8-[(4-BENZYLPIPERAZIN-1-YL)METHYL]-3-(2-CHLOROPHENYL)-7-HYDROXY-CHROMEN-4-ONE IS AN ACTIVATOR OF CONTRACTILE ACTIVITY OF INTESTINAL SMOOTH MUSCLES WITH REVERSIBLE M2 CHOLINOMIMETIC PROPERTIES

Olga Tsymbalyuk, Ivan Voiteshenko, Sergii Starosyla, Volodymyr Bdzhola, Andriy Prykhodko, Tetyana Fedirko, Oleksandr Savchenko, Anna Bakhina, Oleksii Nyporko


DOI: http://dx.doi.org/10.30970/sbi.1704.746

Abstract


Background. Several pathologies (such as diabetes mellitus, Parkinson’s and Alzheimer’s diseases, multiple sclerosis, etc.) are accompanied by degeneration of cholinergic neurons, which are key regulators of the contractile function of the gastrointestinal tract walls, leading to atony and paresis. An effective strategy for normalizing the lack of contractile function of visceral SM is the use of drugs - selective agonists of muscarinic acetylcholine receptors (mAChRs) of the M2 subtype. The high similarity of the structure of the agonist-binding sites of different subtypes of mAChRs causes problems to develop selective ligands for these receptors. Nowadays, there is an urgent necessity to develop selective agonists of M2 subtype receptors as pharmacological tools for laboratory research and promising drugs.
The aim of the present research was to investigate the effect of the 8-[(4-benzylpipe­razin-1-yl)methyl]-3-(2-chlorophenyl)-7-hydroxy-chromen-4-one (compound 1), which was in silico predicted to bind mAChRs, on the contractile activity of rat caecum circular smooth muscle.
Materials and Methods. The research was carried out on rats. The contractile activity was studied tensometrically in the isometric mode on preparations of the circular smooth muscles of the caecum of Wistar rats. The kinetic properties of individual spontaneous contractions of SM preparations were determined in accordance with the method of multivariate mechanokinetic analysis with the calculation of mechanokinetic parameters for the phases of contraction and relaxation: time (τ0, τC and τR), force (Fmax, FC and FR), velocity (VC and VR) and impulse (Imax, IC and IR). The kinetic properties of acetylcholine-induced contractions were analyzed by calculating the normalized maximum velocities of the contraction (Vnc) and relaxation (Vnr) phases.
Results. It was found that compound 1 caused an increase in the amplitude of acetylcholine-induced contractions; this effect was eliminated by preincubation of SM with the mAChRs M2 subtype inhibitor AF-DX 116.
It was revealed that compound 1 (0.1–50 μM) also has the ability to significantly activate the functional activity of colonic SM in a dose-dependent manner, increasing the force and frequency of spontaneous contractions, as well as their mechanokinetic parameters.
It was found that the presence of compound 1 (0.1 μM) in the solution washing the smooth muscle for a long time leads to a significant increase in the amplitude and frequency of spontaneous contractions, which tends to reach a stationary mode after 40 minutes of its action. The effect of compound 1 was stable for at least an hour of application to the caecum, and was reversible and significantly eliminated by washing the SM.
Conclusions. Compound 1 stimulates the contractile activity of the cecal smooth muscle and exhibits M2 cholinergic properties.


Keywords


smooth muscle of the large intestine, muscarinic acetylcholine receptors of the M2 subtype, acetylcholine, spontaneous contractions, mechanokinetic analysis

Full Text:

PDF

References


Al-Shboul, O. (2013). The importance of interstitial cells of cajal in the gastrointestinal tract. Saudi Journal of Gastroenterology, 19(1), 3-15. doi:10.4103/1319-3767.105909
CrossrefPubMedPMCGoogle Scholar

Balla, H., Borsodi, K., Őrsy, P., Horváth, B., Molnár, P. J., Lénárt, Á., Kosztelnik, M., Ruisanchez, É., Wess, J., Offermanns, S., Nyirády, P., & Benyó, Z. (2023). Intracellular signaling pathways of muscarinic acetylcholine receptor-mediated detrusor muscle contractions. American Journal of Physiology-Renal Physiology, 325(5), F618-F628. doi:10.1152/ajprenal.00261.2022
CrossrefPubMedGoogle Scholar

