METAL-ACCUMULATING CAPACITY AND ANTIOXIDANT ACTIVITY OF PYLAISIA POLYANTHA (HEDW.) SCHIMP. MOSS IN URBAN AREAS

Oleksandr Polishchuk, Yustyna Zhylishchych, Halyna Antonyak


DOI: http://dx.doi.org/10.30970/sbi.1704.747

Abstract


Background. Bryophytes, including mosses, are widely used in biomonitoring of atmospheric pollution due to their ability to accumulate metals from atmospheric air. However, the effects of metal accumulation on metabolic processes in bryophyte cells have not been thoroughly studied. The aim of this work was to analyse the accumulation of heavy metals, indices of lipid peroxidation (LPO), and antioxidant status in gameto­phytes of the epiphytic moss Pylaisia polyantha (Hedw.) Schimp. collected from urban areas with different levels of technogenic load.
Materials and Methods. The study was conducted in the city of Lviv (western part of Ukraine). Within the city, 15 sampling sites were selected and grouped as fol­lows: the green zone (A) conditionally used as the control, zone influenced by transport activities (B) and the industrial zone (C). In gametophyte shoots of P. polyantha, con­centrations of heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were analysed using the method of atomic absorption spectrophotometry; the content of LPO products (lipid hydroperoxides, thiobarbituric acid reactive substances (TBARS)) and the activities of antioxidant system enzymes (superoxide dismutase, catalase, glutathione S-transferase) were analysed using standard methods. The results were processed using standard statistical methods.
Results. Concentrations of heavy metals in P. polyantha gametophytes collected from the study area can be arranged in descending order as follows: Fe> Mn> Zn> Pb> Cu> Ni> Cr> Co> Cd. The content of individual metals in moss material varied depending on the sampling site. Moss shoots collected from zone B accumulated significantly higher levels of Cd, Co, Cu, Fe, Mn, Pb and Zn, and shoots from zone C had higher levels of Cr and Zn compared to those from the green zone. Moss gametophytes col­lected from sites in zone B had higher concentrations of LPO products and increased levels of antioxidant enzymes activity compared to the control.
Conclusions. Elevated concentrations of heavy metals in moss material from sites exposed to traffic and industrial activities reflect atmospheric heavy metal pollution in urban areas. Intensive accumulation of heavy metals in gametophytes of P. polyantha that grows in the areas of transport activities is accompanied by increased lipid peroxi­dation processes and activation of enzymes of the antioxidant system in moss cells. Activation of antioxidant enzymes may play an important role in the adaptation of the moss P. polyantha to urban environments contaminated with heavy metals as a result of anthropogenic activities.


Keywords


bryophytes, mosses, Pylaisia polyantha, heavy metals, antioxidant system, urban ecosystems, biomonitoring

Full Text:

PDF

References


Aebi, H. E. (1983). Catalase. In H. U. Bergmeyer (Ed.), Methods of enzymatic analysis (pp. 273-286). Weinheim, Germany: Verlag Chemie.
Google Scholar

Antonyak, H., Iskra, R., Panas, N., & Lysiuk, R. (2018). Selenium. In M. Malavolta & E. Mocchegiani, (Eds.),Trace elements and minerals in health and longevity (pp. 63-98). Springer, Cham. doi:10.1007/978-3-030-03742-0_3
CrossrefGoogle Scholar

Baik, O. L. (2009). Changes in moss enzymes of antioxidant defense under the action of copper and zinc ions. Studia Biologica, 2009, 3(3), 83-88. doi:10.30970/sbi.0303.077 (In Ukrainian)
CrossrefGoogle Scholar

Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., & Sadeghi M (2021). Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Frontiers in Pharmacology, 12, 643972. doi:10.3389/fphar.2021.643972
CrossrefPubMedPMC ● Google Scholar

Bjørklund, G., Antonyak, H., Polishchuk, A., Semenova, Y., Lesiv, M., Lysiuk, R., & Peana M. (2022a). Effect of methylmercury on fetal neurobehavioral development: an overview of the possible mechanisms of toxicity and the neuroprotective effect of phytochemicals. Archives of Toxicology, 96(12), 3175-3199. doi:10.1007/s00204-022-03366-3
CrossrefPubMedGoogle Scholar

