, S. P., Enriquez, J. A., & Puigserver, P. (2019). ER and nutrient stress promote assembly of respiratory chain supercomplexes through the PERK-eIF2α axis. Molecular Cell, 74(5), 877-890.e6. doi:10.1016/j.molcel.2019.03.031 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Betz, C., Stracka, D., Prescianotto-Baschong, C., Frieden, M., Demaurex, N., & Hall, M. N. (2013). mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proceedings of the National Academy of Sciences of the United States of America, 110(31), 12526-12534. doi:10.1073/pnas.1302455110 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Booth, D. M., Enyedi, B., Geiszt, M., Várnai, P., & Hajnóczky, G. (2016). Redox nanodomains are induced by and control calcium signaling at the ER-mitochondrial interface. Molecular Cell, 63(2), 240-248. doi:10.1016/j.molcel.2016.05.040 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Cárdenas, C., Miller, R. A., Smith, I., Bui, T., Molgó, J., Müller, M., Vais, H., Cheung, K.-H., Yang, J., Parker, I., Thompson, C. B., Birnbaum, M. J., Hallows, K. R., & Foskett, J. K. (2010). Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell, 142(2), 270-283. doi:10.1016/j.cell.2010.06.007 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Chen, Q., Kovilakath, A., Allegood, J., Thompson, J., Hu, Y., Cowart, L. A., & Lesnefsky, E. J. (2023). Endoplasmic reticulum stress and mitochondrial dysfunction during aging: role of sphingolipids. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1868(10), 159366. doi:10.1016/j.bbalip.2023.159366 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Couly, S., Goguadze, N., Yasui, Y., Kimura, Y., Wang, S.-M., Sharikadze, N., Wu, H.-E., & Su, T.-P. (2020). Knocking out Sigma-1 receptors reveals diverse health problems. Cellular and Molecular Neurobiology, 42(3), 597-620. doi:10.1007/s10571-020-00983-3 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Csordás, G., Renken, C., Várnai, P., Walter, L., Weaver, D., Buttle, K. F., Balla, T., Mannella, C. A., & Hajnóczky, G. (2006). Structural and functional features and significance of the physical linkage between ER and mitochondria. The Journal of Cell Biology, 174(7), 915-921. doi:10.1083/jcb.200604016 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Daverkausen-Fischer, L., & Pröls, F. (2022). Regulation of calcium homeostasis and flux between the endoplasmic reticulum and the cytosol. Journal of Biological Chemistry, 298(7), 102061. doi:10.1016/j.jbc.2022.102061 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
de Brito, O. M., & Scorrano, L. (2009). Mitofusin-2 regulates mitochondrial and endoplasmic reticulum morphology and tethering: the role of Ras. Mitochondrion, 9(3), 222-226. doi:10.1016/j.mito.2009.02.005 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Degechisa, S. T., Dabi, Y. T., & Gizaw, S. T. (2022). The mitochondrial associated endoplasmic reticulum membranes: a platform for the pathogenesis of inflammation-mediated metabolic diseases. Immunity, Inflammation and Disease, 10(7), e647. doi:10.1002/iid3.647 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Delprat, B., Crouzier, L., Su, T.-P., & Maurice, T. (2019). At the crossing of ER stress and MAMs: a key role of Sigma-1 receptor? Calcium Signaling, 699-718. doi:10.1007/978-3-030-12457-1_28 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Doliba, N. M., Vatamaniuk, M. Z., Qin, W., Buettger, C. W., Collins, H. W., Wehrli, S. L., & Matschinsky, F. M. (2007). The role of energy metabolism in amino acid stimulated insulin release in pancreatic β-HC9 cells. Studia Biologica, 1(1), 19-40. doi:10.30970/sbi.0101.008 Crossref ● Google Scholar | ||||
| ||||
Fawcett, D. W. (1955). Observations on the cytology and electron microscopy of hepatic cells. Journal of the National Cancer Institute, 15(5), 1475-1503. PubMed ● Google Scholar | ||||
| ||||
