COMPARATIVE ANALYSIS OF EFFECTS OF CLIMATE-SMART AGRICULTURE PRACTICES AND CONVENTIONAL AGRICULTURE ON SELECTED SOIL PHYSICOCHEMICAL PROPERTIES IN NYIMBA DISTRICT, ZAMBIA
DOI: http://dx.doi.org/10.30970/sbi.1704.744
Abstract
Background. Many smallholder farmers in the developing world live in adverse poverty and rely on agriculture as their primary source of income and household food. In Zambia, agriculture production is the main activity for people in rural areas of the country. The study evaluated the effects of climate-smart practices: Gliricidia sepium alley cropping, conservation agriculture basin, ripping, and conventional agriculture cropland on selected physicochemical properties of soil among smallholder farmers’ croplands in Nyimba district, Zambia.
Materials and Methods. Cropland under conservation agriculture basin, ripping, agroforestry gliricidia alleyed cropping, and conventional agriculture cropland hosting the practices for more than five years were considered for soil sample collection. Thirty (30) composite soil samples were collected: gliricidia alley cropping (n = 6), conservation agriculture ripping (n = 6), basin (n = 6), conventional agriculture one (n = 6), and conventional agriculture two (n = 6) following a zigzag pattern on soil surface depth of 0–30 cm. The collected composite soil samples were analyzed at the University of Zambia Soil Science Laboratory. Soil laboratory results were analyzed with Minitab Statistical Software version 17 for mean squares, standard deviations, and Tukey’s LSD.
Results and Discussion. The study revealed significant effects (p <0.05) of gliricidia alley cropping, conservation agriculture ripping, and basin on soil bulk density, porosity, power of hydrogen (pH), cation exchange capacity, available phosphorus, total nitrogen, exchangeable bases sodium, calcium, and potassium. Exchangeable base magnesium was recorded as insignificant across the considered practices off-course with minimal mean variations with conventional agriculture cropland.
Conclusion. The study shows that implementing climate-smart agriculture practices has the potential to improve crop productivity per hectare through reclaiming and amending depleted soil physicochemical properties in a mid and long run. This also indicates the importance of climate-smart agricultural practices implementation among smallholder farmers’ cropping fields.
Keywords
Full Text:
PDFReferences
Ajayi, O. C., Akinnifesi, F. K., Sileshi, G., & Chakeredza, S. (2007). Adoption of renewable soil fertility replenishment technologies in the southern African region: lessons learned and the way forward. Natural Resources Forum, 31(4), 306-317. doi:10.1111/j.1477-8947.2007.00163.x Crossref ● Google Scholar | ||||
| ||||
Ajayi, O. C., Masi, C., Masi, C., Katanga, R., & Kabwe, G. (2006). Typology and characteristics of farmers testing agroforestry-based soil fertility management technology in Eastern Zambia. Zambian Journal of Agricultural Science, 8(2), 1-5. Google Scholar | ||||
| ||||
Alamu, E. O., Adesokan, M., Fawole, S., Maziya-Dixon, B., Mehreteab, T., & Chikoye, D. (2023). Gliricidia sepium (Jacq.) Walp applications for enhancing soil fertility and crop nutritional qualities: a review. Forests, 14(3), 635. doi:10.3390/f14030635 Crossref ● Google Scholar | ||||
| ||||
Alemaw, B. F., & Matondo, J. I. (2020). Overview of climate variability and change in Africa: perspectives and experiences. In J. I. Matondo, B. F. Alemaw, W. J. P. Sandwidi (Eds.), Climate variability and change in Africa: perspectives, experiences and sustainability (pp. 3-7). Springer, Cham. doi:10.1007/978-3-030-31543-6_1 Crossref ● Google Scholar | ||||
| ||||