Buckley, N., Bonner, T., & Brann, M. (1988). Localization of a family of muscarinic receptor mRNAs in rat brain. The Journal of Neuroscience, 8(12), 4646-4652. doi:10.1523/jneurosci.08-12-04646.1988
CrossrefPubMedPMCGoogle Scholar

Burdyga, T. V., & Wray, S. (2002). On the mechanisms whereby temperature affects excitation-contraction coupling in smooth muscle. The Journal of General Physiology, 119(1), 93-104. doi:10.1085/jgp.119.1.93
CrossrefPubMedPMCGoogle Scholar

Burdyga, V., & Kosterin, S. A. (1991). Kinetic analysis of smooth muscle relaxation. General Physiology and Biophysics, 10(6), 589-598.
Google Scholar

Caulfield, M. P., & Birdsall, N. J. (1998). International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacological Reviews, 50(2), 279-290.
PubMedGoogle Scholar

Ehlert, F. J. (2003). Pharmacological analysis of the contractile role of M2 and M3 muscarinic receptors in smooth muscle. Receptors & Channels, 9(4), 261-277. doi:10.3109/10606820308265
CrossrefGoogle Scholar

Elorriaga, M., Anselmi, E., Hernandez, J. M., D'Ocon, P., & Ivorra, D. (1996). The sources of Ca2+ for muscarinic receptor-induced contraction in the rat ileum. The Journal of Pharmacy and Pharmacology, 48(8), 817-819. doi:10.1111/j.2042-7158.1996.tb03980.x
CrossrefPubMedGoogle Scholar

Felton, J., Hu, S., & Raufman, J. P. (2018). Targeting M3 muscarinic receptors for colon cancer therapy. Current Molecular Pharmacology, 11(3), 184-190. doi:10.2174/1874467211666180119115828
CrossrefPubMedPMCGoogle Scholar

Fricova, D., Harsanyiova, J., & Kralova Trancikova, A. (2020). Alpha-synuclein in the gastrointestinal tract as a potential biomarker for early detection of Parkinson's disease. International Journal of Molecular Sciences, 21(22), 8666. doi:10.3390/ijms21228666
CrossrefPubMedPMCGoogle Scholar

Fujimoto, H., Shigemasa, Y., & Suzuki, H. (2010). Properties of spontaneous contractions and their modulation by transmural nerve stimulation in circular smooth muscle isolated from the pacemaker area in the flexure region of the guinea-pig colon. Journal of Smooth Muscle Research, 46(6), 293-308. doi:10.1540/jsmr.46.293
CrossrefPubMedGoogle Scholar

Furness, J. B., Callaghan, B. P., Rivera, L. R., & Cho, H. J. (2014). The enteric nervous system and gastrointestinal innervation: integrated local and central control. Advances in Experimental Medicine and Biology, 817, 39-71. doi:10.1007/978-1-4939-0897-4_3
CrossrefPubMedGoogle Scholar

Glick, M. E., Meshkinpour, H., Haldeman, S., Bhatia, N. N., & Bradley, W. E. (1982). Colonic dysfunction in multiple sclerosis. Gastroenterology, 83(5), 1002-1007. doi:10.1016/S0016-5085(82)80066-8
CrossrefPubMedGoogle Scholar

Greig, N., Reale, M., & Tata, A. (2013). New pharmacological approaches to the cholinergic system: an overview on muscarinic receptor ligands and cholinesterase inhibitors. Recent Patents on CNS Drug Discovery, 8(2), 123-141. doi:10.2174/1574889811308020003
CrossrefPubMedPMCGoogle Scholar

Hering, N. A., Liu, V., Kim, R., Weixler, B., Droeser, R. A., Arndt, M., Pozios, I., Beyer, K., Kreis, M. E., & Seeliger, H. (2021). Blockage of cholinergic signaling via muscarinic acetylcholine receptor 3 inhibits tumor growth in human colorectal adenocarcinoma. Cancers, 13(13), 3220. doi:10.3390/cancers13133220
CrossrefPubMedPMCGoogle Scholar

Iino, S., & Nojyo, Y. (2006). Muscarinic M2 acetylcholine receptor distribution in the guinea-pig gastrointestinal tract. Neuroscience, 138(2), 549-559. doi:10.1016/j.neuroscience.2005.11.021
CrossrefPubMedGoogle Scholar