Gelmetti, V., De Rosa, P., Torosantucci, L., Marini, E. S., Romagnoli, A., Di Rienzo, M., Arena, G., Vignone, D., Fimia, G. M., & Valente, E. M. (2017). PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy, 13(4), 654-669. doi:10.1080/15548627.2016.1277309 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Georgiadou, E., Muralidharan, C., Martinez, M., Chabosseau, P., Akalestou, E., Tomas, A., Wern, F. Y. S., Stylianides, T., Wretlind, A., Legido-Quigley, C., Jones, B., Lopez-Noriega, L., Xu, Y., Gu, G., Alsabeeh, N., Cruciani-Guglielmacci, C., Magnan, C., Ibberson, M., Leclerc, I., … Rutter, G. A. (2022). Mitofusins Mfn1 and Mfn2 are required to preserve glucose- but not incretin-stimulated β-cell connectivity and insulin secretion. Diabetes, 71(7), 1472-1489. doi:10.2337/db21-0800 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Gouriou, Y., Gonnot, F., Wehbi, M., Brun, C., Gomez, L., & Bidaux, G. (2023). High-sensitivity calcium biosensor on the mitochondrial surface reveals that IP3R channels participate in the reticular Ca2+ leak towards mitochondria. PLoS One, 18(6), e0285670. doi:10.1371/journal.pone.0285670 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Guna, A., Stevens, T. A., Inglis, A. J., Replogle, J. M., Esantsi, T. K., Muthukumar, G., Shaffer, K. C. L., Wang, M. L., Pogson, A. N., Jones, J. J., Lomenick, B., Chou, T.-F., Weissman, J. S., & Voorhees, R. M. (2022). MTCH2 is a mitochondrial outer membrane protein insertase. Science, 378(6617), 317-322. doi:10.1126/science.add1856 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H., & Ron, D. (2000). Perk is essential for translational regulation and cell survival during the unfolded protein response. Molecular Cell, 5(5), 897-904. doi:10.1016/s1097-2765(00)80330-5 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Hwang, M.-S., Schwall, C. T., Pazarentzos, E., Datler, C., Alder, N. N., & Grimm, S. (2014). Mitochondrial Ca2+ influx targets cardiolipin to disintegrate respiratory chain complex II for cell death induction. Cell Death & Differentiation, 21(11), 1733-1745. doi:10.1038/cdd.2014.84 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Ibrahim, I. M., Abdelmalek, D. H., & Elfiky, A. A. (2019). GRP78: a cell's response to stress. Life Sciences, 226, 156-163. doi:10.1016/j.lfs.2019.04.022 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Iwasawa, R., Mahul-Mellier, A.-L., Datler, C., Pazarentzos, E., & Grimm, S. (2010). Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. The EMBO Journal, 30(3), 556-568. doi:10.1038/emboj.2010.346 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Joshi, S. R., Standl, E., Tong, N., Shah, P., Kalra, S., & Rathod, R. (2015). Therapeutic potential of α-glucosidase inhibitors in type 2 diabetes mellitus: an evidence-based review. Expert Opinion on Pharmacotherapy, 16(13), 1959-1981. doi:10.1517/14656566.2015.1070827 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Karmacharya, U., & Jung, J.-W. (2023). Small molecule inhibitors for Unc-51-like autophagy-activating kinase targeting autophagy in cancer. International Journal of Molecular Sciences, 24(2), 953. doi:10.3390/ijms24020953 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kleele, T., Rey, T., Winter, J., Zaganelli, S., Mahecic, D., Perreten Lambert, H., Ruberto, F. P., Nemir, M., Wai, T., Pedrazzini, T., & Manley, S. (2021). Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature, 593(7859), 435-439. doi:10.1038/s41586-021-03510-6 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Li, J., Qi, F., Su, H., Zhang, C., Zhang, Q., Chen, Y., Chen, P., Su, L., Chen, Y., Yang, Y., Chen, Z., & Zhang, S. (2022). GRP75-faciliated mitochondria-associated ER membrane (MAM) integrity controls cisplatin-resistance in ovarian cancer patients. International Journal of Biological Sciences, 18(7), 2914-2931. doi:10.7150/ijbs.71571 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Lim, D., Dematteis, G., Tapella, L., Genazzani, A. A., Calì, T., Brini, M., & Verkhratsky, A. (2021). Ca2+ handling at the mitochondria-ER contact sites in neurodegeneration. Cell Calcium, 98, 102453. doi:10.1016/j.ceca.2021.102453 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Liu, J., Wang, L., Ge, L., Sun, W., Song, Z., Lu, X., Jin, C., Wu, S., & Yang, J. (2022). Lanthanum decreased VAPB-PTPP51, BAP31-FIS1, and MFN2-MFN1 expression of mitochondria-associated membranes and induced abnormal autophagy in rat hippocampus. Food and Chemical Toxicology, 161, 112831. doi:10.1016/j.fct.2022.112831 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Marinho, D., Ferreira, I. L., Lorenzoni, R., Cardoso, S. M., Santana, I., & Rego, A. C. (2023). Reduction