THE STRUCTURE AND FUNCTION OF MITOCHONDRIA-ASSOCIATED ENDOPLASMIC RETICULUM MEMBRANES AND THEIR ROLE IN PANCREATIC β-CELLS DYSREGULATION

Olena Kaniuka, Yurii Bandura, Oleksandr Kulachkovskyi, Nataliya Sybirna


DOI: http://dx.doi.org/10.30970/sbi.1704.745

Abstract


Membrane trafficking and organelle contact sites are important for regulating cell metabolism and survival. The highly specialized regions of close contacts between mitochondria and endoplasmic reticulum (ER), called mitochondria associated membranes (MAMs), are crucial signaling hubs for the lipid and calcium homeostasis, reactive oxygen species delivery, regulation of autophagy and mitochondrial dynamics. In recent years, MAMs have been the focus of multiple studies for identifying the MAMs proteins and defining their signaling mechanisms. Many studies have proved the importance of MAMs in maintaining the normal function of both organelles. Excessive MAM formation is known to trigger the cascade of pathological events, such as mitochondria calcium overload, aberrant lipid levels, autophagosome formation, and eventually, cell apoptosis. In this article, we focus on the composition and function of MAMs, more specifically, the role of MAMs in Ca2+ uptake, ER stress, mitochondrial fusion and fission and autophagy. The altered interaction between ER and mitochondria results in the amendment of pancreatic tissues, revealing the role of MAMs in glucose homeostasis and the development of diabetes. The development of mitochondrial dysfunction, ER stress and oxidative stress are co-related with β-cell dysfunction. MAMs are likely to play an important role of the functional state regulation in pancreatic cells under pathologies by regulating the signaling of the two organelles and the crosstalk of the two pathological events. It was found that under streptozotocin-induced diabetes, the increased level of mitophagy in pancreatic tissue is connected with tight junctions of MAMs.


Keywords


mitochondria, endoplasmic reticulum, MAMs, ER stress, mitophagy

Full Text:

PDF

References


Achleitner, G., Gaigg, B., Krasser, A., Kainersdorfer, E., Kohlwein, S. D., Perktold, A., Zellnig, G., & Daum, G. (1999). Association between the endoplasmic reticulum and mitochondria of yeast facilitates interorganelle transport of phospholipids through membrane contact. European Journal of Biochemistry, 264(2), 545-553. doi:10.1046/j.1432-1327.1999.00658.x
CrossrefPubMedGoogle Scholar

Almanza, A., Carlesso, A., Chintha, C., Creedican, S., Doultsinos, D., Leuzzi, B., Luís, A., McCarthy, N., Montibeller, L., More, S., Papaioannou, A., Püschel, F., Sassano, M. L., Skoko, J., Agostinis, P., de Belleroche, J., Eriksson, L. A., Fulda, S., Gorman, A. M., … Samali, A. (2018). Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. The FEBS Journal, 286(2), 241-278. doi:10.1111/febs.14608
CrossrefPubMedPMCGoogle Scholar

Anastasia, I., Ilacqua, N., Raimondi, A., Lemieux, P., Ghandehari-Alavijeh, R., Faure, G., Mekhedov, S. L., Williams, K. J., Caicci, F., Valle, G., Giacomello, M., Quiroga, A. D., Lehner, R., Miksis, M. J., Toth, K., de Aguiar Vallim, T. Q., Koonin, E. V., Scorrano, L., & Pellegrini, L. (2021). Mitochondria-rough-ER contacts in the liver regulate systemic lipid homeostasis. Cell Reports, 34(11), 108873. doi:10.1016/j.celrep.2021.108873
CrossrefPubMedGoogle Scholar

Arruda, A. P., & Parlakgül, G. (2022). Endoplasmic reticulum architecture and inter-organelle communication in metabolic health and disease. Cold Spring Harbor Perspectives in Biology, 15(2), a041261. doi:10.1101/cshperspect.a041261
CrossrefPubMedGoogle Scholar

Bai, T., Lei, P., Zhou, H., Liang, R., Zhu, R., Wang, W., Zhou, L., & Sun, Y. (2019). Sigma-1 receptor protects against ferroptosis in hepatocellular carcinoma cells. Journal of Cellular and Molecular Medicine, 23(11), 7349-7359. doi:10.1111/jcmm.14594
CrossrefPubMedPMCGoogle Scholar

