COMPARATIVE ANALYSIS OF EFFECTS OF CLIMATE-SMART AGRICULTURE PRACTICES AND CONVENTIONAL AGRICULTURE ON SELECTED SOIL PHYSICOCHEMICAL PROPERTIES IN NYIMBA DISTRICT, ZAMBIA

Petros Chavula, Chizumba Shepande, Samuel Feyissa


DOI: http://dx.doi.org/10.30970/sbi.1704.744

Abstract


Background. Many smallholder farmers in the developing world live in adverse poverty and rely on agriculture as their primary source of income and household food. In Zambia, agriculture production is the main activity for people in rural areas of the country. The study evaluated the effects of climate-smart practices: Gliricidia sepium alley cropping, conservation agriculture basin, ripping, and conventional agriculture cropland on selected physicochemical properties of soil among smallholder farmers’ croplands in Nyimba district, Zambia.
Materials and Methods. Cropland under conservation agriculture basin, ripping, agroforestry gliricidia alleyed cropping, and conventional agriculture cropland hosting the practices for more than five years were considered for soil sample collection. Thirty (30) composite soil samples were collected: gliricidia alley cropping (n = 6), conservation agriculture ripping (n = 6), basin (n = 6), conventional agriculture one (n = 6), and conventional agriculture two (n = 6) following a zigzag pattern on soil surface depth of 0–30 cm. The collected composite soil samples were analyzed at the University of Zambia Soil Science Laboratory. Soil laboratory results were analyzed with Minitab Statistical Software version 17 for mean squares, standard deviations, and Tukey’s LSD.
Results and Discussion. The study revealed significant effects (p <0.05) of gliricidia alley cropping, conservation agriculture ripping, and basin on soil bulk density, porosity, power of hydrogen (pH), cation exchange capacity, available phosphorus, total nitrogen, exchangeable bases sodium, calcium, and potassium. Exchangeable base magnesium was recorded as insignificant across the considered practices off-course with minimal mean variations with conventional agriculture cropland.
Conclusion. The study shows that implementing climate-smart agriculture practices has the potential to improve crop productivity per hectare through reclaiming and amending depleted soil physicochemical properties in a mid and long run. This also indicates the importance of climate-smart agricultural practices implementation among smallholder farmers’ cropping fields.


Keywords


agriculture practices, conservation basins, crop yield, depleted soils, households, ripping

Full Text:

PDF

References


Ajayi, O. C., Akinnifesi, F. K., Sileshi, G., & Chakeredza, S. (2007). Adoption of renewable soil fertility replenishment technologies in the southern African region: lessons learned and the way forward. Natural Resources Forum, 31(4), 306-317. doi:10.1111/j.1477-8947.2007.00163.x
CrossrefGoogle Scholar

Ajayi, O. C., Masi, C., Masi, C., Katanga, R., & Kabwe, G. (2006). Typology and characteristics of farmers testing agroforestry-based soil fertility management technology in Eastern Zambia. Zambian Journal of Agricultural Science, 8(2), 1-5.
Google Scholar

Alamu, E. O., Adesokan, M., Fawole, S., Maziya-Dixon, B., Mehreteab, T., & Chikoye, D. (2023). Gliricidia sepium (Jacq.) Walp applications for enhancing soil fertility and crop nutritional qualities: a review. Forests, 14(3), 635. doi:10.3390/f14030635
CrossrefGoogle Scholar

Alemaw, B. F., & Matondo, J. I. (2020). Overview of climate variability and change in Africa: perspectives and experiences. In J. I. Matondo, B. F. Alemaw, W. J. P. Sandwidi (Eds.), Climate variability and change in Africa: perspectives, experiences and sustainability (pp. 3-7). Springer, Cham. doi:10.1007/978-3-030-31543-6_1
CrossrefGoogle Scholar

Alfani, F., Arslan, A., McCarthy, N., Cavatassi, R., & Sitko, N. (2021). Climate resilience in rural Zambia: evaluating farmers' response to El Niño-induced drought. Environment and Development Economics, 26(5-6), 582-604. doi:10.1017/s1355770x21000097
CrossrefGoogle Scholar