Alfani, F., Arslan, A., McCarthy, N., Cavatassi, R., & Sitko, N. (2021). Climate resilience in rural Zambia: evaluating farmers' response to El Niño-induced drought. Environment and Development Economics, 26(5-6), 582-604. doi:10.1017/s1355770x21000097 Crossref ● Google Scholar | ||||
| ||||
Austrheim, G., Speed, J. D. M., Martinsen, V., Mulder, J., & Mysterud, A. (2014). Experimental effects of herbivore density on above-ground plant biomass in an alpine grassland ecosystem. Arctic, Antarctic, and Alpine Research, 46(3), 535-541. doi:10.1657/1938-4246-46.3.535 Crossref ● Google Scholar | ||||
| ||||
Azuka, C., & Obi, M. (2013). Structural stability and hydraulic conductivity of Nkpologu sandy loam soil under different land covers in Southeastern Nigeria. Agro-Science, 11(1), 1-9. doi:10.4314/as.v11i1.1 Crossref ● Google Scholar | ||||
| ||||
Beedy, T. L., Snapp, S. S., Akinnifesi, F. K., & Sileshi, G. W. (2010). Impact of Gliricidia sepium intercropping on soil organic matter fractions in a maize-based cropping system. Agriculture, Ecosystems & Environment, 138(3-4), 139-146. doi:10.1016/j.agee.2010.04.008 Crossref ● Google Scholar | ||||
| ||||
Belay, Z. (2018). Characterization of soil fertility for wheat production at Shiebench District in Bench Maji Zone, Southern Ethiopia. Agricultural Research & Technology: Open Access Journal, 15(4). doi:10.19080/artoaj.2018.15.555965 Crossref ● Google Scholar | ||||
| ||||
Bohoussou, Y. N., Kou, Y.-H., Yu, W.-B., Lin, B., Virk, A. L., Zhao, X., Dang, Y. P., & Zhang, H.-L. (2022). Impacts of the components of conservation agriculture on soil organic carbon and total nitrogen storage: a global meta-analysis. Science of The Total Environment, 842, 156822. doi:10.1016/j.scitotenv.2022.156822 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Chavula, P. (2022a). Inclusion of agroforestry on agricultural farming systems: revisited. International Journal of Academic and Applied Research, 6(11), 270-275. Google Scholar | ||||
| ||||
Chavula, P. (2022b). Climate-smart agriculture for Zambia's smallholder farmers: review paper. International Journal of Ground Sediment & Water, 15 939-956. doi:10.5281/zenodo.5816757 Crossref ● Google Scholar | ||||
| ||||
Chavula, P., Teressa, B., Ntezimana, M. G., Umer, Y., Muleba, M., & Shentema, S. (2022). An overview of Zambia's agricultural extension and advisory system. International Journal of Academic and Applied Research, 6(10), 209-214. Google Scholar | ||||
| ||||
CIAT, World Bank. (2017a). Climate-Smart Agriculture in Zambia. Lusaka, Zambia: World Bank and CIAT Publication. Retrieved from https://ccafs.cgiar.org/publications/climate-smart-agriculture-zambia#.WwG9JUgvw2w Google Scholar | ||||
| ||||
CIAT, World Bank. (2017b). Climate-Smart Agriculture in Zambia. CSA Country Profiles for Africa Series. Retrieved from https://climateknowledgeportal.worldbank.org/sites/default/files/2019-06/CSA%20_Profile_Zambia.pdf Google Scholar | ||||
| ||||
Dissanayake, D. K. R. P. L., Udumann, S. S., Dissanayaka, D. M. N. S., Nuwarapaksha, T. D., & Atapattu, A. J. (2023). Effect of biochar application rate on macronutrient retention and leaching in two coconut growing soils. Technology in Agronomy, 3(1). doi:10.48130/tia-2023-0005 Crossref ● Google Scholar | ||||
| ||||
Doumbia, S., Dembele, S. G., Sissoko, F., Samake, O., Sousa, F., Harun, C., Adamtey, N., & Fliessbach, A. (2020). Alley cropped Gliricidia sepium (Jacq.) Kunth ex. Walp. enhance soil fertility and yields of cotton, maize and sorghum in Mali. International Journal of Food Science and Agriculture, 4(3), 301-313. doi:10.26855/ijfsa.2020.09.010 Crossref ● Google Scholar | ||||
| ||||
Du, Y., Cui, B., zhang, Q., Wang, Z., Sun, J., & Niu, W. (2020). Effects of manure fertilizer on crop yield and soil properties in China: a meta-analysis. Catena, 193, 104617. doi:10.1016/j.catena.2020.104617 Crossref ● Google Scholar | ||||
| ||||