Balsa, E., Soustek, M. S., Thomas, A., Cogliati, S., García-Poyatos, C., Martín-García, E., Jedrychowski, M., Gygi, S. P., Enriquez, J. A., & Puigserver, P. (2019). ER and nutrient stress promote assembly of respiratory chain supercomplexes through the PERK-eIF2α axis. Molecular Cell, 74(5), 877-890.e6. doi:10.1016/j.molcel.2019.03.031
CrossrefPubMedPMCGoogle Scholar

Betz, C., Stracka, D., Prescianotto-Baschong, C., Frieden, M., Demaurex, N., & Hall, M. N. (2013). mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proceedings of the National Academy of Sciences of the United States of America, 110(31), 12526-12534. doi:10.1073/pnas.1302455110
CrossrefPubMedPMCGoogle Scholar

Booth, D. M., Enyedi, B., Geiszt, M., Várnai, P., & Hajnóczky, G. (2016). Redox nanodomains are induced by and control calcium signaling at the ER-mitochondrial interface. Molecular Cell, 63(2), 240-248. doi:10.1016/j.molcel.2016.05.040
CrossrefPubMedPMCGoogle Scholar

Cárdenas, C., Miller, R. A., Smith, I., Bui, T., Molgó, J., Müller, M., Vais, H., Cheung, K.-H., Yang, J., Parker, I., Thompson, C. B., Birnbaum, M. J., Hallows, K. R., & Foskett, J. K. (2010). Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell, 142(2), 270-283. doi:10.1016/j.cell.2010.06.007
CrossrefPubMedPMCGoogle Scholar

Chen, Q., Kovilakath, A., Allegood, J., Thompson, J., Hu, Y., Cowart, L. A., & Lesnefsky, E. J. (2023). Endoplasmic reticulum stress and mitochondrial dysfunction during aging: role of sphingolipids. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1868(10), 159366. doi:10.1016/j.bbalip.2023.159366
CrossrefPubMedGoogle Scholar

Couly, S., Goguadze, N., Yasui, Y., Kimura, Y., Wang, S.-M., Sharikadze, N., Wu, H.-E., & Su, T.-P. (2020). Knocking out Sigma-1 receptors reveals diverse health problems. Cellular and Molecular Neurobiology, 42(3), 597-620. doi:10.1007/s10571-020-00983-3
CrossrefPubMedPMCGoogle Scholar

Csordás, G., Renken, C., Várnai, P., Walter, L., Weaver, D., Buttle, K. F., Balla, T., Mannella, C. A., & Hajnóczky, G. (2006). Structural and functional features and significance of the physical linkage between ER and mitochondria. The Journal of Cell Biology, 174(7), 915-921. doi:10.1083/jcb.200604016
CrossrefPubMedPMCGoogle Scholar

Daverkausen-Fischer, L., & Pröls, F. (2022). Regulation of calcium homeostasis and flux between the endoplasmic reticulum and the cytosol. Journal of Biological Chemistry, 298(7), 102061. doi:10.1016/j.jbc.2022.102061
CrossrefPubMedPMCGoogle Scholar

de Brito, O. M., & Scorrano, L. (2009). Mitofusin-2 regulates mitochondrial and endoplasmic reticulum morphology and tethering: the role of Ras. Mitochondrion, 9(3), 222-226. doi:10.1016/j.mito.2009.02.005
CrossrefPubMedGoogle Scholar

Degechisa, S. T., Dabi, Y. T., & Gizaw, S. T. (2022). The mitochondrial associated endoplasmic reticulum membranes: a platform for the pathogenesis of inflammation-mediated metabolic diseases. Immunity, Inflammation and Disease, 10(7), e647. doi:10.1002/iid3.647
CrossrefPubMedPMCGoogle Scholar

Delprat, B., Crouzier, L., Su, T.-P., & Maurice, T. (2019). At the crossing of ER stress and MAMs: a key role of Sigma-1 receptor? Calcium Signaling, 699-718. doi:10.1007/978-3-030-12457-1_28
CrossrefPubMedGoogle Scholar

Doliba, N. M., Vatamaniuk, M. Z., Qin, W., Buettger, C. W., Collins, H. W., Wehrli, S. L., & Matschinsky, F. M. (2007). The role of energy metabolism in amino acid stimulated insulin release in pancreatic β-HC9 cells. Studia Biologica, 1(1), 19-40. doi:10.30970/sbi.0101.008
CrossrefGoogle Scholar

