SCOTS PINE DEFENSINS INHIBIT IPS ACUMINATUS α-AMYLASE ACTIVITY

Yurii Yusypovych, Oleh Kit, Volodymyr Kramarets, Yuliia Shalovylo, Mykola Korol, Volodymyr Zaika, Hryhoriy Krynytskyy, Valentyna Kovaleva


DOI: http://dx.doi.org/10.30970/sbi.1704.748

Abstract


Background. Pine bark beetle Ips acuminatus (Gyllenhal, 1827) is one of the most harmful pests of pine trees as it affects the phloem of the upper part of the stem and branches, disrupting the flow of nutrients and water to the crown. I. acuminatus feeds by plant tissues rich in starch, so α-amylases must play a pivotal role in the carbohydrate metabolism of these insects. However, in conifer bark beetles, α-amylases remain poorly understood.
Materials and Methods. To detect the α-amylase activity in the digestive system of I. acuminatus, we obtained extracts from larvae, pupae, and adults that were collected from naturally infested Scots pine. The α-amylase activity of crude extracts from different stages and parts of the bark beetle’s body was assessed using 1% starch agar plates. The quantitative evaluation of the α-amylase inhibitory activity of recombinant defensins PsDef1, PsDef2, and PsDef5.1 was performed using the Bernfeld method. The docking models of Scots pine defensins and Ips typographus L. α-amylase (AmyIp) complexes were predicted using the ClusPro 2.0 web server.
Results and Discussion. As a result, we found the presence of α-amylase activity in the digestive systems of both larvae and adults of I. acuminatus, but not in pupae. All tested defensins, PsDef1, PsDef2, and PsDef5.1, exhibited inhibitory activity against insect α-amylase at micromolar concentrations. The IC50 values for these peptides were 4.9±0.6 μM, 4.6±0.8 μM, and 2.8±0.5 μM, respectively. In the PsDefs-AmyIt complexes, a network of hydrogen bonds, ionic bridges, and nonbonded contacts are formed between the enzyme and its inhibitor, which prevents the substrate from reaching the catalytic site. The PsDef5.1-AmyIt complex has the largest interfacial contact area, 2328 Å2, in comparison with two other defensins, which correlates well with the inhibitory activity of defensins in this study.
Conclusion. Thus, we have identified α-amylase activity in I. acuminatus and demonstrated the ability of Scots pine defensins to inhibit it, sugges­ting that they play a role in pine defenses against this pest.


Keywords


Pinus sylvestris L., pine bark beetle, plant defensin, α-amylase, molecular docking

Full Text:

PDF

References


Bernfeld, P. (1955). Amylase α and β. In S. P. Colswick & N.O. Kaplan (Eds.), Methods in enzymology (Vol. 1, pp. 149-158). New-York: Academic Press. doi:10.1016/0076-6879(55)01021-5
CrossrefGoogle Scholar

Bleiker, K. P., & Six, D. L. (2007). Dietary benefits of fungal associates to an eruptive herbivore: potential implications of multiple associates on host population dynamics. Environmental Entomology, 36(6), 1384-1396. doi:10.1603/0046-225x(2007)36[1384:dbofat]2.0.co;2
CrossrefPubMedGoogle Scholar

Bloch, C., Jr, & Richardson, M. (1991). A new family of small (5 kDa) protein inhibitors of insect alpha-amylases from seeds or sorghum (Sorghum bicolar (L) Moench) have sequence homologies with wheat gamma-purothionins. FEBS Letters, 279(1), 101-104. doi:10.1016/0014-5793(91)80261-z
CrossrefPubMedGoogle Scholar

Bukhteeva, I., Hrunyk, N. I., Yusypovych, Y. M., Shalovylo, Y. I., Kovaleva, V., & Nesmelova, I. V. (2022). Structure, dynamics, and function of PsDef2 defensin from Pinus sylvestris. Structure, 30(5), 753-762.e5. doi:10.1016/j.str.2022.03.001
CrossrefPubMedGoogle Scholar

Carmona, D., Fitzpatrick, C. R., & Johnson, M. T. (2015). Fifty years of co-evolution and beyond: integrating co-evolution from molecules to species. Molecular Ecology, 24(21), 5315-5329. doi:10.1111/mec.13389
CrossrefPubMedGoogle Scholar

Colombari, F., Schroeder, M. L., Battisti, A., & Faccoli, M. (2013). Spatio-temporal dynamics of an Ips acuminatus outbreak and implications for management. Agricultural and Forest Entomology, 15, 34-42. doi:10.1111/j.1461-9563.2012.00589.x
CrossrefGoogle Scholar

Da Lage, J. L. (2018). The amylases of insects. International Journal of Insect Science, 10, 1179543318804783. doi:10.1177/1179543318804783
CrossrefPubMedPMCGoogle Scholar