Bjørklund, G., Oliinyk, P., Lysiuk, R., Rahaman, M. S., Antonyak, H., Lozynska, I., Lenchyk, L., & Peana, M. (2020). Arsenic intoxication: general aspects and chelating agents. Archives of Toxicology, 94(6), 1879-1897. doi:10.1007/s00204-020-02739-w
CrossrefPubMedPMCGoogle Scholar

Bjørklund, G., Shanaida, M., Lysiuk, R., Antonyak, H., Klishch, I., Shanaida, V., & Peana, M. (2022b). Selenium: an antioxidant with a critical role in anti-aging. Molecules, 27(19), 6613. doi:10.3390/molecules27196613
CrossrefPubMedPMCGoogle Scholar

Boiko, M. F. (2014). The second checklist of bryobionta of Ukraine. Chornomorski Botanical Journal, 10(4), 426-487. doi:10.14255/2308-9628/14.104/2
CrossrefGoogle Scholar

Chen, R., Jia, B., Tian, Y., & Feng, Y. (2021). Source-specific health risk assessment of PM2.5-bound heavy metals based on high time-resolved measurement in a Chinese megacity: insights into seasonal and diurnal variations. Ecotoxicology and Environmental Safety, 216(11), 112167. doi:10.1016/j.ecoenv.2021.112167
CrossrefPubMedGoogle Scholar

Dixit, V., Pandey, V., & Shyam, R. (2001). Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). Journal of Experimental Botany, 52(358), 1101-1109. doi:10.1093/jexbot/52.358.1101
CrossrefPubMedGoogle Scholar

Emamverdian, A., Ding, Y., Mokhberdoran, F., & Xie, Y. (2015). Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal, 2015, 756120. doi:10.1155/2015/756120
CrossrefPubMedPMCGoogle Scholar

Fry, K. L., Wheeler, C. A., Gillings, M. M., Flegal, A. R., & Taylor, M. P. (2020). Anthropogenic contamination of residential environments from smelter As, Cu and Pb emissions: implications for human health. Environmental Pollution, 262, 114235. doi:10.1016/j.envpol.2020.114235
CrossrefPubMedGoogle Scholar

Fukai, T., Kobayashi, T., Sakaguchi, M., Aoki, M., Saito, T., Fujimori, E., & Haraguchi, H. (2007). Chemical characterization of airborne particulate matter in ambient air of Nagoya, Japan, as studied by the multielement determination with ICP-AES and ICP-MS. Analytical Sciences, 23(2), 207-213. doi:10.2116/analsci.23.207
CrossrefPubMedGoogle Scholar

Guéguen, F., Stille, P., & Millet, M. (2011). Air quality assessment by tree bark biomonitoring in urban, industrial and rural environments of the Rhine Valley: PCDD/Fs, PCBs and trace metal evidence. Chemosphere, 85, 195-202. doi:10.1016/j.chemosphere.2011.06.032
CrossrefPubMedGoogle Scholar

Gill, R. A., Kanwar, M. K., Rodrigues dos Reis, A., & Ali, B. (2022). Editorial: heavy metal toxicity in plants: recent insights on physiological and molecular aspects. Frontiers in Plant Science, 12:830682. doi:10.3389/fpls.2021.830682
CrossrefPubMedPMCGoogle Scholar

Ghuge, S. A., Nikalje, G. C., Kadam, U. S., Suprasanna, P., & Hong, J. C. (2023). Comprehensive mechanisms of heavy metal toxicity in plants, detoxification, and remediation. Journal of Hazardous Materials, 450, 131039. doi:10.1016/j.jhazmat.2023.131039
CrossrefPubMedGoogle Scholar

Goldschmidt, V. (1937). The principles of distribution of chemical elements in minerals and rocks. The seventh Hugo Müller Lecture, delivered before the Chemical Society. Journal of the Chemical Society, 655-673. doi:10.1039/JR9370000655
CrossrefGoogle Scholar