Jimenez, H., Carrion, J., Adrien, L., Wolin, A., Eun, J., Cinamon, E., Chang, E. H., Davies, P., Vo, A., & Koppel, J. (2023). The impact of muscarinic antagonism on psychosis-relevant behaviors and striatal [11C] raclopride binding in tau mouse models of Alzheimer's disease. Biomedicines, 11(8), 2091. doi:10.3390/biomedicines11082091
CrossrefPubMedPMCGoogle Scholar

Kim, J. E., Park, J. J., Lee, M. R., Choi, J. Y., Song, B. R., Park, J. W., Kang, M. J., Son, H. J., Hong, J. T., & Hwang, D. Y. (2019). Constipation in Tg2576 mice model for Alzheimer's disease associated with dysregulation of mechanism involving the mAChR signaling pathway and ER stress response. PloS One, 14(4), e0215205. doi:10.1371/journal.pone.0215205
CrossrefPubMedPMCGoogle Scholar

Kola, J. B., Docsa, T., & Uray, K. (2022). Mechanosensing in the physiology and pathology of the gastrointestinal tract. International Journal of Molecular Sciences, 24(1), 177. doi:10.3390/ijms24010177
CrossrefPubMedPMCGoogle Scholar

Kosterin, S., Tsymbalyuk, O., & Holden, O. (2021). Multiparameter analysis of mechanokinetics of the contractile response of smooth muscles. Series on Biomechanics, 35(1), 14-30.
Google Scholar

Liu, Y., Wang, W., Song, N., Jiao, L., Jia, F., Du, X., Chen, X., Yan, C., Jiao, J., Jiao, Q., & Jiang, H. (2022). Ghrelin bridges DMV neuropathology and GI dysfunction in the early stages of Parkinson's disease. Advanced Science, 9(30), e2203020. doi:10.1002/advs.202203020
CrossrefPubMedPMCGoogle Scholar

Lobbes, L. A., Schütze, M. A., Droeser, R., Arndt, M., Pozios, I., Lauscher, J. C., Hering, N. A., & Weixler, B. (2023). Muscarinic acetylcholine receptor M3 expression and survival in human colorectal carcinoma-an unexpected correlation to guide future treatment?. International Journal of Molecular Sciences, 24(9), 8198. doi:10.3390/ijms24098198
CrossrefPubMedPMCGoogle Scholar

López-Pingarrón, L., Almeida, H., Soria-Aznar, M., Reyes-Gonzales, M. C., Rodríguez-Moratinos, A. B., Muñoz-Hoyos, A., & García, J. J. (2023). Interstitial cells of cajal and enteric nervous system in gastrointestinal and neurological pathology, relation to oxidative stress. Current Issues in Molecular Biology, 45(4), 3552-3572. doi:10.3390/cimb45040232
CrossrefPubMedPMCGoogle Scholar

Ma, L. Y., Liu, G. L., Wang, D. X., Zhang, M. M., Kou, W. Y., & Feng, T. (2019). Alpha-synuclein in peripheral tissues in Parkinson's disease. ACS Chemical Neuroscience, 10(2), 812-823. doi:10.1021/acschemneuro.8b00383
CrossrefPubMedGoogle Scholar

Nyporko, A., Tsymbalyuk, O., Voiteshenko, I., Starosyla, S., Protopopov, M., & Bdzhola, V. (2023). Computer-aided design of muscarinic acetylcholine receptor M3 inhibitors: promising compounds among trifluoromethyl containing hexahydropyrimidinones/thiones. Molecular Informatics, 42(8-9), e2300006. doi:10.1002/minf.202300006
CrossrefPubMedGoogle Scholar

Pegoli, A., Wifling, D., Gruber, C. G., She, X., Hübner, H., Bernhardt, G., Gmeiner, P., & Keller, M. (2019). Conjugation of short peptides to dibenzodiazepinone-type muscarinic acetylcholine receptor ligands determines M2R selectivity. Journal of Medicinal Chemistry, 62(11), 5358-5369. doi:10.1021/acs.jmedchem.8b01967
CrossrefPubMedGoogle Scholar