FANRPAN. (2017). FANRPAN policy brief climate-smart agriculture in Namibia. 1-8. Retrieved from https://www.jstor.org/stable/resrep16456 | ||||
| ||||
Fauziah, C. I., Jamilah, I., & Syed Omar, S. R. (1997). An evaluation of cation exchange capacity methods for acid tropical soils. Pertanika Journal of Tropical Agricultural Science, 20(2-3), 113-119. Google Scholar | ||||
| ||||
Ferdush, J., Meftahul Karim, M., Jahan Noor, I., Afrin Sadia Afrin Ju, S., Ahamed, T., & Sataya Ranjan Saha, D. (2019). Impact of alley cropping system on soil fertility. International Journal of Advanced Geosciences, 7(2), 173. doi:10.14419/ijag.v7i2.29942 Crossref ● Google Scholar | ||||
| ||||
Franzel, S., Cooper, P., & Denning, G. L. (2001). Scaling up the benefits of agroforestry research: lessons learned and research challenges. Development in Practice, 11(4), 524-534. doi:10.1080/09614520120066792 Crossref ● Google Scholar | ||||
| ||||
Ghazali, M. F., Wikantika, K., Harto, A. B., & Kondoh, A. (2020). Generating soil salinity, soil moisture, soil pH from satellite imagery and its analysis. Information Processing in Agriculture, 7(2), 294-306. doi:10.1016/j.inpa.2019.08.003 Crossref ● Google Scholar | ||||
| ||||
Goswami, S. B., Mondal, R., & Mandi, S. K. (2019). Crop residue management options in rice-rice system: a review. Archives of Agronomy and Soil Science, 66(9), 1218-1234. doi:1080/03650340.2019.1661994 Crossref ● Google Scholar | ||||
| ||||
Gumbo, D. J., Mumba, K. Y., Kaliwile, M. M., Moombe, K. B., & Mfuni, T. I. (2016). Agrarian changes in the Nyimba District of Zambia. Agrarian Change in Tropical Landscapes, 234-268. Google Scholar | ||||
| ||||
Hazelton, P., & Murphy, B. (2016). Interpreting soil test results: what do all the numbers mean? CSIRO publishing, Clayton. doi:10.1071/9781486303977 Crossref ● Google Scholar | ||||
| ||||
Henry, N., Elias, K., Thomson, K., & Benson, C. (2020). Effects of soil organic resource management practices on crop productivity and household income in Chipata district of Zambia. Journal of Agricultural Extension and Rural Development, 14(4), 98-109. doi:10.5897/jaerd2020.1181 Crossref ● Google Scholar | ||||
| ||||
Horta, M. C., & Torrent, J. (2007). The Olsen P method as an agronomic and environmental test for predicting phosphate release from acid soils. Nutrient Cycling in Agroecosystems, 77(3), 283-292. doi:10.1007/s10705-006-9066-2 Crossref ● Google Scholar | ||||
| ||||
Hussein, K., & Suttie, D. (2016). Rural-urban linkages and food systems in sub-Saharan Africa. IFAD Research Series: IFAD. Google Scholar | ||||
| ||||
Ivezić, V., Lorenz, K., & Lal, R. (2022). Soil organic carbon in alley cropping systems: a meta-analysis. Sustainability, 14(3), 1296. doi:10.3390/su14031296 Crossref ● Google Scholar | ||||
| ||||
Kabwe, G., Bigsby, H., & Cullen, R. (2016). Why is adoption of agroforestry stymied in Zambia? Perspectives from the ground-up. African Journal of Agricultural Research, 11(46), 4704-4717. doi:10.5897/ajar2016.10952 Crossref ● Google Scholar | ||||
| ||||
Kan, Z., Chen, Z., Wei, Y., Virk, A. L., Bohoussou, Y. N., Lal, R., Zhao, X., & Zhang, H. (2022). Contribution of wheat and maize to soil organic carbon in a wheat-maize cropping system: a field and laboratory study. Journal of Applied Ecology, 59(11), 2716-2729. doi:10.1111/1365-2664.14265 Crossref ● Google Scholar | ||||
| ||||
Karmaoui, A., Barrick, K., Reed, M., & Baig, M. B. (Eds.). (2021). Impacts of climate change on agriculture and aquaculture. IGI Global. doi:10.4018/978-1-7998-3343-7 Crossref ● Google Scholar | ||||
| ||||
Karouach, F., Ben Bakrim, W., Ezzariai, A., Sobeh, M., Kibret, M., Yasri, A., Hafidi, M., & Kouisni, L. (2022). A comprehensive evaluation of the existing approaches for controlling and managing the proliferation of water hyacinth (Eichhornia crassipes): review. Frontiers in Environmental Science, 9, 767871. doi:10.3389/fenvs.2021.767871 Crossref ● Google Scholar | ||||
