EFFECT OF HYPOXIA, GLUTAMINE AND GLUCOSE DEPRIVATION ON THE EXPRESSION OF mRNA OF THE RETINOBLASTOMA BINDING PROTEINS IN GLIOMA CELLS

D. O. Minchenko, L. L. Karbovskyi, S. V. Danylovsky, M. Moenner, O. H. Minchenko


DOI: http://dx.doi.org/10.30970/sbi.0501.136

Abstract


Hypoxia and ischemia, as well as endoplasmic reticulum stress, are principal factors which are necessary for tumor neovascularization and growth. We have studied the effect of blocking the endoplasmic reticulum – nuclei-1, the main signaling enzyme of stressing of the endoplasmic reticulum, on the expression of several retinoblastoma-related genes which play a significant role in the control of cell cycling, proliferation and apoptosis in glioma cell line U87. We have also studied the effect of hypoxia and ischemic conditions (glucose or glutamine deprivation) on the expression of these genes in control glioma cells and in subline of these cells with suppressed function of endoplasmic reticulum – nuclei-1 sensing and signaling enzyme. It was shown that blocking of endoplasmic reticulum – nuclei-1 signaling enzyme leads to increase in the expression levels of several retinoblastoma binding protein (RBBP) genes: RBBP2H1 (RDM5B), RBBP4 and RBBP8. Moreover, the expression levels of most of studied genes are significantly decreased under glucose or glutamine deprivation conditions both in control and endoplasmic reticulum – nuclei-1-deficient glioma cells. However, the expression levels of RBBP2H1 and RBBP2 (RDM5A) mRNA are increased in glutamine deprivation conditions in both tested cell types. The expression levels of RBBP4, RBBP7 and RBBP8 are decreased but such levels of RBBP2 and RBBP2H1 are increased in both tested cell types under the hypoxic conditions. Thus, the expression of most retinoblastoma-related genes is dependent on the endoplasmic reticulum – nuclei-1 signaling enzyme function in normal, hypoxic and ischaemic conditions.


Keywords


mRNA expression, RBBP4, RBBP7, RBBP8, RBBP2, RBBP2H1, glioma cells, endoplasmic reticulum – nuclei-1, hypoxia, glucose and glutamine deprivation

Full Text:

PDF

References


1. Aragón T., van Anken E., Pincus D. et al. Messenger RNA targeting to endoplasmic reticulum stress signalling sites. Nature, 2009; 457 (7230): 736-740.
https://doi.org/10.1038/nature07641
PMid:19079237 PMCid:PMC2768538

2. Bi M., Naczki C., Koritzinsky M. et al. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO Journal, 2005; 24(19): 3470-3481.
https://doi.org/10.1038/sj.emboj.7600777
PMid:16148948 PMCid:PMC1276162

3. Blais J.D., Filipenko V., Bi M. et al. Transcription factor 4 is translationally regulated by hypoxic stress. Molecular and Cellular Biology, 2004; 24: 7469-7482.
https://doi.org/10.1128/MCB.24.17.7469-7482.2004
PMid:15314157 PMCid:PMC506979

4. Fels D.R., Koumenis C. The PERK/eIF2a/ATF4 module of the UPR in hypoxia resistance and tumor growth. Cancer Biology & Therapy, 2006; 5(7): 723-728.
https://doi.org/10.4161/cbt.5.7.2967
PMid:16861899

5. Luo D., He Y., Zhang H., Yu L. et al. AIP1 Is Critical in Transducing IRE1-mediated Endoplasmic Reticulum Stress Response. The Journal of Biological Chemistry, 2010; 283 (18): 11905 -11912.
https://doi.org/10.1074/jbc.M710557200
PMid:18281285 PMCid:PMC2335342

6. Korennykh A.V., Egea P.F., Korostelev A.A. et al. The unfolded protein response signals through high-order assembly of Ire1. Nature, 2009; 457(7230): 687-693.
https://doi.org/10.1038/nature07661
PMid:19079236 PMCid:PMC2846394

7. Romero-Ramirez L., Cao H., Nelson D. et al. XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Research, 2004; 64: 5943-5947.
https://doi.org/10.1158/0008-5472.CAN-04-1606
PMid:15342372

8. Lin J.H., Li H., Yasumura D. et al. IRE1 signaling affects cell fate during the unfolded protein response. Science, 2007; 318: 944-949.
https://doi.org/10.1126/science.1146361
PMid:17991856 PMCid:PMC3670588

9. Hollien J., Lin J.H., Li H. et al. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. Journal of Cell Biology, 2009; 186(3): 323-331.
https://doi.org/10.1083/jcb.200903014
PMid:19651891 PMCid:PMC2728407