Puig, K. L., Lutz, B. M., Urquhart, S. A., Rebel, A. A., Zhou, X., Manocha, G. D., Sens, M., Tuteja, A. K., Foster, N. L., & Combs, C. K. (2015). Overexpression of mutant amyloid-β protein precursor and presenilin 1 modulates enteric nervous system. Journal of Alzheimer's Disease, 44(4), 1263-1278. doi:10.3233/jad-142259
CrossrefPubMedPMCGoogle Scholar

Sanders, K. M. (2019). Spontaneous electrical activity and rhythmicity in gastrointestinal smooth muscles. Advances in Experimental Medicine and Biology, 1124, 3-46. doi:10.1007/978-981-13-5895-1_1
CrossrefPubMedPMCGoogle Scholar

Semar, S., Klotz, M., Letiembre, M., Van Ginneken, C., Braun, A., Jost, V., Bischof, M., Lammers, W. J., Liu, Y., Fassbender, K., Wyss-Coray, T., Kirchhoff, F., & Schäfer, K. H. (2013). Changes of the enteric nervous system in amyloid-β protein precursor transgenic mice correlate with disease progression. Journal of Alzheimer's Disease, 36(1), 7-20. doi:10.3233/jad-120511
CrossrefPubMedGoogle Scholar

Tanahashi, Y., Katsurada, T., Inasaki, N., Uchiyama, M., Sakamoto, T., Yamamoto, M., Matsuyama, H., Komori, S., & Unno, T. (2020). Further characterization of the synergistic activation mechanism of cationic channels by M2 and M3 muscarinic receptors in mouse intestinal smooth muscle cells. American Journal of Physiology. Cell Physiology, 318(3), C514-C523. doi:10.1152/ajpcell.00277.2019
CrossrefPubMedGoogle Scholar

Tanahashi, Y., Komori, S., Matsuyama, H., Kitazawa, T., & Unno, T. (2021). Functions of muscarinic receptor subtypes in gastrointestinal smooth muscle: a review of studies with receptor-knockout mice. International Journal of Molecular Sciences, 22(2), 926. doi:10.3390/ijms22020926
CrossrefPubMedPMCGoogle Scholar

Thomzig, A., Wagenführ, K., Pinder, P., Joncic, M., Schulz-Schaeffer, W. J., & Beekes, M. (2021). Transmissible α-synuclein seeding activity in brain and stomach of patients with Parkinson's disease. Acta Neuropathologica, 141(6), 861-879. doi:10.1007/s00401-021-02312-4
CrossrefPubMedPMCGoogle Scholar

Tobin, G., Giglio, D., & Lundgren, O. (2009). Muscarinic receptor subtypes in the alimentary tract. Journal of Physiology and Pharmacology, 60(1), 3-21.
PubMedGoogle Scholar
Tsvilovskyy, V. V., Zholos, A. V., Aberle, T., Philipp, S. E., Dietrich, A., Zhu, M. X., Birnbaumer, L., Freichel, M., & Flockerzi, V. (2009). Deletion of TRPC4 and TRPC6 in mice impairs smooth muscle contraction and intestinal motility in vivo. Gastroenterology, 137(4), 1415-1424. doi:10.1053/j.gastro.2009.06.046
CrossrefPubMedPMCGoogle Scholar

Tsymbalyuk, O. V., Naumenko, A. M., Skoryk, M. A., Nyporko, A. Y., Davidovska, T. L., & Skryshevsky, V. A. (2016). Histamine- and nicotine-stimulated modulations of mechanic activity of smooth muscles in gastrointestinal tract at the impact of nanosized TiO2 material. Biopolymers & Cell, 32(2), 140-149. doi:10.7124/bc.000917
CrossrefGoogle Scholar

Tsymbalyuk, O. V., Naumenko, A. M., & Davidovska, T. L. (2019). Тhe influence of nano-ТiО2 on the functioning of gastric smooth muscles: an in vitro and in silico studies. Studia Biologica, 13(1), 3-26. doi:10.30970/sbi.1301.592
CrossrefGoogle Scholar

Tsymbalyuk, O., Davydovska, T., Lisnyak, V., Veselsky, S., Zaderko, A., Voiteshenko, I., Naumenko, A., & Skryshevsky, V. (2021). ZnO and TiO2 nanocolloids: state of mechanisms that regulating the motility of the gastrointestinal tract and the hepatobiliary system. ACS Omega, 6(37), 23960-23976. doi:10.1021/acsomega.1c02981
CrossrefPubMedPMCGoogle Scholar