Guo, G., Zhang, D., & Wang, Y. (2021). Characteristics of heavy metals in size-fractionated atmospheric particulate matters and associated health risk assessment based on the respiratory deposition. Environmental Geochemistry and Health, 43(1), 285-299. doi:10.1007/s10653-020-00706-z
CrossrefPubMedGoogle Scholar

Harmens, H., Norris, D., & Mills, G. (2013). Heavy metals and nitrogen in mosses: spatial patterns in 2010/2011 and long-term temporal trends in Europe. ICP Vegetation Programme Coordination Centre, Centre for Ecology and Hydrology, Bangor, UK.
Google Scholar

Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stochiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. doi:10.1016/0003-9861(68)90654-1
CrossrefPubMedGoogle Scholar

Jiang, Y., Fan, M., Hu, R., Zhao, J., & Wu, Y. (2018). Mosses are better than leaves of vascular plants in monitoring atmospheric heavy metal pollution in urban areas. International Journal of Environmental Research and Public Health, 15(6),1105. doi:10.3390/ijerph15061105
CrossrefPubMedPMCGoogle Scholar

Kakkar, P., Das, B., & Viswanathan, P. (1984). A modified spectrophotometric assay of superoxide dismutase. Indian Journal of Biochemistry and Biophysics, 21(2), 130-132.
Google Scholar

Khan, F., Hirano, K., & Masunaga, S. (2010). Quantifying the sources of hazardous elements of suspended particulate matter aerosol collected in Yokohama, Japan. Atmospheric Environment, 44(21-22), 2646-2657. doi:10.1016/j.atmosenv.2010.03.040
CrossrefGoogle Scholar

Kyyak, N. Y. (2022). Metabolism of carbohydrates and activity of the antioxidant system in mosses on a post-technogenic salinized territory. Regulatory Mechanisms in Biosystems, 13(2), 189-196. doi:10.15421/022224
CrossrefGoogle Scholar

Lesiv, M. S., Polishchuk, A. I., & Antonyak, H. L. (2020). Aquatic macrophytes: ecological features and functions. Studia Biologica, 14(2), 79-94. doi:10.30970/sbi.1402.619
CrossrefGoogle Scholar

Li, Z. S., Zhen, R. G., & Rea, P. A. (1995). 1-Chloro-2,4-dinitrobenzene-elicited increase in vacuolar glutathione-s-conjugate transport activity. Plant Physiology, 109(1), 177-185. doi:10.1104/pp.109.1.177
CrossrefPubMedPMCGoogle Scholar

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275. doi:10.1016/s0021-9258(19)52451-6
CrossrefPubMedGoogle Scholar

Macedo-Miranda, G., Avila-Pérez, P., Gil-Vargas, P., Zarazúa, G., Sánchez-Meza, J. C., Zepeda-Gómez, C., & Tejeda, S. (2016). Accumulation of heavy metals in mosses: a biomonitoring study. SpringerPlus, 5(1), 715. doi:10.1186/s40064-016-2524-7
CrossrefPubMedPMCGoogle Scholar

Mahapatra, B., Dhal, N. K., Dash, A. K., Panda, B. P., Panigrahi, K. C. S., & Pradhan, A. (2019). Perspective of mitigating atmospheric heavy metal pollution: using mosses as biomonitoring and indicator organism. Environmental Science and Pollution Research International, 26(29), 29620-29638. doi:10.1007/s11356-019-06270-z
CrossrefPubMedGoogle Scholar

Mamchur, Z. (2010). Urbanophilic epiphytic mosses of Lviv city. Visnyk of the Lviv University. Biology Series, 54, 115-122. (In Ukrainian)
Google Scholar

Maresca, V., Salbitani, G., Moccia, F., Cianciullo, P., Carraturo, F., Sorbo, S., Insolvibile, M., Carfagna, S., Panzella, L., & Basile, A. (2022). Antioxidant response to heavy metal pollution of Regi Lagni freshwater in Conocephalum conicum L. (Dum.). Ecotoxicology and Environmental Safety, 234, 113365. doi:10.1016/j.ecoenv.2022.113365
CrossrefPubMedGoogle Scholar
https://doi.org/10.1016/j.ecoenv.2022.113365
PMid:35259593