Davydenko, K., Vasaitis, R., & Menkis, A. (2017). Fungi associated with Ips acuminatus (Coleoptera: Curculionidae) in Ukraine with a special emphasis on pathogenicity of ophiostomatoid species. European Journal of Entomology, 114, 77-85. doi:10.14411/eje.2017.011
CrossrefGoogle Scholar

Díaz, E., Arciniega, O., Sánchez, L. T., Cisneros, R. S., & Zúñiga, G. (2003). Anatomical and histological comparison of the alimentary canal of Dendroctonus micans, D. ponderosae, D. pseudotsugae pseudotsugae, D. rufipennis, and D. terebrans (Coleoptera: Scolytidae). Annals of the Entomological Society of America, 96, 144-152. doi:10.1603/0013-8746(2003)096[0144:aahcot]2.0.co;2
CrossrefGoogle Scholar

Franco, O. L., Rigden, D. J., Melo, F. R., & Grossi-De-Sá, M. F. (2002). Plant α-amylase inhibitors and their interaction with insect α-amylases. European Journal of Biochemistry, 269(2), 397-412. doi:10.1046/j.0014-2956.2001.02656.x
CrossrefPubMedGoogle Scholar

Hrunyk, N., Shalovylo, Y., Yusypovych, Y., Roman, I., Nesmelova, I., & Kovaleva, V. (2019). Prokaryotic expression and purification of bioactive defensin 2 from Pinus sylvestris. Studia Biologica, 13(2), 29-40. doi:10.30970/sbi.1302.603
CrossrefGoogle Scholar

Koo, A. J., & Howe, G. A. (2009). The wound hormone jasmonate. Phytochemistry, 70(13-14), 1571-1580. doi:10.1016/j.phytochem.2009.07.018
CrossrefPubMedPMCGoogle Scholar

Kovaleva, V., Krynytskyy, H., Gout, I., & Gout, R. (2011). Recombinant expression, affinity purification and functional characterization of Scots pine defensin 1. Applied Microbiology and Biotechnology, 89(4), 1093-1101. doi:10.1007/s00253-010-2935-2
CrossrefPubMedGoogle Scholar

Kovaleva, V., Bukhteeva, I., Kit, O. Y., & Nesmelova, I. V. (2020). Plant defensins from a structural perspective. International Journal of Molecular Sciences, 21(15), 5307. doi:10.3390/ijms21155307
CrossrefPubMedPMCGoogle Scholar

Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12(2), 255-278. doi:10.1038/nprot.2016.169
CrossrefPubMedPMCGoogle Scholar

Krokene, P. (2015). Conifer defense and resistance to bark beetles. In F. E. Vega & R. W. Hofstetter (Eds.), Bark Beetles (pp. 177-207). San Diego: Academic Press. doi:10.1016/b978-0-12-417156-5.00005-8
CrossrefGoogle Scholar

Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: structural summaries of PDB entries. Protein Science, 27(1), 129-134. doi:10.1002/pro.3289
CrossrefPubMedPMCGoogle Scholar

Li, H., Zhou, H., Zhang, J., Fu, X., Ying, Z., & Liu, X. (2021). Proteinaceous α-amylase inhibitors: purification, detection methods, types and mechanisms. International Journal of Food Properties, 24(1), 277-290. doi:10.1080/10942912.2021.1876087
CrossrefGoogle Scholar

Lin, K. F., Lee, T. R., Tsai, P. H., Hsu, M. P., Chen, C. S., & Lyu, P. C. (2007). Structure-based protein engineering for α-amylase inhibitory activity of plant defensin. Proteins, 68(2), 530-540. doi:10.1002/prot.21378
CrossrefPubMedGoogle Scholar

Liu, Y. J., Cheng, C. S., Lai, S. M., Hsu, M. P., Chen, C. S., & Lyu, P. C. (2006). Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids. Proteins, 63(4), 777-786. doi:10.1002/prot.20962
CrossrefPubMedGoogle Scholar

Lu, S., Deng, P., Liu, X., Luo, J., Han, R., Gu, X., Liangi, S., Wangi, S., Lee, F., Lozanov, V., Patthy, A., & Pongor, S. (1999). Solution structure of the major α-amylase inhibitor of the crop plant amaranth. Journal of Biological Chemistry, 274(29), 20473-20478. doi:10.1074/jbc.274.29.20473
CrossrefPubMedGoogle Scholar

Mendez, E., Moreno, A., Colilla, F., Pelaez, F., Limas, G. G., Mendez, R., Soriano, F., Salinas, M., & de Haro, C. (1990). Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, γ-hordothionin, from barley endosperm. European Journal of Biochemistry, 194(2), 533-539. doi:10.1111/j.1432-1033.1990.tb15649.x
CrossrefPubMedGoogle Scholar

Meshkova, V., Vorobei, A., & Omelich, A. (2022). Coleopterous predators of pine bark beetles in the last years of the outbreak recorded in Ukraine. Folia Forestalia Polonica, 64(3), 161-172. doi:10.2478/ffp-2022-0016
CrossrefGoogle Scholar