of class I histone deacetylases ameliorates ER-mitochondria cross-talk in Alzheimer's disease. Aging Cell, 22(8), e13895. doi:10.1111/acel.13895 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Means, R. E., & Katz, S. G. (2021). Balancing life and death: BCL-2 family members at diverse ER-mitochondrial contact sites. The FEBS Journal, 289(22), 7075-7112. doi:10.1111/febs.16241 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Mikoshiba, K. (2015). Role of IP3 receptor signaling in cell functions and diseases. Advances in Biological Regulation, 57, 217-227. doi:10.1016/j.jbior.2014.10.001 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Mori, T., Hayashi, T., Hayashi, E., & Su, T.-P. (2013). Sigma-1 receptor chaperone at the ER-mitochondrion interface mediates the mitochondrion-ER-nucleus signaling for cellular survival. PLoS One, 8(10), e76941. doi:10.1371/journal.pone.0076941 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Mórotz, G. M., Martín-Guerrero, S. M., Markovinovic, A., Paillusson, S., Russell, M. R. G., Machado, P. M. P., Fleck, R. A., Noble, W., & Miller, C. C. J. (2022). The PTPIP51 coiled-coil domain is important in VAPB binding, formation of ER-mitochondria contacts and IP3 receptor delivery of Ca2+ to mitochondria. Frontiers in Cell and Developmental Biology, 10, 920947. doi:10.3389/fcell.2022.920947 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Muñoz, J. P., Ivanova, S., Sánchez-Wandelmer, J., Martínez-Cristóbal, P., Noguera, E., Sancho, A., Díaz-Ramos, A., Hernández-Alvarez, M. I., Sebastián, D., Mauvezin, C., Palacín, M., & Zorzano, A. (2013). Mfn2 modulates the UPR and mitochondrial function via repression of PERK. The EMBO Journal, 32(17), 2348-2361. doi:10.1038/emboj.2013.168 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Nguyen, H. T., Noriega Polo, C., Wiederkehr, A., Wollheim, C. B., & Park, K. (2023). CDN1163, an activator of sarco/endoplasmic reticulum Ca2+ ATPase, up-regulates mitochondrial functions and protects against lipotoxicity in pancreatic β-cells. British Journal of Pharmacology, 180(21), 2762-2776. doi:10.1111/bph.16160 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Ni, L., & Yuan, C. (2021). The mitochondrial-associated endoplasmic reticulum membrane and its role in diabetic nephropathy. Oxidative Medicine and Cellular Longevity, 2021, 8054817. doi:10.1155/2021/8054817 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Parlakgül, G., Arruda, A. P., Pang, S., Cagampan, E., Min, N., Güney, E., Lee, G. Y., Inouye, K., Hess, H. F., Xu, C. S., & Hotamışlıgil, G. S. (2022). Regulation of liver subcellular architecture controls metabolic homeostasis. Nature, 603(7902), 736-742. doi:10.1038/s41586-022-04488-5 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Parys, J. B., & Guse, A. H. (2019). Full focus on calcium. Science Signaling, 12(599), eaaz0961. doi:10.1126/scisignal.aaz0961 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Perez-Leanos, C. A., Romero-Campos, H. E., Dupont, G., & Gonzalez-Velez, V. (2021). Reduction of ER-mitochondria distance: a key feature in Alzheimer's and Parkinson's disease, and during cancer treatment. Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2021, 4412-4415. doi:10.1109/embc46164.2021.9631090 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Pires Da Silva, J., Monceaux, K., Guilbert, A., Gressette, M., Piquereau, J., Novotova, M., Ventura-Clapier, R., Garnier, A., & Lemaire, C. (2020). SIRT1 protects the heart from ER stress-induced injury by promoting eEF2K/eEF2-dependent autophagy. Cells, 9(2), 426. doi:10.3390/cells9020426 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Prole, D. L., & Taylor, C. W. (2016). Inositol 1,4,5-trisphosphate receptors and their protein partners as signalling hubs. The Journal of Physiology, 594(11), 2849-2866. doi:10.1113/jp271139 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Prudent, J., Zunino, R., Sugiura, A., Mattie, S., Shore, G. C., & McBride, H. M. (2015). MAPL SUMOylation of Drp1 stabilizes an ER/mitochondrial platform required for cell death. Molecular Cell, 59(6), 941-955. doi:10.1016/j.molcel.2015.08.001 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Raffaello, A., Mammucari, C., Gherardi, G., & Rizzuto, R. (2016). Calcium