Marinova, S., Yurukova, L., Frontasyeva, M. V., Steinnes, E., Strelkova, L. P., Marinov, A., & Karadzhinova, A. G. (2010). Air pollution studies in Bulgaria using the moss biomonitoring technique. Ecological Chemistry and Engineering S, 17(1), 37-52
Google Scholar

Mironchik, V. V. (1984). Method for determination of lipid hydroperoxides in biological tissues. USSR author's certificate, No. 1084681. Appl. 07/08/82; publ. 04/07/84, Bul. No. 13.
Google Scholar

Mishra, A., Oliinyk, P., Lysiuk, R., Lenchyk, L., Rathod, S. S. S., Antonyak, H., Darmohray, R., Dub, N., Antoniv, O., Tsal, O., & Upyr, T. (2022). Flavonoids and stilbenoids as a promising arsenal for the management of chronic arsenic toxicity. Environmental Toxicology and Pharmacology, 95, 103970. doi:10.1016/j.etap.2022.103970
CrossrefPubMedGoogle Scholar

Narayanan, M., & Ma, Y. (2023). Metal tolerance mechanisms in plants and microbe-mediated bioremediation. Environmental Research, 222, 115413. doi:10.1016/j.envres.2023.115413
CrossrefPubMedGoogle Scholar

Nishikimi, M., Appaji, N., & Yagi, K. (1972). The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochemical and Biophysical Research Communications, 46(2), 849-854. doi:10.1016/s0006-291x(72)80218-3
CrossrefPubMedGoogle Scholar

Ogunkunle, C. O., Ziyath, A. M., Rufai, S. S., & Fatoba, P. O. (2016). Surrogate approach to determine heavy metal loads in a moss species - Barbula lambaranensis. Journal of King Saud University - Science, 28(2), 193-197. doi:10.1016/j.jksus.2015.11.002
CrossrefGoogle Scholar

Plášek, V., Nowak, A, Nobis, M, Kusza, G, & Kochanowska, K. (2014). Effect of 30 years of road traffic abandonment on epiphytic moss diversity. Environmental Monitoring and Assessment, 186(12), 8943-8959. doi:10.1007/s10661-014-4056-3
CrossrefPubMedPMCGoogle Scholar

Polishchuk, A. I., & Antonyak, H. L. (2019). Accumulation of heavy metals in gametophytes of the epilithic mosses. Studia Biologica, 13(2), 21-28. doi:10.30970/sbi.1302.601
CrossrefGoogle Scholar

Polishchuk, A. I., & Antonyak, H. L. (2021). Accumulation of heavy metals and antioxidant defense system in the gametophyte of Didymodon rigidulus Hedw. in areas with high traffic loads. Studia Biologica, 15(3), 51-60. doi:10.30970/sbi.1503.660
CrossrefGoogle Scholar

Polishchuk, A. I., & Antonyak, H. L. (2022). Dynamics of foliar concentrations of photosynthetic pigments in woody and herbaceous plant species in the territory of an industrial city. Studia Biologica, 16(2), 29-40. doi:10.30970/sbi.1602.684
CrossrefGoogle Scholar

Polishchuk, A. I., Lesiv, M. S., & Antonyak, H. L. (2020). Impact of vehicular traffic on the accumulation of metals by plants in the territory of Lviv. Visnyk of the Lviv University. Series Biology, 82, 101-109. doi:10.30970/vlubs.2020.82.08 (In Ukrainian)
CrossrefGoogle Scholar

Qarri, F., Lazo, P., Stafilov, T., Frontasyeva, M., Harmens, H., Bekteshi, L., Baceva, K., & Goryainova, Z. (2014). Multi-elements atmospheric deposition study in Albania. Environmental Science and Pollution Research International, 21(4), 2506-2518. doi:10.1007/s11356-013-2091-1
CrossrefPubMedGoogle Scholar

Ren, Y., Luo, Q., Zhuo, S., Hu, Y., Shen, G., Cheng, H., & Tao, S. (2021). Bioaccessibility and public health risk of heavy metal(loid)s in the airborne particulate matter of four cities in northern China. Chemosphere, 277, 130312. doi:10.1016/j.chemosphere.2021.130312
CrossrefPubMedGoogle Scholar