| ||||
Kassam, A., Derpsch, R., & Friedrich, T. (2020). Development of conservation agriculture systems globally. In A. Kassam (Ed.), Advances in conservation agriculture: systems and science (pp. 31-86). Cambridge, UK: Burleigh Dodds. doi:10.19103/as.2019.0048.02 Crossref ● Google Scholar | ||||
| ||||
Kumar, A., Hasanain, M., Singh, R., Verma, G., Kumar, D., & Mishra, R. (2020). Role of agroforestry measures for soil and water conservation. Food and Scientific Reports, 1, 49-52. Google Scholar | ||||
| ||||
Kumari, D., Kumar, S., Parveen, H., Pradhan, A. K., Kumar, S., & Kumari, R. (2019). Long-term impact of conservation agriculture on chemical properties of soil. International Journal of Current Microbiology and Applied Sciences, 8(07), 2144-2153. doi:10.20546/ijcmas.2019.807.258 Crossref ● Google Scholar | ||||
| ||||
Le Treut, H. R., Somerville, I., Cubasch, Y., Ding, C., Mauritzen, A., Mokssit, Peterson, T., & Prather, M. (2007). Historical overview of climate change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (Eds.), Climate change 2007: the physical science basis (pp. 95-127). Cambridge, UK: Cambridge University Press. Retrieved from https://www.ipcc.ch/site/assets/uploads/2018/03/ar4-wg1-chapter1.pdf Google Scholar | ||||
| ||||
Lejissa, L. T., Wakjira, F. S., & Tanga, A. A. (2022). Effects of conservation agriculture and conventional tillage on the soil physicochemical properties and household income in Southern Ethiopia. International Journal of Agronomy, 2022, 1-13. doi:10.1155/2022/1224193 Crossref ● Google Scholar | ||||
| ||||
Lufumpa, L. C. (1991). An economic analysis of agroforestry farming systems in Zambia: application of risk programming and risk-free modelling techniques. Iowa State University. Google Scholar | ||||
| ||||
Makate, C. (2019). Local institutions and indigenous knowledge in adoption and scaling of climate-smart agricultural innovations among sub-Saharan smallholder farmers. International Journal of Climate Change Strategies and Management, 12(2), 270-287. doi:10.1108/ijccsm-07-2018-0055 Crossref ● Google Scholar | ||||
| ||||
Makumba, W., Janssen, B., Oenema, O., Akinnifesi, F. K., Mweta, D., & Kwesiga, F. (2006). The long-term effects of a gliricidia-maize intercropping system in Southern Malawi, on gliricidia and maize yields, and soil properties. Agriculture, Ecosystems & Environment, 116(1-2), 85-92. doi:10.1016/j.agee.2006.03.012 Crossref ● Google Scholar | ||||
| ||||
Martinsen, V., Shitumbanuma, V., Mulder, J., Ritz, C., & Cornelissen, G. (2017). Effects of hand-hoe tilled conservation farming on soil quality and carbon stocks under on-farm conditions in Zambia. Agriculture, Ecosystems & Environment, 241, 168-178. doi:10.1016/j.agee.2017.03.010 Crossref ● Google Scholar | ||||
| ||||
Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., & Waterfield, T. (Eds.). (2018). Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate povert. Cambridge, UK and New York, NY, USA: Cambridge University Press. Retrieved from https://www.ipcc.ch/site/assets/uploads/sites/2/2022/06/SR15_Full_Report_HR.pdf Google Scholar | ||||
| ||||
Mhete, M., Eze, P. N., Rahube, T. O., & Akinyemi, F. O. (2020). Soil properties influence bacterial abundance and diversity under different land-use regimes in semi-arid environments. Scientific African, 7, e00246. doi:10.1016/j.sciaf.2019.e00246 Crossref ● Google Scholar | ||||
| ||||
Mizik, T. (2021). Climate-smart agriculture on small-scale farms: a systematic literature review. Agronomy, 11(6), 1096. doi:10.3390/agronomy11061096 Crossref ● Google Scholar | ||||
| ||||