Fawcett, D. W. (1955). Observations on the cytology and electron microscopy of hepatic cells. Journal of the National Cancer Institute, 15(5), 1475-1503.
PubMedGoogle Scholar

Gelmetti, V., De Rosa, P., Torosantucci, L., Marini, E. S., Romagnoli, A., Di Rienzo, M., Arena, G., Vignone, D., Fimia, G. M., & Valente, E. M. (2017). PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy, 13(4), 654-669. doi:10.1080/15548627.2016.1277309
CrossrefPubMedPMCGoogle Scholar

Georgiadou, E., Muralidharan, C., Martinez, M., Chabosseau, P., Akalestou, E., Tomas, A., Wern, F. Y. S., Stylianides, T., Wretlind, A., Legido-Quigley, C., Jones, B., Lopez-Noriega, L., Xu, Y., Gu, G., Alsabeeh, N., Cruciani-Guglielmacci, C., Magnan, C., Ibberson, M., Leclerc, I., … Rutter, G. A. (2022). Mitofusins Mfn1 and Mfn2 are required to preserve glucose- but not incretin-stimulated β-cell connectivity and insulin secretion. Diabetes, 71(7), 1472-1489. doi:10.2337/db21-0800
CrossrefPubMedPMCGoogle Scholar

Gouriou, Y., Gonnot, F., Wehbi, M., Brun, C., Gomez, L., & Bidaux, G. (2023). High-sensitivity calcium biosensor on the mitochondrial surface reveals that IP3R channels participate in the reticular Ca2+ leak towards mitochondria. PLoS One, 18(6), e0285670. doi:10.1371/journal.pone.0285670
CrossrefPubMedPMCGoogle Scholar

Guna, A., Stevens, T. A., Inglis, A. J., Replogle, J. M., Esantsi, T. K., Muthukumar, G., Shaffer, K. C. L., Wang, M. L., Pogson, A. N., Jones, J. J., Lomenick, B., Chou, T.-F., Weissman, J. S., & Voorhees, R. M. (2022). MTCH2 is a mitochondrial outer membrane protein insertase. Science, 378(6617), 317-322. doi:10.1126/science.add1856
CrossrefPubMedPMCGoogle Scholar

Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H., & Ron, D. (2000). Perk is essential for translational regulation and cell survival during the unfolded protein response. Molecular Cell, 5(5), 897-904. doi:10.1016/s1097-2765(00)80330-5
CrossrefPubMedGoogle Scholar

Hwang, M.-S., Schwall, C. T., Pazarentzos, E., Datler, C., Alder, N. N., & Grimm, S. (2014). Mitochondrial Ca2+ influx targets cardiolipin to disintegrate respiratory chain complex II for cell death induction. Cell Death & Differentiation, 21(11), 1733-1745. doi:10.1038/cdd.2014.84
CrossrefPubMedPMCGoogle Scholar

Ibrahim, I. M., Abdelmalek, D. H., & Elfiky, A. A. (2019). GRP78: a cell's response to stress. Life Sciences, 226, 156-163. doi:10.1016/j.lfs.2019.04.022
CrossrefPubMedPMCGoogle Scholar

Iwasawa, R., Mahul-Mellier, A.-L., Datler, C., Pazarentzos, E., & Grimm, S. (2010). Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. The EMBO Journal, 30(3), 556-568. doi:10.1038/emboj.2010.346
CrossrefPubMedPMCGoogle Scholar

Joshi, S. R., Standl, E., Tong, N., Shah, P., Kalra, S., & Rathod, R. (2015). Therapeutic potential of α-glucosidase inhibitors in type 2 diabetes mellitus: an evidence-based review. Expert Opinion on Pharmacotherapy, 16(13), 1959-1981. doi:10.1517/14656566.2015.1070827
CrossrefPubMedGoogle Scholar

Karmacharya, U., & Jung, J.-W. (2023). Small molecule inhibitors for Unc-51-like autophagy-activating kinase targeting autophagy in cancer. International Journal of Molecular Sciences, 24(2), 953. doi:10.3390/ijms24020953
CrossrefPubMedPMCGoogle Scholar