Austrheim, G., Speed, J. D. M., Martinsen, V., Mulder, J., & Mysterud, A. (2014). Experimental effects of herbivore density on above-ground plant biomass in an alpine grassland ecosystem. Arctic, Antarctic, and Alpine Research, 46(3), 535-541. doi:10.1657/1938-4246-46.3.535
CrossrefGoogle Scholar

Azuka, C., & Obi, M. (2013). Structural stability and hydraulic conductivity of Nkpologu sandy loam soil under different land covers in Southeastern Nigeria. Agro-Science, 11(1), 1-9. doi:10.4314/as.v11i1.1
CrossrefGoogle Scholar

Beedy, T. L., Snapp, S. S., Akinnifesi, F. K., & Sileshi, G. W. (2010). Impact of Gliricidia sepium intercropping on soil organic matter fractions in a maize-based cropping system. Agriculture, Ecosystems & Environment, 138(3-4), 139-146. doi:10.1016/j.agee.2010.04.008
CrossrefGoogle Scholar

Belay, Z. (2018). Characterization of soil fertility for wheat production at Shiebench District in Bench Maji Zone, Southern Ethiopia. Agricultural Research & Technology: Open Access Journal, 15(4). doi:10.19080/artoaj.2018.15.555965
CrossrefGoogle Scholar

Bohoussou, Y. N., Kou, Y.-H., Yu, W.-B., Lin, B., Virk, A. L., Zhao, X., Dang, Y. P., & Zhang, H.-L. (2022). Impacts of the components of conservation agriculture on soil organic carbon and total nitrogen storage: a global meta-analysis. Science of The Total Environment, 842, 156822. doi:10.1016/j.scitotenv.2022.156822
CrossrefPubMedGoogle Scholar

Chavula, P. (2022a). Inclusion of agroforestry on agricultural farming systems: revisited. International Journal of Academic and Applied Research, 6(11), 270-275.
Google Scholar

Chavula, P. (2022b). Climate-smart agriculture for Zambia's smallholder farmers: review paper. International Journal of Ground Sediment & Water, 15 939-956. doi:10.5281/zenodo.5816757
CrossrefGoogle Scholar

Chavula, P., Teressa, B., Ntezimana, M. G., Umer, Y., Muleba, M., & Shentema, S. (2022). An overview of Zambia's agricultural extension and advisory system. International Journal of Academic and Applied Research, 6(10), 209-214.
Google Scholar

CIAT, World Bank. (2017a). Climate-Smart Agriculture in Zambia. Lusaka, Zambia: World Bank and CIAT Publication. Retrieved from https://ccafs.cgiar.org/publications/climate-smart-agriculture-zambia#.WwG9JUgvw2w
Google Scholar

CIAT, World Bank. (2017b). Climate-Smart Agriculture in Zambia. CSA Country Profiles for Africa Series. Retrieved from https://climateknowledgeportal.worldbank.org/sites/default/files/2019-06/CSA%20_Profile_Zambia.pdf
Google Scholar

Dissanayake, D. K. R. P. L., Udumann, S. S., Dissanayaka, D. M. N. S., Nuwarapaksha, T. D., & Atapattu, A. J. (2023). Effect of biochar application rate on macronutrient retention and leaching in two coconut growing soils. Technology in Agronomy, 3(1). doi:10.48130/tia-2023-0005
CrossrefGoogle Scholar

Doumbia, S., Dembele, S. G., Sissoko, F., Samake, O., Sousa, F., Harun, C., Adamtey, N., & Fliessbach, A. (2020). Alley cropped Gliricidia sepium (Jacq.) Kunth ex. Walp. enhance soil fertility and yields of cotton, maize and sorghum in Mali. International Journal of Food Science and Agriculture, 4(3), 301-313. doi:10.26855/ijfsa.2020.09.010
CrossrefGoogle Scholar

Du, Y., Cui, B., zhang, Q., Wang, Z., Sun, J., & Niu, W. (2020). Effects of manure fertilizer on crop yield and soil properties in China: a meta-analysis. Catena, 193, 104617. doi:10.1016/j.catena.2020.104617
CrossrefGoogle Scholar