Motsara, M. R., & Roy, R. N. (2008). Guide to laboratory establishment for plant nutrient analysis (19): Food and Agriculture Organization of the United Nations Rome. FAO Viale delle Terme di Caracalla, 153. Google Scholar | ||||
| ||||
Muluneh, M. G. (2021). Impact of climate change on biodiversity and food security: a global perspective - a review article. Agriculture & Food Security, 10(1). doi:10.1186/s40066-021-00318-5 Crossref ● Google Scholar | ||||
| ||||
Murphy, B. W. (2014). Soil organic matter and soil function - review of the literature and underlying data. Canberra, Australia: Department of the Environment. Retrieved from https://ecaf.org/wp-content/uploads/2021/02/Soil_Organic_Matter-Brian_Murphy.pdf Google Scholar | ||||
| ||||
Mwanamwenge, M., & Cook, S. (2019). Beyond maize: exploring agricultural diversification in Zambia from different perspectives. Lusaka, Zambia: Sustainable Diets for All. Hivos and IIED. Retrieved from https://www.iied.org/sites/default/files/pdfs/migrate/G04422.pdf Google Scholar | ||||
| ||||
Naab, J. B., Mahama, G. Y., Yahaya, I., & Prasad, P. V. V. (2017). Conservation agriculture improves soil quality, crop yield, and incomes of smallholder farmers in north western Ghana. Frontiers in Plant Science, 8, 996. doi:10.3389/fpls.2017.00996 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Neina, D., & Agyarko-Mintah, E. (2022). Duration of cultivation has varied impacts on soil charge properties in different agro-ecological zones of Ghana. Land, 11(10), 1633. doi:10.3390/land11101633 Crossref ● Google Scholar | ||||
| ||||
Nelson, S., Chaudhury, M., Tranberg, H., Lambrou, Y., Tapio-Bistrom, M. L., & Kristjanson, P. M. (2011). Training guide. Gender and сlimate change research in agriculture and food security for rural development. Copenhagen, Denmark: CGIAR Research program on Climate Change, Agriculture and Food Security (CCAFS) Google Scholar | ||||
| ||||
Ngombe, J., Kalinda, T., Tembo, G., & Kuntashula, E. (2014). Econometric analysis of the factors that affect adoption of conservation farming practices by smallholder farmers in Zambia. Journal of Sustainable Development, 7(4), 124-138. doi:10.5539/jsd.v7n4p124 Crossref ● Google Scholar | ||||
| ||||
Odubote, I. K., & Ajayi, O. C. (2020a). Scaling up climate-smart agricultural (CSA) solutions for smallholder cereals and livestock farmers in Zambia. In W. Leal Filho (Ed.), Handbook of climate change resilience (pp. 1115-1136). Springer, Cham. doi:10.1007/978-3-319-93336-8_109 Crossref ● Google Scholar | ||||
| ||||
Oelbermann, M., Voroney, R. P., & Kass, D. C. L. (2004). Gliricidia sepium carbon inputs and soil carbon pools in a Costa Rican alley cropping system. International Journal of Agricultural Sustainability, 2(1), 33-42. doi:10.1080/14735903.2004.9684565 Crossref ● Google Scholar | ||||
| ||||
Okonkwo, C., Mbagwu, J., & Egwu, S. (2009). Changes in soil properties under alley cropping system of three leguminous crops. Agro-Science, 8(1), 60-65. doi:10.4314/as.v8i1.44116 Crossref ● Google Scholar | ||||
| ||||
Page, K. L., Dang, Y. P., & Dalal, R. C. (2020). The ability of conservation agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield. Frontiers in Sustainable Food Systems, 4, 31. doi:10.3389/fsufs.2020.00031 Crossref ● Google Scholar | ||||
| ||||
Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere, L., & Grace, P. (2014). Conservation agriculture and ecosystem services: an overview. Agriculture, Ecosystems & Environment, 187, 87-105. doi:10.1016/j.agee.2013.10.010 Crossref ● Google Scholar | ||||
| ||||