Kleele, T., Rey, T., Winter, J., Zaganelli, S., Mahecic, D., Perreten Lambert, H., Ruberto, F. P., Nemir, M., Wai, T., Pedrazzini, T., & Manley, S. (2021). Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature, 593(7859), 435-439. doi:10.1038/s41586-021-03510-6
CrossrefPubMedGoogle Scholar

Li, J., Qi, F., Su, H., Zhang, C., Zhang, Q., Chen, Y., Chen, P., Su, L., Chen, Y., Yang, Y., Chen, Z., & Zhang, S. (2022). GRP75-faciliated mitochondria-associated ER membrane (MAM) integrity controls cisplatin-resistance in ovarian cancer patients. International Journal of Biological Sciences, 18(7), 2914-2931. doi:10.7150/ijbs.71571
CrossrefPubMedPMCGoogle Scholar

Lim, D., Dematteis, G., Tapella, L., Genazzani, A. A., Calì, T., Brini, M., & Verkhratsky, A. (2021). Ca2+ handling at the mitochondria-ER contact sites in neurodegeneration. Cell Calcium, 98, 102453. doi:10.1016/j.ceca.2021.102453
CrossrefPubMedGoogle Scholar

Liu, J., Wang, L., Ge, L., Sun, W., Song, Z., Lu, X., Jin, C., Wu, S., & Yang, J. (2022). Lanthanum decreased VAPB-PTPP51, BAP31-FIS1, and MFN2-MFN1 expression of mitochondria-associated membranes and induced abnormal autophagy in rat hippocampus. Food and Chemical Toxicology, 161, 112831. doi:10.1016/j.fct.2022.112831
CrossrefPubMedGoogle Scholar

Marinho, D., Ferreira, I. L., Lorenzoni, R., Cardoso, S. M., Santana, I., & Rego, A. C. (2023). Reduction of class I histone deacetylases ameliorates ER-mitochondria cross-talk in Alzheimer's disease. Aging Cell, 22(8), e13895. doi:10.1111/acel.13895
CrossrefPubMedPMCGoogle Scholar

Means, R. E., & Katz, S. G. (2021). Balancing life and death: BCL-2 family members at diverse ER-mitochondrial contact sites. The FEBS Journal, 289(22), 7075-7112. doi:10.1111/febs.16241
CrossrefPubMedGoogle Scholar

Mikoshiba, K. (2015). Role of IP3 receptor signaling in cell functions and diseases. Advances in Biological Regulation, 57, 217-227. doi:10.1016/j.jbior.2014.10.001
CrossrefPubMedGoogle Scholar

Mori, T., Hayashi, T., Hayashi, E., & Su, T.-P. (2013). Sigma-1 receptor chaperone at the ER-mitochondrion interface mediates the mitochondrion-ER-nucleus signaling for cellular survival. PLoS One, 8(10), e76941. doi:10.1371/journal.pone.0076941
CrossrefPubMedPMCGoogle Scholar

Mórotz, G. M., Martín-Guerrero, S. M., Markovinovic, A., Paillusson, S., Russell, M. R. G., Machado, P. M. P., Fleck, R. A., Noble, W., & Miller, C. C. J. (2022). The PTPIP51 coiled-coil domain is important in VAPB binding, formation of ER-mitochondria contacts and IP3 receptor delivery of Ca2+ to mitochondria. Frontiers in Cell and Developmental Biology, 10, 920947. doi:10.3389/fcell.2022.920947
CrossrefPubMedPMCGoogle Scholar

Muñoz, J. P., Ivanova, S., Sánchez-Wandelmer, J., Martínez-Cristóbal, P., Noguera, E., Sancho, A., Díaz-Ramos, A., Hernández-Alvarez, M. I., Sebastián, D., Mauvezin, C., Palacín, M., & Zorzano, A. (2013). Mfn2 modulates the UPR and mitochondrial function via repression of PERK. The EMBO Journal, 32(17), 2348-2361. doi:10.1038/emboj.2013.168
CrossrefPubMedPMCGoogle Scholar

Nguyen, H. T., Noriega Polo, C., Wiederkehr, A., Wollheim, C. B., & Park, K. (2023). CDN1163, an activator of sarco/endoplasmic reticulum Ca2+ ATPase, up-regulates mitochondrial functions and protects against lipotoxicity in pancreatic β-cells. British Journal of Pharmacology, 180(21), 2762-2776. doi:10.1111/bph.16160
CrossrefPubMedGoogle Scholar

