DIABETES-CORRECTING AND ANTIOXIDANT EFFECTS OF GRAPE POMACE EXTRACT RICH IN NATURAL COMPLEX OF POLYPHENOLS

Viktoriia Skorobahatko, Mariya Sabadashka, Dariya Chala, Nataliia Sybirna


DOI: http://dx.doi.org/10.30970/sbi.1704.738

Abstract


Background. The positive health effects of polyphenols have led to an increased scientific interest in these natural compounds over the past decade. Many studies confirm the effectiveness of polyphenols as additional therapy in diabetes, especially due to the sugar-lowering effect of polyphenols. The aim of the research was to investigate the morphological and functional state of peripheral blood erythrocytes and the indices of oxidative stress in the liver of rats with experimental diabetes and after the administration of grape pomace extract rich in natural complex of polyphenols.
Materials and Methods. We obtained grape pomace extract, which contains a variety of polyphenolic compounds. Rats of the following groups were used in the experiments: control animals, animals treated with grape pomace extract rich in natural complex of polyphenols for 14 days, animals with streptozotocin-induced diabetes mellitus, and animals with streptozotocin-induced diabetes mellitus treated with grape pomace extract rich in natural complex of polyphenols for 14 days. The number of erythrocytes and reticulocytes, the concentration of hemoglobin and glycated hemoglobin were determined in the peripheral blood of rats. The activities of catalase, superoxide dismutase and the content of thiobarbituric acid-reactive substance and carbonyl groups of proteins were determined in the liver tissues of rats.
Results. The study has shown an increase in the number of erythrocytes and the level of hemoglobin, a decrease in the level of glycated hemoglobin and the number of reticulocytes in the peripheral blood of rats after administration of grape pomace extract rich in natural complex of polyphenols to rats with experimental diabetes. A decrease in the content of thiobarbituric acid-reactive substance and the content of carbonyl groups of proteins of neutral and basic character and an increase in the activity of catalase and superoxide dismutase in liver tissues were found under the same conditions.
Conclusions. The results indicate that the extract of the natural complex of polyphenols is capable of correcting the morphological and functional state of erythrocytes, as well as improving the activity of antioxidant enzymes and the content of marker molecules of oxidative stress in hepatocytes of rats under experimental diabetes mellitus.


Keywords


diabetes mellitus, oxidative stress, polyphenolic compounds, grape pomace, erythrocytes, hepatocytes

Full Text:

PDF

References


American Diabetes Association. (2021). 2. Classification and diagnosis of diabetes: standards of medical care in diabetes - 2021. Diabetes Care, 44 (Suppl. 1), S15-S33. doi:10.2337/dc21-S002
CrossrefPubMedGoogle Scholar

Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 2014, 360438. doi:10.1155/2014/360438
CrossrefPubMedPMCGoogle Scholar

Dalle-Donne, I., Rossi, R., Giustarini, D., Milzani, A., & Colombo, R. (2003). Protein carbonyl groups as biomarkers of oxidative stress. Clinica Chimica Acta, 329(1-2), 23-38. doi:10.1016/s0009-8981(03)00003-2
CrossrefPubMedGoogle Scholar

Hecker, M., & Wagner, A. (2018). Role of protein carbonylation in diabetes. Journal of Inherited Metabolic Disease, 41(1), 29-38. doi:10.1007/s10545-017-0104-9
CrossrefPubMedGoogle Scholar

Hertsyk, D. Yu., Sabadashka, M. V., Kaprelyants, L. V., & Sybirna, N. O. (2021). Corrective effect of red wine concentrate enriched with natural complex of polyphenols on activity of antioxidant defense enzymes in cardiac muscle under experimental diabetes mellitus. Studia Biologica, 15(1), 37-48. doi:10.30970/sbi.1501.644
CrossrefGoogle Scholar

Hrelia, S., Di Renzo, L., Bavaresco, L., Bernardi, E., Malaguti, M., & Giacosa, A. (2022). Moderate wine consumption and health: a narrative review. Nutrients, 15(1), 175. doi:10.3390/nu15010175
CrossrefPubMedPMCGoogle Scholar

Hussain, T., Tan, B., Yin, Y., Blachier, F., Tossou, M. C. B., & Rahu, N. (2016). Oxidative stress and inflammation: what polyphenols can do for us? Oxidative Medicine and Cellular Longevity, 2016, 7432797. doi:10.1155/2016/7432797
CrossrefPubMedPMCGoogle Scholar

Li, S., Tan, H. Y., Wang, N., Cheung, F., Hong, M., & Feng, Y. (2018). The potential and action mechanism of polyphenols in the treatment of liver diseases. Oxidative Medicine and Cellular Longevity, 2018, 8394818. doi:10.1155/2018/8394818
CrossrefPubMedPMCGoogle Scholar

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275. doi:10.1016/s0021-9258(19)52451-6
CrossrefPubMedGoogle Scholar