at the center of cell signaling: interplay between endoplasmic reticulum, mitochondria, and lysosomes. Trends in Biochemical Sciences, 41(12), 1035-1049. doi:10.1016/j.tibs.2016.09.001 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Rehklau, K., Hoffmann, L., Gurniak, C. B., Ott, M., Witke, W., Scorrano, L., Culmsee, C., & Rust, M. B. (2017). Cofilin1-dependent actin dynamics control DRP1-mediated mitochondrial fission. Cell Death & Disease, 8(10), e3063. doi:10.1038/cddis.2017.448 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Reina, S., & Checchetto, V. (2022). Voltage-dependent anion selective channel 3: unraveling structural and functional features of the least known Porin isoform. Frontiers in Physiology, 12, 784867. doi:10.3389/fphys.2021.784867 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Rizzuto, R., De Stefani, D., Raffaello, A., & Mammucari, C. (2012). Mitochondria as sensors and regulators of calcium signalling. Nature Reviews Molecular Cell Biology, 13(9), 566-578. doi:10.1038/nrm3412 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Rizzuto, R., Pinton, P., Carrington, W., Fay, F. S., Fogarty, K. E., Lifshitz, L. M., Tuft, R. A., & Pozzan, T. (1998). Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science, 280(5370), 1763-1766. doi:10.1126/science.280.5370.1763 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Rui, L. (2014). Energy metabolism in the liver. Comprehensive Physiology, 177-197. doi:10.1002/cphy.c130024 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Sasaki, K., Donthamsetty, R., Heldak, M., Cho, Y.-E., Scott, B. T., & Makino, A. (2012). VDAC: old protein with new roles in diabetes. American Journal of Physiology-Cell Physiology, 303(10), C1055-C1060. doi:10.1152/ajpcell.00087.2012 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Sood, A., Jeyaraju, D. V., Prudent, J., Caron, A., Lemieux, P., McBride, H. M., Laplante, M., Tóth, K., & Pellegrini, L. (2014). A Mitofusin-2-dependent inactivating cleavage of Opa1 links changes in mitochondria cristae and ER contacts in the postprandial liver. Proceedings of the National Academy of Sciences, 111(45), 16017-16022. doi:10.1073/pnas.1408061111 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Su, T.-P., Hayashi, T., Maurice, T., Buch, S., & Ruoho, A. E. (2010). The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends in Pharmacological Sciences, 31(12), 557-566. doi:10.1016/j.tips.2010.08.007 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Sugiura, A., Nagashima, S., Tokuyama, T., Amo, T., Matsuki, Y., Ishido, S., Kudo, Y., McBride, H. M., Fukuda, T., Matsushita, N., Inatome, R., & Yanagi, S. (2013). MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2. Molecular Cell, 51(1), 20-34. doi:10.1016/j.molcel.2013.04.023 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Takeda, Y., Shimayoshi, T., Holz, G. G., & Noma, A. (2016). Modeling analysis of inositol 1,4,5-trisphosphate receptor-mediated Ca2+ mobilization under the control of glucagon-like peptide-1 in mouse pancreatic β-cells. American Journal of Physiology-Cell Physiology, 310(5), C337-C347. doi:10.1152/ajpcell.00234.2015 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Tao, A., Xu, X., Kvietys, P., Kao, R., Martin, C., & Rui, T. (2018). Experimental diabetes mellitus exacerbates ischemia/reperfusion-induced myocardial injury by promoting mitochondrial fission: role of down-regulation of myocardial Sirt1 and subsequent Akt/Drp1 interaction. The International Journal of Biochemistry & Cell Biology, 105, 94-103. doi:10.1016/j.biocel.2018.10.011 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Tessier, N., Ducrozet, M., Dia, M., Badawi, S., Chouabe, C., Crola Da Silva, C., Ovize, M., Bidaux, G., Van Coppenolle, F., & Ducreux, S. (2023). TRPV1 channels are new players in the reticulum-mitochondria Ca2+ coupling in a rat cardiomyoblast cell line. Cells, 12(18), 2322. doi:10.3390/cells12182322 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Tubbs, E., Theurey, P., Vial, G., Bendridi, N., Bravard, A., Chauvin, M.-A., Ji-Cao, J., Zoulim, F., Bartosch, B., Ovize, M., Vidal, H., & Rieusset, J. (2014). Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes, 63(10), 3279-3294. doi:10.2337/db13-1751 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Ueasilamongkol, P., Khamphaya, T., Guerra, M. T., Rodrigues, M. A., Gomes, D. A., Kong, Y., Wei, W., Jain, D., Trampert, D. C., Ananthanarayanan, M., Banales, J. M., Roberts, L. R., Farshidfar, F., Nathanson, M. H., & Weerachayaphorn, J. (2019). Type 3 inositol 1,4,5-trisphosphate receptor is increased and enhances malignant properties in cholangiocarcinoma. Hepatology, 71(2), 583-599. doi:10.1002/hep.30839 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Vance, J. E. (1990). Phospholipid synthesis in a membrane fraction associated with mitochondria. Journal of Biological Chemistry, 265(13), 7248-7256. doi:10.1016/s0021-9258(19)39106-9 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Vinay Kumar, C., Kumar, K. M., Swetha, R., Ramaiah, S., & Anbarasu, A. (2014). Protein aggregation due to nsSNP resulting in P56S VABP protein is associated with amyotrophic lateral sclerosis. Journal of Theoretical Biology, 354, 72-80. doi:10.1016/j.jtbi.2014.03.027 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Wang, X., Winter, D., Ashrafi, G., Schlehe, J., Wong, Y. L., Selkoe, D., Rice, S., Steen, J., LaVoie, M. J., & Schwarz, T. L. (2011). PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell, 147(4), 893-906. doi:10.1016/j.cell.2011.10.018 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Wright, F. A., & Wojcikiewicz, R. J. H. (2016). Chapter 4 - inositol 1,4,5-trisphosphate receptor ubiquitination. Ubiquitination and Transmembrane Signaling, 141-159. doi:10.1016/bs.pmbts.2016.02.004 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Yang, M., Li, C., Yang, S., Xiao, Y., Xiong, X., Chen, W., Zhao, H., Zhang, Q., Han, Y., & Sun, L. (2020). Mitochondria-associated ER membranes - the origin site of autophagy. Frontiers in Cell and Developmental Biology, 8, 595. doi:10.3389/fcell.2020.00595 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Yang, S., Zhou, R., Zhang, C., He, S., & Su, Z. (2020). Mitochondria-associated endoplasmic reticulum membranes in the pathogenesis of type 2 diabetes mellitus. Frontiers in Cell and Developmental Biology, 8, 571554. doi:10.3389/fcell.2020.571554 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Yu, C., Han, W., Shi, T., Lv, B., He, Q., Zhang, Y., Li, T., Zhang, Y., Song, Q., Wang, L., & Ma, D. (2008). PTPIP51, a novel 14-3-3 binding protein, regulates cell morphology and motility via Raf-ERK pathway. Cellular Signalling, 20(12), 2208-2220. doi:10.1016/j.cellsig.2008.07.020 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Yu, H., Sun, C., Gong, Q., & Feng, D. (2021). Mitochondria-associated endoplasmic reticulum membranes in breast cancer. Frontiers in Cell and Developmental Biology, 9. doi:10.3389/fcell.2021.629669 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Yuan, M., Gong, M., Zhang, Z., Meng, L., Tse, G., Zhao, Y., Bao, Q., Zhang, Y., Yuan, M., Liu, X., Li, G., & Liu, T. (2020). Hyperglycemia induces endoplasmic reticulum stress in atrial cardiomyocytes, and mitofusin-2 downregulation prevents mitochondrial dysfunction and subsequent cell death. Oxidative Medicine and Cellular Longevity, 2020, 1-14. doi:10.1155/2020/6569728 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zeng, F., Chen, X., Cui, W., Wen, W., Lu, F., Sun, X., Ma, D., Yuan, Y., Li, Z., Hou, N., Zhao, H., Bi, X., Zhao, J., Zhou, J., Zhang, Y., Xiao, R.-P., Cai, J., & Zhang, X. (2018). RIPK1 binds MCU to mediate induction of mitochondrial Ca2+ uptake and promotes colorectal oncogenesis. Cancer Research, 78(11), 2876-2885. doi:10.1158/0008-5472.can-17-3082 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Zhang, E., Mohammed Al-Amily, I., Mohammed, S., Luan, C., Asplund, O., Ahmed, M., Ye, Y., Ben-Hail, D., Soni, A., Vishnu, N., Bompada, P., De Marinis, Y., Groop, L., Shoshan-Barmatz, V., Renström, E., Wollheim, C. B., & Salehi, A. (2019). Preserving insulin secretion in diabetes by inhibiting VDAC1 overexpression and surface translocation in β cells. Cell Metabolism, 29(1), 64-77.e6. doi:10.1016/j.cmet.2018.09.008 Crossref ● PubMed ● PMC ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Olena Kaniuka, Yurii Bandura, Oleksandr Kulachkovskyi, Nataliya Sybirna
This work is licensed under a Creative Commons Attribution 4.0 International License.