Ni, L., & Yuan, C. (2021). The mitochondrial-associated endoplasmic reticulum membrane and its role in diabetic nephropathy. Oxidative Medicine and Cellular Longevity, 2021, 8054817. doi:10.1155/2021/8054817
CrossrefPubMedPMCGoogle Scholar

Parlakgül, G., Arruda, A. P., Pang, S., Cagampan, E., Min, N., Güney, E., Lee, G. Y., Inouye, K., Hess, H. F., Xu, C. S., & Hotamışlıgil, G. S. (2022). Regulation of liver subcellular architecture controls metabolic homeostasis. Nature, 603(7902), 736-742. doi:10.1038/s41586-022-04488-5
CrossrefPubMedPMCGoogle Scholar

Parys, J. B., & Guse, A. H. (2019). Full focus on calcium. Science Signaling, 12(599), eaaz0961. doi:10.1126/scisignal.aaz0961
CrossrefPubMedGoogle Scholar

Perez-Leanos, C. A., Romero-Campos, H. E., Dupont, G., & Gonzalez-Velez, V. (2021). Reduction of ER-mitochondria distance: a key feature in Alzheimer's and Parkinson's disease, and during cancer treatment. Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2021, 4412-4415. doi:10.1109/embc46164.2021.9631090
CrossrefPubMedGoogle Scholar

Pires Da Silva, J., Monceaux, K., Guilbert, A., Gressette, M., Piquereau, J., Novotova, M., Ventura-Clapier, R., Garnier, A., & Lemaire, C. (2020). SIRT1 protects the heart from ER stress-induced injury by promoting eEF2K/eEF2-dependent autophagy. Cells, 9(2), 426. doi:10.3390/cells9020426
CrossrefPubMedPMCGoogle Scholar

Prole, D. L., & Taylor, C. W. (2016). Inositol 1,4,5-trisphosphate receptors and their protein partners as signalling hubs. The Journal of Physiology, 594(11), 2849-2866. doi:10.1113/jp271139
CrossrefPubMedPMCGoogle Scholar

Prudent, J., Zunino, R., Sugiura, A., Mattie, S., Shore, G. C., & McBride, H. M. (2015). MAPL SUMOylation of Drp1 stabilizes an ER/mitochondrial platform required for cell death. Molecular Cell, 59(6), 941-955. doi:10.1016/j.molcel.2015.08.001
CrossrefPubMedGoogle Scholar

Raffaello, A., Mammucari, C., Gherardi, G., & Rizzuto, R. (2016). Calcium at the center of cell signaling: interplay between endoplasmic reticulum, mitochondria, and lysosomes. Trends in Biochemical Sciences, 41(12), 1035-1049. doi:10.1016/j.tibs.2016.09.001
CrossrefPubMedPMCGoogle Scholar

Rehklau, K., Hoffmann, L., Gurniak, C. B., Ott, M., Witke, W., Scorrano, L., Culmsee, C., & Rust, M. B. (2017). Cofilin1-dependent actin dynamics control DRP1-mediated mitochondrial fission. Cell Death & Disease, 8(10), e3063. doi:10.1038/cddis.2017.448
CrossrefPubMedPMCGoogle Scholar

Reina, S., & Checchetto, V. (2022). Voltage-dependent anion selective channel 3: unraveling structural and functional features of the least known Porin isoform. Frontiers in Physiology, 12, 784867. doi:10.3389/fphys.2021.784867
CrossrefPubMedPMCGoogle Scholar

Rizzuto, R., De Stefani, D., Raffaello, A., & Mammucari, C. (2012). Mitochondria as sensors and regulators of calcium signalling. Nature Reviews Molecular Cell Biology, 13(9), 566-578. doi:10.1038/nrm3412
CrossrefPubMedGoogle Scholar

Rizzuto, R., Pinton, P., Carrington, W., Fay, F. S., Fogarty, K. E., Lifshitz, L. M., Tuft, R. A., & Pozzan, T. (1998). Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science, 280(5370), 1763-1766. doi:10.1126/science.280.5370.1763
CrossrefPubMedGoogle Scholar

Rui, L. (2014). Energy metabolism in the liver. Comprehensive Physiology, 177-197. doi:10.1002/cphy.c130024
CrossrefPubMedPMCGoogle Scholar