Patinha, C., Reis, A. P., Dias, A. C., Abduljelil, A. A., Noack, Y., Robert, S., Cave, M., & Ferreira da Silva, E. (2015). The mobility and human oral bioaccessibility of Zn and Pb in urban dust of Estarreja (N Portugal). Environmental Geochemistry and Health, 37(1), 115-131. doi:10.1007/s10653-014-9634-3 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Phiri, D., Morgenroth, J., & Xu, C. (2019). Long-term land cover change in Zambia: an assessment of driving factors. Science of The Total Environment, 697, 134206. doi:10.1016/j.scitotenv.2019.134206 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Prikner, P., Lachnit, F., & Dvořák, F. (2004). A new soil core sampler for determination of bulk density in soil profile. Plant, Soil and Environment, 50(6), 250-256. doi:10.17221/4029-pse Crossref ● Google Scholar | ||||
| ||||
Ranieri, P., Sponsel, N., Kizer, J., Rojas-Pierce, M., Hernández, R., Gatiboni, L., Grunden, A., & Stapelmann, K. (2021). Plasma agriculture: review from the perspective of the plant and its ecosystem. Plasma Processes and Polymers, 18(1), 2000162. doi:10.1002/ppap.202000162 Crossref ● Google Scholar | ||||
| ||||
Ruheza, S., Tryphone, G. M., & Khamis, Z. K. (2012). The impact of land tenure and degradation on adoption of agroforestry in Uluguru mountains forest, Tanzania. Journal of Environmental Science and Water Resources, 1(10), 236-242. Google Scholar | ||||
| ||||
Schroth, G., Oliver, R., Balle, P., Gnahoua, G. M., Kanchanakanti, N., Leduc, B., Mallet, B., Peltier, R., & Zech, W. (1995). Alley cropping with Gliricidia sepium on a high base status soil following forest clearing: effects on soil conditions, plant nutrition, and crop yields. Agroforestry Systems, 32(3), 261-276. doi:10.1007/BF00711714 Crossref ● Google Scholar | ||||
| ||||
Sellan, G., Thompson, J., Majalap, N., Robert, R., & Brearley, F. Q. (2020). Impact of soil nitrogen availability and pH on tropical heath forest organic matter decomposition and decomposer activity. Pedobiologia, 80, 150645. doi:10.1016/j.pedobi.2020.150645 Crossref ● Google Scholar | ||||
| ||||
Senarathne, S. H. S., & Udumann, S. S. (2022). Effect of selected leguminous cover crop species on the productivity of coconut cultivated in reddish brown latosolic soils in Sri Lanka. CORD, 37, 33-44. doi:10.37833/cord.v37i.435 Crossref ● Google Scholar | ||||
| ||||
Sithole, N., Tsvuura, Z., Kirkman, K., & Magadlela, A. (2021). Nitrogen source preference and growth carbon costs of Leucaena leucocephala (Lam.) de Wit saplings in South African grassland soils. Plants, 10(11), 2242. doi:10.3390/plants10112242 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Tadesse, M., Simane, B., Abera, W., Tamene, L., Ambaw, G., Recha, J. W., Mekonnen, K., Demeke, G., Nigussie, A., & Solomon, D. (2021). The effect of climate-smart agriculture on soil fertility, crop yield, and soil carbon in southern Ethiopia. Sustainability, 13(8), 4515. doi:10.3390/su13084515 Crossref ● Google Scholar | ||||
| ||||
Ukaegbu, E. P., & Nnawuihe, C. O. (2020). Assessing landuse effect on soil properties in the Coastal plains sand, Imo State, Nigeria. African Journal of Agricultural Research, 16(6), 850-859. doi:10.5897/ajar2018.13809 Crossref ● Google Scholar | ||||
| ||||
Vroegindewey, R., Richardson, R. B., Ortega, D. L., & Theriault, V. (2019). Feed the future innovation lab for food security policy. Research Paper 147, 1-30. Retrieved from https://pdf.usaid.gov/pdf_docs/PA00W7WC.pdf Google Scholar | ||||
| ||||
Walmsley, A., Vachová, P., & Hlava, J. (2019). Tree species identity governs the soil macrofauna community composition and soil development at reclaimed post-mining sites on calcium-rich clays. European Journal of Forest Research, 138(4), 753-761. doi:10.1007/s10342-019-01202-5 Crossref ● Google Scholar | ||||
| ||||
ZSA. (2022). 2022 Census of population and housing preliminary report Republic of Zambia. Retrieved from www.zamstats.gov.zm |
Refbacks
Copyright (c) 2023 Petros Chavula, Chizumba Shepande, Samuel Feyissa
This work is licensed under a Creative Commons Attribution 4.0 International License.