Lupoli, R., Ciciola, P., Costabile, G., Giacco, R., Di Minno, M. N. D., & Capaldo, B. (2020). Impact of grape products on lipid profile: a meta-analysis of randomized controlled studies. Journal of Clinical Medicine, 9(2), 313. doi:10.3390/jcm9020313
CrossrefPubMedPMCGoogle Scholar

Nocella, C., Cammisotto, V., Pigozzi, F., Borrione, P., Fossati, C., D'Amico, A., Cangemi, R., Peruzzi, M., Gobbi, G., Ettorre, E., Frati, G., Cavarretta, E., & Carnevale, R. (2019). Impairment between oxidant and antioxidant systems: short- and long-term implications for athletes' health. Nutrients, 11(6), 1353. doi:10.3390/nu11061353
CrossrefPubMedPMCGoogle Scholar

Pandey, K. B., & Rizvi, S. I. (2014). Role of red grape polyphenols as antidiabetic agents. Integrative Medicine Research, 3(3), 119-125. doi:10.1016/j.imr.2014.06.001
CrossrefPubMedPMCGoogle Scholar

Ohai, Y. O., Zahoruiko, V. O., Kostohryz, A. M., Yefimov, S. O., & Bohadelnikov, I. V. (2001). Sposib oderzhannia kharchovoho kontsentratu polifenoliv vynohradu [Method for the preparation of food concentrate of grapes polyphenols] (UA Patent No. 39237). Ukrpatent. Retrieved from https://uapatents.com/3-39237-sposib-oderzhannya-kharchovogo-koncentratu-polifenoliv-vinogradu.html (In Ukrainian)

Riley, R. S., Ben-Ezra, J. M., Goel, R., & Tidwell, A. (2001). Reticulocytes and reticulocyte enumeration. Journal of Clinical Laboratory Analysis, 15(5), 267-294. doi:10.1002/jcla.1039
CrossrefPubMedPMCGoogle Scholar

Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152-178. doi:10.1016/S0076-6879(99)99017-1
CrossrefGoogle Scholar

Sabadashka, M., Hertsyk, D., Strugała-Danak, P., Dudek, A., Kanyuka, O., Kucharska, A. Z., Kaprelyants, L., & Sybirna, N. (2021a). Anti-diabetic and antioxidant activities of red wine concentrate enriched with polyphenol compounds under experimental diabetes in rats. Antioxidants, 10(9), 1399. doi:10.3390/antiox10091399
CrossrefPubMedPMCGoogle Scholar

Sabadashka, M., Nagalievska, M., & Sybirna, N. (2021b). Tyrosine nitration as a key event of signal transduction that regulates functional state of the cell. Cell Biology International, 45(3), 481-497. doi:10.1002/cbin.11301
CrossrefPubMedGoogle Scholar

Vitak, T. Y., Wasser, S. P., Nevo, E., & Sybirna, N. O. (2015). The effect of the medicinal mushrooms Agaricus brasiliensis and Ganoderma lucidum (higher basidiomycetes) on the erythron system in normal and streptozotocin-induced diabetic rats. International Journal of Medicinal Mushrooms, 17(3), 277-286. doi:10.1615/intjmedmushrooms.v17.i3.70
CrossrefPubMedGoogle Scholar

Volpe, C. M. O., Villar-Delfino, P. H., dos Anjos, P. M. F., & Nogueira-Machado, J. A. (2018). Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death & Disease, 9(2), 119. doi:10.1038/s41419-017-0135-z
CrossrefPubMedPMCGoogle Scholar

Wang, Y., Yang, P., Yan, Z., Liu, Z., Ma, Q., Zhang, Z., Wang, Y., & Su, Y. (2021). The relationship between erythrocytes and diabetes mellitus. Journal of Diabetes Research, 2021, 1-9. doi:10.1155/2021/6656062
CrossrefPubMedPMCGoogle Scholar

Welsh, K. J., Kirkman, M. S., & Sacks, D. B. (2016). Role of glycated proteins in the diagnosis and management of diabetes: research gaps and future directions. Diabetes Care, 39(8), 1299-1306. doi:10.2337/dc15-2727
CrossrefPubMedPMCGoogle Scholar

Xu, T., Zhang, X., Liu, Y., Wang, H., Luo, J., Luo, Y., & An, P. (2021). Effects of dietary polyphenol supplementation on iron status and erythropoiesis: a systematic review and meta-analysis of randomized controlled trials. The American Journal of Clinical Nutrition, 114(2), 780-793. doi:10.1093/ajcn/nqab068
CrossrefPubMedGoogle Scholar

Yang, B., Dong, Y., Wang, F., & Zhang, Y. (2020). Nanoformulations to enhance the bioavailability and physiological functions of polyphenols. Molecules, 25(20), 4613. doi:10.3390/molecules25204613
CrossrefPubMedPMCGoogle Scholar

Zheng, H., Wu, J., Jin, Z., & Yan, L.-J. (2016). Protein modifications as manifestations of hyperglycemic glucotoxicity in diabetes and its complications. Biochemistry Insights, 9, 1-9. doi:10.4137/bci.s36141
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Viktoriia Skorobahatko, Mariya Sabadashka, Dariya Chala, Nataliia Sybirna

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.