Sasaki, K., Donthamsetty, R., Heldak, M., Cho, Y.-E., Scott, B. T., & Makino, A. (2012). VDAC: old protein with new roles in diabetes. American Journal of Physiology-Cell Physiology, 303(10), C1055-C1060. doi:10.1152/ajpcell.00087.2012
CrossrefPubMedPMCGoogle Scholar

Sood, A., Jeyaraju, D. V., Prudent, J., Caron, A., Lemieux, P., McBride, H. M., Laplante, M., Tóth, K., & Pellegrini, L. (2014). A Mitofusin-2-dependent inactivating cleavage of Opa1 links changes in mitochondria cristae and ER contacts in the postprandial liver. Proceedings of the National Academy of Sciences, 111(45), 16017-16022. doi:10.1073/pnas.1408061111
CrossrefPubMedPMCGoogle Scholar

Su, T.-P., Hayashi, T., Maurice, T., Buch, S., & Ruoho, A. E. (2010). The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends in Pharmacological Sciences, 31(12), 557-566. doi:10.1016/j.tips.2010.08.007
CrossrefPubMedPMCGoogle Scholar

Sugiura, A., Nagashima, S., Tokuyama, T., Amo, T., Matsuki, Y., Ishido, S., Kudo, Y., McBride, H. M., Fukuda, T., Matsushita, N., Inatome, R., & Yanagi, S. (2013). MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2. Molecular Cell, 51(1), 20-34. doi:10.1016/j.molcel.2013.04.023
CrossrefPubMedGoogle Scholar

Takeda, Y., Shimayoshi, T., Holz, G. G., & Noma, A. (2016). Modeling analysis of inositol 1,4,5-trisphosphate receptor-mediated Ca2+ mobilization under the control of glucagon-like peptide-1 in mouse pancreatic β-cells. American Journal of Physiology-Cell Physiology, 310(5), C337-C347. doi:10.1152/ajpcell.00234.2015
CrossrefPubMedPMCGoogle Scholar

Tao, A., Xu, X., Kvietys, P., Kao, R., Martin, C., & Rui, T. (2018). Experimental diabetes mellitus exacerbates ischemia/reperfusion-induced myocardial injury by promoting mitochondrial fission: role of down-regulation of myocardial Sirt1 and subsequent Akt/Drp1 interaction. The International Journal of Biochemistry & Cell Biology, 105, 94-103. doi:10.1016/j.biocel.2018.10.011
CrossrefPubMedGoogle Scholar

Tessier, N., Ducrozet, M., Dia, M., Badawi, S., Chouabe, C., Crola Da Silva, C., Ovize, M., Bidaux, G., Van Coppenolle, F., & Ducreux, S. (2023). TRPV1 channels are new players in the reticulum-mitochondria Ca2+ coupling in a rat cardiomyoblast cell line. Cells, 12(18), 2322. doi:10.3390/cells12182322
CrossrefPubMedPMCGoogle Scholar

Tubbs, E., Theurey, P., Vial, G., Bendridi, N., Bravard, A., Chauvin, M.-A., Ji-Cao, J., Zoulim, F., Bartosch, B., Ovize, M., Vidal, H., & Rieusset, J. (2014). Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes, 63(10), 3279-3294. doi:10.2337/db13-1751
CrossrefPubMedGoogle Scholar

Ueasilamongkol, P., Khamphaya, T., Guerra, M. T., Rodrigues, M. A., Gomes, D. A., Kong, Y., Wei, W., Jain, D., Trampert, D. C., Ananthanarayanan, M., Banales, J. M., Roberts, L. R., Farshidfar, F., Nathanson, M. H., & Weerachayaphorn, J. (2019). Type 3 inositol 1,4,5-trisphosphate receptor is increased and enhances malignant properties in cholangiocarcinoma. Hepatology, 71(2), 583-599. doi:10.1002/hep.30839
CrossrefPubMedPMCGoogle Scholar

Vance, J. E. (1990). Phospholipid synthesis in a membrane fraction associated with mitochondria. Journal of Biological Chemistry, 265(13), 7248-7256. doi:10.1016/s0021-9258(19)39106-9
CrossrefPubMedGoogle Scholar