Noronha, H., Silva, A., Dai, Z., Gallusci, P., Rombolà, A. D., Delrot, S., & Gerós, H. (2018). A molecular perspective on starch metabolism in woody tissues. Planta, 248, 559-568. doi:10.1007/s00425-018-2954-2
CrossrefPubMedPMCGoogle Scholar

Ojeda, D. I., Mattila, T. M., Ruttink, T., Kujala, S. T., Kärkkäinen, K., Verta, J. P., & Pyhäjärvi, T. (2019). Utilization of tissue ploidy level variation in de novo transcriptome assembly of Pinus sylvestris. G3: Genes, Genomes, Genetics, 9(10), 3409-3421. doi:10.1534/g3.119.400357
CrossrefPubMedPMCGoogle Scholar

Pelegrini, P. B., Lay, F. T., Murad, A. M., Anderson, M. A., & Franco, O. L. (2008). Novel insights on the mechanism of action of α-amylase inhibitors from the plant defensin family. Proteins, 73(3), 719-729. doi:10.1002/prot.22086
CrossrefPubMedGoogle Scholar

Pervieux, I., Bourassa, M., Laurans, F., Hamelin, R., & Séguin, A. (2004). A spruce defensin showing strong antifungal activity and increased transcript accumulation after wounding and jasmonate treatments. Physiological and Molecular Plant Pathology, 64(6), 331-341. doi:10.1016/j.pmpp.2004.09.008
CrossrefGoogle Scholar

Shalovylo, Y. I., Yusypovych, Y. M., Kovaleva, V. A., & Gout R.T. (2015). The effect of phytohormones on expression of defensin gene in Scots pine. Studia Biologica, 9(1), 15-24. doi:10.30970/sbi.0901.398 (In Ukrainian)
CrossrefGoogle Scholar

Shalovylo, Y. I., Yusypovych, Y. M., Hrunyk, N. I., Roman, I. I., Zaika, V. K., Krynytskyy, H. T., Nesmelova, I. V., & Kovaleva, V. A. (2021). Seed-derived defensins from Scots pine: structural and functional features. Planta, 254(6), 129. doi:10.1007/s00425-021-03788-w
CrossrefPubMedGoogle Scholar

Soto-Robles, L. V., López, M. F., Torres-Banda, V., Cano-Ramírez, C., Obregón-Molina, G., & Zúñiga, G. (2020). The bark beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae) has digestive capacity to degrade complex substrates: functional characterization and heterologous expression of an α-amylase. International Journal of Molecular Sciences, 22(1), 36. doi:10.3390/ijms22010036
CrossrefPubMedPMCGoogle Scholar

Strobl, S., Maskos, K., Betz, M., Wiegand, G., Huber, R., Gomis-Rüth, F. X., & Glockshuber, R. (1998). Crystal structure of yellow meal worm α-amylase at 1.64 Å resolution. Journal of Molecular Biology, 278(3), 617-628. doi:10.1006/jmbi.1998.1667
CrossrefPubMedGoogle Scholar

Vallée, F., Kadziola, A., Bourne, Y., Juy, M., Rodenburg, K. W., Svensson, B., & Haser, R. (1998). Barley α-amylase bound to its endogenous protein inhibitor BASI: crystal structure of the complex at 1.9 Å resolution. Structure, 6(5), 649-659. doi:10.1016/s0969-2126(98)00066-5
CrossrefPubMedGoogle Scholar

Vi, T. X. T., Le, H. D., Nguyen, V. T. T., Le, V. S., & Chu, H. M. (2017). Expression of the ZmDEF1 gene and α-amylase inhibitory activity of recombinant defensin against maize weevils. Turkish Journal of Biology, 41(1), 98-104. doi:10.3906/biy-1512-64
CrossrefGoogle Scholar

Vijayan, S., Imani, J., Tanneeru, K., Guruprasad, L., Kogel, K., & Kirti, P. (2012). Enhanced antifungal and insect α-amylase inhibitory activities of Alpha-TvD1, a peptide variant of Tephrosia villosa defensin (TvD1) generated through in vitro mutagenesis. Peptides, 33, 220-229. doi:10.1016/j.peptides.2011.12.020
CrossrefPubMedGoogle Scholar

Viktorinova, I., Kucerova, L., Bohmova, M., Henry, I., Jindra, M., Dolezal, P., Zurovcova, M., & Zurovec, M. (2011). Characterization of two closely related α-amylase paralogs in the bark beetle, Ips typographus (L.). Archives of Insect Biochemistry and Physiology, 77(4), 179-198. doi:10.1002/arch.2043
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Yurii Yusypovych, Oleh Kit, Volodymyr Kramarets, Yuliia Shalovylo, Mykola Korol, Volodymyr Zaika, Hryhoriy Krynytskyy, Valentyna Kovaleva

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.