10. Acosta-Alvear D., Zhou Y., Blais A. et al. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Molecular Cell, 2007; 27: 53-66.
https://doi.org/10.1016/j.molcel.2007.06.011
PMid:17612490

11. Han D., Upton J.-P., Hagen A. et al. A kinase inhibitor activates the IRE1alpha RNase to confer cytoprotection against ER stress. Biochemical Biophysical Research Communications, 2008; 365: 777-783.
https://doi.org/10.1016/j.bbrc.2007.11.040
PMid:18035051

12. Greenman C., Stephans P., Smith R. et al. Patterns of somatic mutation in human genomes. Nature, 2007; 446: 153-158.
https://doi.org/10.1038/nature05610
PMid:17344846 PMCid:PMC2712719

13. Auf G., Jabouille A., Guérit S. et al. A shift from an angiogenic to invasive phenotype induced in malignant glioma by inhibition of the unfolded protein response sensor IRE1. Proceedings of the National Academy of Sciences of the U.S.A, 2010; 107(35): 15553-15558.
https://doi.org/10.1073/pnas.0914072107
PMid:20702765 PMCid:PMC2932600

14. Drogat B., Auguste P., Nguyen D.T. et al. IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Research, 2007; 67 (14): 6700-6707.
https://doi.org/10.1158/0008-5472.CAN-06-3235
PMid:17638880

15. Moenner M., Pluquet O., Bouchecareilh M., Chevet E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Research, 2007; 67(22): 10631-10634.
https://doi.org/10.1158/0008-5472.CAN-07-1705
PMid:18006802

16. Guan D., Xu Y., Yang M. et al. N-acetyl cysteine and penicillamine induce apoptosis via the ER stress response-signaling pathway. Molecular Carcinogenesis, 2010; 49 (1): 68 -74.
https://doi.org/10.1002/mc.20578
PMid:19722195

17. Saito A., Ochiai K., Kondo S. et al. Endoplasmic Reticulum Stress Response Mediated by the PERK-eIF2-ATF4 Pathway Is Involved in Osteoblast Differentiation Induced by BMP2. The Journal of Biological Chemistry, 2011; 286 (6): 4809 -4818.
https://doi.org/10.1074/jbc.M110.152900
PMid:21135100 PMCid:PMC3039352

18. Maddika S., Ande S.R., Panigrahi S. et al. Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resistance Updates, 2007; 10(1-2): 13-29.
https://doi.org/10.1016/j.drup.2007.01.003
PMid:17303468

19. Sharma A., Yeow W.S., Ertel A. et al. The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression. Journal of Clinical Investigation, 2010; 120 (12): 4478-4492.
https://doi.org/10.1172/JCI44239
PMid:21099110 PMCid:PMC2993601

20. Liao C.C., Tsai C.Y., Chang W.C. et al. RB.E2F1 complex mediates DNA damage responses through transcriptional regulation of ZBRK1. The Journal of Biological Chemistry, 2010; 285(43): 33134-33143.
https://doi.org/10.1074/jbc.M110.143461
PMid:20713352 PMCid:PMC2963368

21. Gurtner A., Fuschi P., Martelli F. et al. Transcription factor NF-Y induces apoptosis in cells expressing wild-type p53 through E2F1 upregulation and p53 activation. Cancer Research, 2010; 70(23): 9711-9720.
https://doi.org/10.1158/0008-5472.CAN-10-0721
PMid:20952509

22. Lopez-Bigas N., Kisiel T.A., Dewaal D.C. et al. Genome-wide analysis of the H3K4 histone demethylase RBP2 reveals a transcriptional program controlling differentiation. Molecular Cell, 2008; 31(4): 520-530.
https://doi.org/10.1016/j.molcel.2008.08.004
PMid:18722178 PMCid:PMC3003864

23. Hayami S., Yoshimatsu M., Veerakumarasivam A. et al. Overexpression of the JmjC histone demethylase KDM5B in human carcinogenesis: involvement in the proliferation of cancer cells through the E2F/RB pathway. Molecular Cancer, 2010; 9: 59.
https://doi.org/10.1186/1476-4598-9-59
PMid:20226085 PMCid:PMC2848192

24. Salles D., Mencalha A.L., Ireno I.C. et al. BCR-ABL stimulates mutagenic homologous DNA double-strand break repair via the DNA-end-processing factor CtIP. Carcinogenesis, 2011; 32(1): 27-34.
https://doi.org/10.1093/carcin/bgq216
PMid:20974687

25. Kulinich A.O., Minchenko D.O., Maslak A.S. et al. Fibronectin-1 expression in lymphocytes of patients with erythremia disease. Ukrainian Biochemical Journal, 2010; 82(4): 53-59.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2011 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.