Vinay Kumar, C., Kumar, K. M., Swetha, R., Ramaiah, S., & Anbarasu, A. (2014). Protein aggregation due to nsSNP resulting in P56S VABP protein is associated with amyotrophic lateral sclerosis. Journal of Theoretical Biology, 354, 72-80. doi:10.1016/j.jtbi.2014.03.027
CrossrefPubMedGoogle Scholar

Wang, X., Winter, D., Ashrafi, G., Schlehe, J., Wong, Y. L., Selkoe, D., Rice, S., Steen, J., LaVoie, M. J., & Schwarz, T. L. (2011). PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell, 147(4), 893-906. doi:10.1016/j.cell.2011.10.018
CrossrefPubMedPMCGoogle Scholar

Wright, F. A., & Wojcikiewicz, R. J. H. (2016). Chapter 4 - inositol 1,4,5-trisphosphate receptor ubiquitination. Ubiquitination and Transmembrane Signaling, 141-159. doi:10.1016/bs.pmbts.2016.02.004
CrossrefPubMedGoogle Scholar

Yang, M., Li, C., Yang, S., Xiao, Y., Xiong, X., Chen, W., Zhao, H., Zhang, Q., Han, Y., & Sun, L. (2020). Mitochondria-associated ER membranes - the origin site of autophagy. Frontiers in Cell and Developmental Biology, 8, 595. doi:10.3389/fcell.2020.00595
CrossrefPubMedPMCGoogle Scholar

Yang, S., Zhou, R., Zhang, C., He, S., & Su, Z. (2020). Mitochondria-associated endoplasmic reticulum membranes in the pathogenesis of type 2 diabetes mellitus. Frontiers in Cell and Developmental Biology, 8, 571554. doi:10.3389/fcell.2020.571554
CrossrefPubMedPMCGoogle Scholar

Yu, C., Han, W., Shi, T., Lv, B., He, Q., Zhang, Y., Li, T., Zhang, Y., Song, Q., Wang, L., & Ma, D. (2008). PTPIP51, a novel 14-3-3 binding protein, regulates cell morphology and motility via Raf-ERK pathway. Cellular Signalling, 20(12), 2208-2220. doi:10.1016/j.cellsig.2008.07.020
CrossrefPubMedGoogle Scholar

Yu, H., Sun, C., Gong, Q., & Feng, D. (2021). Mitochondria-associated endoplasmic reticulum membranes in breast cancer. Frontiers in Cell and Developmental Biology, 9. doi:10.3389/fcell.2021.629669
CrossrefPubMedPMCGoogle Scholar

Yuan, M., Gong, M., Zhang, Z., Meng, L., Tse, G., Zhao, Y., Bao, Q., Zhang, Y., Yuan, M., Liu, X., Li, G., & Liu, T. (2020). Hyperglycemia induces endoplasmic reticulum stress in atrial cardiomyocytes, and mitofusin-2 downregulation prevents mitochondrial dysfunction and subsequent cell death. Oxidative Medicine and Cellular Longevity, 2020, 1-14. doi:10.1155/2020/6569728
CrossrefPubMedPMCGoogle Scholar

Zeng, F., Chen, X., Cui, W., Wen, W., Lu, F., Sun, X., Ma, D., Yuan, Y., Li, Z., Hou, N., Zhao, H., Bi, X., Zhao, J., Zhou, J., Zhang, Y., Xiao, R.-P., Cai, J., & Zhang, X. (2018). RIPK1 binds MCU to mediate induction of mitochondrial Ca2+ uptake and promotes colorectal oncogenesis. Cancer Research, 78(11), 2876-2885. doi:10.1158/0008-5472.can-17-3082
CrossrefPubMedGoogle Scholar

Zhang, E., Mohammed Al-Amily, I., Mohammed, S., Luan, C., Asplund, O., Ahmed, M., Ye, Y., Ben-Hail, D., Soni, A., Vishnu, N., Bompada, P., De Marinis, Y., Groop, L., Shoshan-Barmatz, V., Renström, E., Wollheim, C. B., & Salehi, A. (2019). Preserving insulin secretion in diabetes by inhibiting VDAC1 overexpression and surface translocation in β cells. Cell Metabolism, 29(1), 64-77.e6. doi:10.1016/j.cmet.2018.09.008
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Olena Kaniuka, Yurii Bandura, Oleksandr Kulachkovskyi, Nataliya Sybirna

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.