FANRPAN. (2017). FANRPAN policy brief climate-smart agriculture in Namibia. 1-8. Retrieved from https://www.jstor.org/stable/resrep16456

Fauziah, C. I., Jamilah, I., & Syed Omar, S. R. (1997). An evaluation of cation exchange capacity methods for acid tropical soils. Pertanika Journal of Tropical Agricultural Science, 20(2-3), 113-119.
Google Scholar

Ferdush, J., Meftahul Karim, M., Jahan Noor, I., Afrin Sadia Afrin Ju, S., Ahamed, T., & Sataya Ranjan Saha, D. (2019). Impact of alley cropping system on soil fertility. International Journal of Advanced Geosciences, 7(2), 173. doi:10.14419/ijag.v7i2.29942
CrossrefGoogle Scholar

Franzel, S., Cooper, P., & Denning, G. L. (2001). Scaling up the benefits of agroforestry research: lessons learned and research challenges. Development in Practice, 11(4), 524-534. doi:10.1080/09614520120066792
CrossrefGoogle Scholar

Ghazali, M. F., Wikantika, K., Harto, A. B., & Kondoh, A. (2020). Generating soil salinity, soil moisture, soil pH from satellite imagery and its analysis. Information Processing in Agriculture, 7(2), 294-306. doi:10.1016/j.inpa.2019.08.003
CrossrefGoogle Scholar

Goswami, S. B., Mondal, R., & Mandi, S. K. (2019). Crop residue management options in rice-rice system: a review. Archives of Agronomy and Soil Science, 66(9), 1218-1234. doi:1080/03650340.2019.1661994
CrossrefGoogle Scholar

Gumbo, D. J., Mumba, K. Y., Kaliwile, M. M., Moombe, K. B., & Mfuni, T. I. (2016). Agrarian changes in the Nyimba District of Zambia. Agrarian Change in Tropical Landscapes, 234-268.
Google Scholar

Hazelton, P., & Murphy, B. (2016). Interpreting soil test results: what do all the numbers mean? CSIRO publishing, Clayton. doi:10.1071/9781486303977
CrossrefGoogle Scholar

Henry, N., Elias, K., Thomson, K., & Benson, C. (2020). Effects of soil organic resource management practices on crop productivity and household income in Chipata district of Zambia. Journal of Agricultural Extension and Rural Development, 14(4), 98-109. doi:10.5897/jaerd2020.1181
CrossrefGoogle Scholar

Horta, M. C., & Torrent, J. (2007). The Olsen P method as an agronomic and environmental test for predicting phosphate release from acid soils. Nutrient Cycling in Agroecosystems, 77(3), 283-292. doi:10.1007/s10705-006-9066-2
CrossrefGoogle Scholar

Hussein, K., & Suttie, D. (2016). Rural-urban linkages and food systems in sub-Saharan Africa. IFAD Research Series: IFAD.
Google Scholar

Ivezić, V., Lorenz, K., & Lal, R. (2022). Soil organic carbon in alley cropping systems: a meta-analysis. Sustainability, 14(3), 1296. doi:10.3390/su14031296
CrossrefGoogle Scholar

Kabwe, G., Bigsby, H., & Cullen, R. (2016). Why is adoption of agroforestry stymied in Zambia? Perspectives from the ground-up. African Journal of Agricultural Research, 11(46), 4704-4717. doi:10.5897/ajar2016.10952
CrossrefGoogle Scholar

Kan, Z., Chen, Z., Wei, Y., Virk, A. L., Bohoussou, Y. N., Lal, R., Zhao, X., & Zhang, H. (2022). Contribution of wheat and maize to soil organic carbon in a wheat-maize cropping system: a field and laboratory study. Journal of Applied Ecology, 59(11), 2716-2729. doi:10.1111/1365-2664.14265
CrossrefGoogle Scholar

Karmaoui, A., Barrick, K., Reed, M., & Baig, M. B. (Eds.). (2021). Impacts of climate change on agriculture and aquaculture. IGI Global. doi:10.4018/978-1-7998-3343-7
CrossrefGoogle Scholar

