PARTICIPATION OF РІ-3′-KINASE SIGNALING PATHWAY IN DETERMINING STRUCTURAL AND FUNCTIONAL STATE OF LEUKOCYTE MEMBRANES UNDER TYPE 1 DIABETES MELLITUS
DOI: http://dx.doi.org/10.30970/sbi.0501.138
Abstract
Leukocytes aggregation ability from blood of healthy donors and type 1diabetes mellitus patients and molecular mechanisms of signal transduction through glycoprotein receptors involving phosphatidylinositol-3′-kinase, which influence polymerization of actin cytoskeleton of the studied cells were studies. This is a key problem in ensuring the leukocytes migration ability.
Keywords
Full Text:
PDF (Українська)References
1. Aiba Y., Kameyama M., Yamazaki T. et al. Regulation of B-cell development by BCAP and CD19 through their binding to phosphoinositide-3′-kinase. Blood, 2008; 111(3): 1497-1503. | |
| |
2. Angata T., Varki A. Chemical diversity in the sialic acids and related α-keto acids: An evolutionary perspective. Chem. Rev, 2002; 102: 439-470. | |
| |
3. Arnaiz-Villena A., Timon M., Corell A. et al. Primary immunodeficiency caused by mutations in the gene encoding the CD3-γ subunit of the T lymphocyte receptor. N. Engl. J. Med, 1992; 327: 529-33. | |
| |
4. Chang Y., Chan Y., Jackson D. et al. The glycosaminoglycan-binding domain of decoy receptor 3 is essential for induction of monocyte adhesion. J. Immunol, 2006; 176(1): 173-180. | |
| |
5. Clevers H., Dunlap S., Terhorst C. The transmembrane orientation of the ε chain of the TcR/CD3 complex. European J. of Immunology, 2005; 18(5): 705-710. | |
| |
6. Dodd R.B., Drickamer K. Lectin-like proteins in model organisms: Implications for evolution of carbohydrate-binding activity. Glycobiology, 2001; 11: 71R-79R. | |
| |
7. Frampton M., Stewart J., Oberdorster G. et al. Inhalation of ultrafine particles alters blood leukocyte expression of adhesion molecules in humans. Environ. Health. Perspect, 2006; 114: 51-58. | |
| |
8. Harduin-Lepers A., Mollicone R., Delannoy P., Oriol R. The animal sialyltransferases and sialyltransferase-related genes: A phylogenetic approach. Glycobiology, 2005; 15: 805-817. | |
| |
9. Kapeller R., Chakrabarti R., Cantley L. et al. Internalization of activated platelet-derived growth factor receptor-phosphatidylinositol-3′-kinase complexes: potential interactions with the microtubule cytoskeleton. Mol. Cell Biol, 1993; 13: 6052-6063. | |
| |
10. Kopff M., Zakrzewska I., Klem I. Acta Biochimica Polonica, 1997; 44(2): 359-362. | |
| |
11. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970; 277: 680-5. | |
| |
12. Nakata N., Furukawa K., Greenwalt D. et al. Structural study of the sugar chains of CD36 purified from bovine mammary epithelial cells: occurrence of novel hybrid-type sugar chains containing the Neu5Ac alpha 2→6GalNAc beta 1→4GlcNAc and the Man alpha 1→2Man alpha 1→3Man alpha 1→6Man groups. Biochemistry, 1993; 32(16): 4369-83. | |
| |
13. Okada T., Sakuma L., Fukui Y. et al. Blockage of chemotactic peptide-induced stimulation of neutrophils by wortmannin as a result of selective inhibition of phosphatidylinositol-3′-kinase. J. Biol. Chem, 1994; 269: 3563-3567. | |
| |
14. Ptasznik A., Prossnitz E.R., Yoshikawa D. et al. A tyrosine kinase signaling pathway accounts for the majority of phosphatidylinositol 3,4,5-trisphosphate formation in chemoattractant-stimulated human neutrophils. J. Biol. Chem, 1996; 271: 25, 204-25, 207. | |
| |
15. Rudiger H., Gabius H.J. Plant lectins: Occurrence, biochemistry, functions and applications. Glycoconj. J, 2001; 18: 589-613. | |
| |
16. Schauer R. Sialic acids: Fascinating sugars in higher animals and man. Zoology, 2004; 107: 49-64. | |
| |
17. Sharon N., Lis H. History of lectins: From hemagglutinins to biological recognition molecules. Glycobiology, 2004; 14: 53R-62R. | |
| |
18. Soudais C., de Villartay J.P., Le Deist F. et al. Independent mutations of the human CD3-ε gene resulting in a T cell receptor/CD3 complex immunodeficiency. Nat. Genet, 1993; 3: 77-81. | |
| |
19. Stephens L., Jackson T., Hawkins P.T. Synthesis of phosphatidylinositol 3,4,5-trisphosphate in permeabilized neutrophils regulated by receptors and G-proteins. J. Biol. Chem, 1993; 268: 17, 162-17, 172. | |
| |
20. Sybirna N. A., Barska M. L. Neutrophiles functional state under insulin-dependent diabetes mellitus. Laboratory Diagnostics, 2003; 2: 33-37. (In Ukrainian) | |
| |
21. Tavares S., Stopa E., Robbins S. Differential Distribution of the JC Virus Receptor-Type Sialic Acid in Normal Human Tissues. Am. J. Pathol, 2004; 164: 419-28. | |
| |
22. Timoshenko A.V., Cherenkevich S.N. Induced aggregation of cells. Ukr. Biochem. J, 1991; 63(6): 3-14. (In Russian) | |
| |
23. Timoshenko A.V., Cherenkevich S.N. H2O2 generation and human neutrophil aggregation as affected by lectins. Gematol. Transfuziol, 1995; 40(4): 32-5. | |
| |
24. Traynor-Kaplan A.E., Thompson B.L., Harris A.L. et al. Transient increase in phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol trisphosphate during activation of human neutrophils. J. Biol. Chem, 1989; 264: 15, 668-15, 673. | |
| |
25. Varki A. Glycan-based interactions involving vertebrate sialic acid-recognizing proteins. Nature, 2007; 446: 1023-1029. | |
| |
26. Vlahos C.J., Matter W.F. Signal transduction in neutrophil activation: phosphatidylinositol- 3′-kinase is stimulated without tyrosine phosphorylation. FEBS Lett, 1992; 309: 242-248. | |
| |
27. Wengui Yu., Jessica Cassara, Peter F. Weller. Phosphatidylinositide-3′-kinase localizes to cytoplasmic lipid bodies in human polymorphonuclear leukocytes and other myeloid-derived cells. Blood, 2000, 95(3): 1078-1085. | |
| |
28. Сибірна Н.О., Барська М.Л., Лаповець Л.Є. Деякі показники клітинного та гуморального імунітету у хворих на цукровий діабет 1-го типу. Лабораторна діагностика, 2003; 4: 47-50. |
Refbacks
- There are currently no refbacks.
Copyright (c) 2011 Studia biologica
This work is licensed under a Creative Commons Attribution 4.0 International License.