Unno, T., Matsuyama, H., Izumi, Y., Yamada, M., Wess, J., & Komori, S. (2006). Roles of M2 and M3 muscarinic receptors in cholinergic nerve-induced contractions in mouse ileum studied with receptor knockout mice. British Journal of Pharmacology, 149(8), 1022-1030. doi:10.1038/sj.bjp.0706955
CrossrefPubMedPMCGoogle Scholar

Veress, B., Peruzzi, N., Eckermann, M., Frohn, J., Salditt, T., Bech, M., & Ohlsson, B. (2022). Structure of the myenteric plexus in normal and diseased human ileum analyzed by X-ray virtual histology slices. World Journal of Gastroenterology, 28(29), 3994-4006. doi:10.3748/wjg.v28.i29.3994
CrossrefPubMedPMCGoogle Scholar

Windster, J. D., Sacchetti, A., Schaaf, G. J., Bindels, E. M., Hofstra, R. M., Wijnen, R. M., Sloots, C. E., & Alves, M. M. (2023). A combinatorial panel for flow cytometry-based isolation of enteric nervous system cells from human intestine. EMBO Reports, 24(4), e55789. doi:10.15252/embr.202255789
CrossrefPubMedPMCGoogle Scholar

Wrzos, H. F., Tandon, T., & Ouyang, A. (2004). Mechanisms mediating cholinergic antral circular smooth muscle contraction in rats. World Journal of Gastroenterology, 10(22), 3292-3298. doi:10.3748/wjg.v10.i22.3292
CrossrefPubMedPMCGoogle Scholar

Wysocka, A., Palasz, E., Steczkowska, M., & Niewiadomska, G. (2020). Dangerous liaisons: tau interaction with muscarinic receptors. Current Alzheimer Research, 17(3), 224-237. doi:10.2174/1567205017666200424134311
CrossrefPubMedPMCGoogle Scholar

Yan, J. T., Liu, X. Y., Liu, J. H., Li, G. W., Zheng, L. F., Zhang, X. L., Zhang, Y., Feng, X. Y., & Zhu, J. X. (2021). Reduced acetylcholine and elevated muscarinic receptor 2 in duodenal mucosa contribute to the impairment of mucus secretion in 6-hydroxydopamine-induced Parkinson's disease rats. Cell and Tissue Research, 386(2), 249-260. doi:10.1007/s00441-021-03515-7
CrossrefPubMedGoogle Scholar

Yang, Z., Wang, Y., Wei, M., Li, S., Jia, C., Cheng, C., Al-Nusaif, M., Zhang, J., Liu, C., & Le, W. (2023). Intrastriatal injection of Parkinson's disease intestine and vagus lysates initiates α-synucleinopathy in rat brain. Cell Death & Disease, 14(1), 4. doi:10.1038/s41419-022-05531-z
CrossrefPubMedPMCGoogle Scholar

Zhang, R. X., Wang, X. Y., Chen, D., & Huizinga, J. D. (2011). Role of interstitial cells of Cajal in the generation and modulation of motor activity induced by cholinergic neurotransmission in the stomach. Neurogastroenterology and Motility, 23(9), e356-e371. doi:10.1111/j.1365-2982.2011.01753.x
CrossrefPubMedGoogle Scholar

Zholos, A. V. (2006). Regulation of TRP-like muscarinic cation current in gastrointestinal smooth muscle with special reference to PLC/InsP3/Ca2+ system. Acta Pharmacologica Sinica, 27(7), 833-842. doi:10.1111/j.1745-7254.2006.00392.x
CrossrefPubMedGoogle Scholar

Zholos, A. V., Dryn, D. O., & Melnyk, M. I. (2023). General anaesthesia-related complications of gut motility with a focus on cholinergic mechanisms, TRP channels and visceral pain. Frontiers in Physiology, 14, 1174655. doi:10.3389/fphys.2023.1174655
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Olga Tsymbalyuk, Ivan Voiteshenko, Sergii Starosyla, Volodymyr Bdzhola, Andriy Prykhodko, Tetyana Fedirko, Oleksandr Savchenko, Anna Bakhina, Oleksii Nyporko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.