Karouach, F., Ben Bakrim, W., Ezzariai, A., Sobeh, M., Kibret, M., Yasri, A., Hafidi, M., & Kouisni, L. (2022). A comprehensive evaluation of the existing approaches for controlling and managing the proliferation of water hyacinth (Eichhornia crassipes): review. Frontiers in Environmental Science, 9, 767871. doi:10.3389/fenvs.2021.767871
CrossrefGoogle Scholar

Kassam, A., Derpsch, R., & Friedrich, T. (2020). Development of conservation agriculture systems globally. In A. Kassam (Ed.), Advances in conservation agriculture: systems and science (pp. 31-86). Cambridge, UK: Burleigh Dodds. doi:10.19103/as.2019.0048.02
CrossrefGoogle Scholar

Kumar, A., Hasanain, M., Singh, R., Verma, G., Kumar, D., & Mishra, R. (2020). Role of agroforestry measures for soil and water conservation. Food and Scientific Reports, 1, 49-52.
Google Scholar

Kumari, D., Kumar, S., Parveen, H., Pradhan, A. K., Kumar, S., & Kumari, R. (2019). Long-term impact of conservation agriculture on chemical properties of soil. International Journal of Current Microbiology and Applied Sciences, 8(07), 2144-2153. doi:10.20546/ijcmas.2019.807.258
CrossrefGoogle Scholar

Le Treut, H. R., Somerville, I., Cubasch, Y., Ding, C., Mauritzen, A., Mokssit, Peterson, T., & Prather, M. (2007). Historical overview of climate change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (Eds.), Climate change 2007: the physical science basis (pp. 95-127). Cambridge, UK: Cambridge University Press. Retrieved from https://www.ipcc.ch/site/assets/uploads/2018/03/ar4-wg1-chapter1.pdf
Google Scholar

Lejissa, L. T., Wakjira, F. S., & Tanga, A. A. (2022). Effects of conservation agriculture and conventional tillage on the soil physicochemical properties and household income in Southern Ethiopia. International Journal of Agronomy, 2022, 1-13. doi:10.1155/2022/1224193
Crossref Google Scholar

Lufumpa, L. C. (1991). An economic analysis of agroforestry farming systems in Zambia: application of risk programming and risk-free modelling techniques. Iowa State University.
Google Scholar

Makate, C. (2019). Local institutions and indigenous knowledge in adoption and scaling of climate-smart agricultural innovations among sub-Saharan smallholder farmers. International Journal of Climate Change Strategies and Management, 12(2), 270-287. doi:10.1108/ijccsm-07-2018-0055
CrossrefGoogle Scholar

Makumba, W., Janssen, B., Oenema, O., Akinnifesi, F. K., Mweta, D., & Kwesiga, F. (2006). The long-term effects of a gliricidia-maize intercropping system in Southern Malawi, on gliricidia and maize yields, and soil properties. Agriculture, Ecosystems & Environment, 116(1-2), 85-92. doi:10.1016/j.agee.2006.03.012
CrossrefGoogle Scholar

Martinsen, V., Shitumbanuma, V., Mulder, J., Ritz, C., & Cornelissen, G. (2017). Effects of hand-hoe tilled conservation farming on soil quality and carbon stocks under on-farm conditions in Zambia. Agriculture, Ecosystems & Environment, 241, 168-178. doi:10.1016/j.agee.2017.03.010
CrossrefGoogle Scholar

Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., & Waterfield, T. (Eds.). (2018). Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate povert. Cambridge, UK and New York, NY, USA: Cambridge University Press. Retrieved from https://www.ipcc.ch/site/assets/uploads/sites/2/2022/06/SR15_Full_Report_HR.pdf
Google Scholar

Mhete, M., Eze, P. N., Rahube, T. O., & Akinyemi, F. O. (2020). Soil properties influence bacterial abundance and diversity under different land-use regimes in semi-arid environments. Scientific African, 7, e00246. doi:10.1016/j.sciaf.2019.e00246
CrossrefGoogle Scholar

Mizik, T. (2021). Climate-smart agriculture on small-scale farms: a systematic literature review. Agronomy, 11(6), 1096. doi:10.3390/agronomy11061096
CrossrefGoogle Scholar