Smolińska-Kondla, D., Zych, M., Ramos, P., & Wacławek, S. (2022). Antioxidant potential of various extracts from 5 common European mosses and its correlation with phenolic compounds. Herba Polonica, 68(2), 54-68. doi:10.2478/hepo-2022-0014
CrossrefGoogle Scholar

Snityns'kyi, V. V., & Antoniak, H. L. (1994). Biochemical role of selenium [Biokhimichna rol’ selenu]. Ukrainskii biokhimicheskii zhurnal, 66(5), 3-16. (In Ukrainian)
Google Scholar

Snitynskyi, V. V., Solohub, L. I., Antoniak, H. L., Kopachuk, D. M., & Herasymiv, M. H. (1999). Biological role of chromium in humans and animals [Bilohichna rol' khromu v organizmi liudyny i tvaryn]. Ukrainskii biokhimicheskii zhurnal, 71(2), 5-9. (In Ukrainian)
Google Scholar

Stebel, A., & Vončina, G. (2017). Contribution to the bryoflora of the Ciężkowickie Foothills (Western Carpathians, Poland). Acta Musei Silesiae, Scientiae Naturales, 66, 121-135, doi:10.1515/cszma-2017-0015
CrossrefGoogle Scholar

Ștefănuț, S., Öllerer, K., Manole, A., Ion, M. C., Constantin, M., Banciu, C., Maria, G. M., & Florescu, L. I. (2019). National environmental quality assessment and monitoring of atmospheric heavy metal pollution - a moss bag approach. Journal of Environmental Management, 248, 109224. doi:10.1016/j.jenvman.2019.06.125
CrossrefPubMedGoogle Scholar

Sun, S. Q., He, M., Cao, T., Zhang, Y. C., & Han, W. (2009). Response mechanisms of antioxidants in bryophyte (Hypnum plumaeforme) under the stress of single or combined Pb and/or Ni. Environmental Monitoring and Assessment, 149, 291-302. doi:10.1007/s10661-008-0203-z
CrossrefPubMedGoogle Scholar

Trujillo-González, J. M., Zapata-Muñoz, Y. L., Torres-Mora, M. A., García-Navarro, F. J., & Jiménez-Ballesta, R. (2020). Assessment of urban environmental quality through the measurement of lead in bryophytes: case study in a medium-sized city. Environmental Geochemistry and Health, 42, 3131-3139. doi:10.1007/s10653-020-00548-9
CrossrefPubMedGoogle Scholar

Vanderpoorten, A., Papp, B., & Gradstein, R. (2010). Sampling of bryophytes. In J. Eymann, J. Degreef, C. L. Häuser, J. C. Monje, Y. Samyn & D. VandenSpiegel. (Eds.), Manual on field recording techniques and protocols for all taxa biodiversity inventories (part 2. pp. 331-345). ABC Taxa, Belgium.
Google Scholar

Welham, S. J., Gezan, S. A., Clark, S. J., & Mead, A. (2015). Statistical methods in biology: design and analysis of experiments and regression. Taylor & Francis Group, LLC. doi:10.1201/b17336
Crossref ● Google Scholar

Wu, Y. Chen, Y., Yi, Y., & Shen, Z. (2009). Responses to copper by the moss Plagiomnium cuspidatum: hydrogen peroxide accumulation and the antioxidant defense system. Chemosphere, 74(9), 1260-1265. doi:10.1016/j.chemosphere.2008.10.059
CrossrefPubMedGoogle Scholar

Zieliński, M., Gąsior, M., Jastrzębski, D., Desperak, A., & Ziora, D. (2018). Influence of particulate matter air pollution on exacerbation of chronic obstructive pulmonary disease depending on aerodynamic diameter and the time of exposure in the selected population with coexistent cardiovascular diseases. Advances in Respiratory Medicine, 86(5), 227-233. doi:10.5603/arm.2018.0036
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Oleksandr Polishchuk, Yustyna Zhylishchych, Halyna Antonyak

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.