Motsara, M. R., & Roy, R. N. (2008). Guide to laboratory establishment for plant nutrient analysis (19): Food and Agriculture Organization of the United Nations Rome. FAO Viale delle Terme di Caracalla, 153.
Google Scholar

Muluneh, M. G. (2021). Impact of climate change on biodiversity and food security: a global perspective - a review article. Agriculture & Food Security, 10(1). doi:10.1186/s40066-021-00318-5
CrossrefGoogle Scholar

Murphy, B. W. (2014). Soil organic matter and soil function - review of the literature and underlying data. Canberra, Australia: Department of the Environment. Retrieved from https://ecaf.org/wp-content/uploads/2021/02/Soil_Organic_Matter-Brian_Murphy.pdf
Google Scholar

Mwanamwenge, M., & Cook, S. (2019). Beyond maize: exploring agricultural diversification in Zambia from different perspectives. Lusaka, Zambia: Sustainable Diets for All. Hivos and IIED. Retrieved from https://www.iied.org/sites/default/files/pdfs/migrate/G04422.pdf
Google Scholar

Naab, J. B., Mahama, G. Y., Yahaya, I., & Prasad, P. V. V. (2017). Conservation agriculture improves soil quality, crop yield, and incomes of smallholder farmers in north western Ghana. Frontiers in Plant Science, 8, 996. doi:10.3389/fpls.2017.00996
CrossrefPubMedPMCGoogle Scholar

Neina, D., & Agyarko-Mintah, E. (2022). Duration of cultivation has varied impacts on soil charge properties in different agro-ecological zones of Ghana. Land, 11(10), 1633. doi:10.3390/land11101633
CrossrefGoogle Scholar

Nelson, S., Chaudhury, M., Tranberg, H., Lambrou, Y., Tapio-Bistrom, M. L., & Kristjanson, P. M. (2011). Training guide. Gender and сlimate change research in agriculture and food security for rural development. Copenhagen, Denmark: CGIAR Research program on Climate Change, Agriculture and Food Security (CCAFS)
Google Scholar

Ngombe, J., Kalinda, T., Tembo, G., & Kuntashula, E. (2014). Econometric analysis of the factors that affect adoption of conservation farming practices by smallholder farmers in Zambia. Journal of Sustainable Development, 7(4), 124-138. doi:10.5539/jsd.v7n4p124
CrossrefGoogle Scholar

Odubote, I. K., & Ajayi, O. C. (2020a). Scaling up climate-smart agricultural (CSA) solutions for smallholder cereals and livestock farmers in Zambia. In W. Leal Filho (Ed.), Handbook of climate change resilience (pp. 1115-1136). Springer, Cham. doi:10.1007/978-3-319-93336-8_109
CrossrefGoogle Scholar

Oelbermann, M., Voroney, R. P., & Kass, D. C. L. (2004). Gliricidia sepium carbon inputs and soil carbon pools in a Costa Rican alley cropping system. International Journal of Agricultural Sustainability, 2(1), 33-42. doi:10.1080/14735903.2004.9684565
CrossrefGoogle Scholar

Okonkwo, C., Mbagwu, J., & Egwu, S. (2009). Changes in soil properties under alley cropping system of three leguminous crops. Agro-Science, 8(1), 60-65. doi:10.4314/as.v8i1.44116
CrossrefGoogle Scholar

Page, K. L., Dang, Y. P., & Dalal, R. C. (2020). The ability of conservation agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield. Frontiers in Sustainable Food Systems, 4, 31. doi:10.3389/fsufs.2020.00031
CrossrefGoogle Scholar

Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere, L., & Grace, P. (2014). Conservation agriculture and ecosystem services: an overview. Agriculture, Ecosystems & Environment, 187, 87-105. doi:10.1016/j.agee.2013.10.010
CrossrefGoogle Scholar

Patinha, C., Reis, A. P., Dias, A. C., Abduljelil, A. A., Noack, Y., Robert, S., Cave, M., & Ferreira da Silva, E. (2015). The mobility and human oral bioaccessibility of Zn and Pb in urban dust of Estarreja (N Portugal). Environmental Geochemistry and Health, 37(1), 115-131. doi:10.1007/s10653-014-9634-3
CrossrefPubMedGoogle Scholar

Phiri, D., Morgenroth, J., & Xu, C. (2019). Long-term land cover change in Zambia: an assessment of driving factors. Science of The Total Environment, 697, 134206. doi:10.1016/j.scitotenv.2019.134206
CrossrefPubMedGoogle Scholar

Prikner, P., Lachnit, F., & Dvořák, F. (2004). A new soil core sampler for determination of bulk density in soil profile. Plant, Soil and Environment, 50(6), 250-256. doi:10.17221/4029-pse
CrossrefGoogle Scholar

Ranieri, P., Sponsel, N., Kizer, J., Rojas-Pierce, M., Hernández, R., Gatiboni, L., Grunden, A., & Stapelmann, K. (2021). Plasma agriculture: review from the perspective of the plant and its ecosystem. Plasma Processes and Polymers, 18(1), 2000162. doi:10.1002/ppap.202000162
CrossrefGoogle Scholar

Ruheza, S., Tryphone, G. M., & Khamis, Z. K. (2012). The impact of land tenure and degradation on adoption of agroforestry in Uluguru mountains forest, Tanzania. Journal of Environmental Science and Water Resources, 1(10), 236-242.
Google Scholar

Schroth, G., Oliver, R., Balle, P., Gnahoua, G. M., Kanchanakanti, N., Leduc, B., Mallet, B., Peltier, R., & Zech, W. (1995). Alley cropping with Gliricidia sepium on a high base status soil following forest clearing: effects on soil conditions, plant nutrition, and crop yields. Agroforestry Systems, 32(3), 261-276. doi:10.1007/BF00711714
CrossrefGoogle Scholar

Sellan, G., Thompson, J., Majalap, N., Robert, R., & Brearley, F. Q. (2020). Impact of soil nitrogen availability and pH on tropical heath forest organic matter decomposition and decomposer activity. Pedobiologia, 80, 150645. doi:10.1016/j.pedobi.2020.150645
CrossrefGoogle Scholar

Senarathne, S. H. S., & Udumann, S. S. (2022). Effect of selected leguminous cover crop species on the productivity of coconut cultivated in reddish brown latosolic soils in Sri Lanka. CORD, 37, 33-44. doi:10.37833/cord.v37i.435
CrossrefGoogle Scholar

Sithole, N., Tsvuura, Z., Kirkman, K., & Magadlela, A. (2021). Nitrogen source preference and growth carbon costs of Leucaena leucocephala (Lam.) de Wit saplings in South African grassland soils. Plants, 10(11), 2242. doi:10.3390/plants10112242
CrossrefPubMedPMCGoogle Scholar

Tadesse, M., Simane, B., Abera, W., Tamene, L., Ambaw, G., Recha, J. W., Mekonnen, K., Demeke, G., Nigussie, A., & Solomon, D. (2021). The effect of climate-smart agriculture on soil fertility, crop yield, and soil carbon in southern Ethiopia. Sustainability, 13(8), 4515. doi:10.3390/su13084515
CrossrefGoogle Scholar

Ukaegbu, E. P., & Nnawuihe, C. O. (2020). Assessing landuse effect on soil properties in the Coastal plains sand, Imo State, Nigeria. African Journal of Agricultural Research, 16(6), 850-859. doi:10.5897/ajar2018.13809
CrossrefGoogle Scholar

Vroegindewey, R., Richardson, R. B., Ortega, D. L., & Theriault, V. (2019). Feed the future innovation lab for food security policy. Research Paper 147, 1-30. Retrieved from https://pdf.usaid.gov/pdf_docs/PA00W7WC.pdf
Google Scholar

Walmsley, A., Vachová, P., & Hlava, J. (2019). Tree species identity governs the soil macrofauna community composition and soil development at reclaimed post-mining sites on calcium-rich clays. European Journal of Forest Research, 138(4), 753-761. doi:10.1007/s10342-019-01202-5
CrossrefGoogle Scholar

ZSA. (2022). 2022 Census of population and housing preliminary report Republic of Zambia. Retrieved from www.zamstats.gov.zm


Refbacks



Copyright (c) 2023 Petros Chavula, Chizumba Shepande, Samuel Feyissa

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.