ENZYMATIC AND NON-ENZYMATIC LINK COMPONENTS OF ANTIOXIDANT DEFENCE IN SUBCELLULAR FRACTIONS OF RAT LIVER UNDER THE INFLUENCE OF DIETHYL PHTHALATE

Oksana Ketsa, Anastasia Shvets, Mykhailo Marchenko


DOI: http://dx.doi.org/10.30970/sbi.1801.761

Abstract


Background. The antioxidant system is one of the protective cell systems. Changes in its functioning, after the introduction of xenobiotics into the body, will determine the further course of the intensity of free radical processes. Among xenobiotics, a prominent place belongs to phthalates, in particular diethyl phthalate (DEP) – the most common group of synthetic substances that are widely used as plasticizers in various industries.
Materials and Methods. For a series of experiments, white outbred rats were used, and cytosolic and microsomal fractions were isolated from the liver cells. The activity of such antioxidant enzymes as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), glutathione peroxidase (GSH-Px, EC 1.11.1.9), glutathione S-transferase (GST, EC 2.5.1.18), and the concentration of reduced glutathione (GSH) were determined in the cytosolic fraction. GST activity was also studied in the microsomal fraction.
Results and Discussion. The administration of different doses of DEP for 14 days promoted the activation of antioxidant enzymes, regardless of the dose of xenobiotic administration. The use of DEP for 21 days led to a multidirectional effect of the xenobiotic on the enzymes of the antioxidant system in liver cells. The inactivation of the studied enzymes and depletion of the GSH pool were observed when DEP was administered at a dose of 5.4 mg/kg of body weight. The activity of antioxidant enzymes in liver subcellular fractions remained at a high level compared to the control when DEP was administered at a dose of 2.5 mg/kg of body weight. It was established that the same trend of changes in GST enzyme activity was found in both the microsomal and cytosolic fractions of rat liver. The activity of the enzyme increased under the influence of both studied doses under the administration of DEP for 14 days. Administration of the xenobiotic for 21 days led to a decrease in GST activity when a high dose of DEP was administered.
Conclusion. The activation of antioxidant system enzymes occurs in response to a short-term intake of DEP. With an increase in the dose and duration of administration of the studied xenobiotic, inactivation of antioxidant enzymes was detected.


Keywords


antioxidant enzymes, cytosol, microsomal fraction, liver, diethyl phthalate

Full Text:

PDF

References


Averill-Bates, D. A. (2023) The antioxidant glutathione. Vitamins and Hormones, 121, 109-141. doi:10.1016/bs.vh.2022.09.002
CrossrefPubMedGoogle Scholar

Borschovetska, V., & Shmarakov, I. (2016). Activity of hepatic antioxidant system under bisphenol administration and differential supplementation with retinoids. Biolohichni Systemy, 8(1), 28-34. doi:10.31861/biosystems2016.01.028 (In Ukrainian)
CrossrefGoogle Scholar

Cecerska-Heryć, E., Krauze, K., Szczęśniak, A., Goryniak-Mikołajczyk, A., Serwin, N., Śleboda-Taront, D., Jacek, R., Heryć, R., Michalczyk, A., & Dołęgowska, B. (2022). Activity of erythrocyte antioxidant enzymes in healthy women depends on age, BMI, physical activity, and diet. Journal of Health, Population and Nutrition, 41(1), 35. doi:10.1186/s41043-022-00311-z
CrossrefPubMedPMCGoogle Scholar

Cheng, L. J., & Cheng, T. S. (2012). Oxidative effects and metabolic changes following exposure of greater duckweed (Spirodela polyrhiza) to diethyl phthalate. Aquatic Toxicology, 109, 166-175. doi:10.1016/j.aquatox.2011.10.003
CrossrefPubMedGoogle Scholar

Diorditsa, Y. (2019). Antioxidant system activity in liver or rats under conditions of acute hepatitis during correction with antioxidant complexes. Visnyk of Lviv University. Biological Series, 81, 12-20. doi:10.30970/vlubs.2019.81.02 (In Ukrainian)
CrossrefGoogle Scholar

Dong, S.-C., Sha, H.-H., Xu, X.-Y., Hu, T.-M., Lou, R., Li, H., Wu, J.-Z., Dan, C., & Feng, J. (2018).Glutathione S-transferase π: a potential role in antitumor therapy. Drug Design, Development and Therapy, 12, 3535-3547. doi:10.2147/dddt.s169833
CrossrefPubMedPMCGoogle Scholar

Endröczi, E., Hepp, J., Sasváry, M., Walentin, S., & Lévay, G. (1990). Dipeptidyl peptidase IV (DP IV) and superoxide dismutase activity in thymus-derived lymphocytes: effects of inhibitory peptides and Zn2+ in vitro. Acta Physiologica Hungarica, 75(1), 35-44.
Google Scholar

Fiocchetti, M., Bastari, G., Cipolletti, M., Leone, S., Acconcia, F., & Marino, M. (2021). The peculiar estrogenicity of diethyl phthalate: modulation of estrogen receptor α activities in the proliferation of breast cancer cells. Toxics, 9(10), 237. doi:10.3390/toxics9100237
CrossrefPubMedPMCGoogle Scholar

Goh, C. J. H., Cui, L., Wong, J. H., Lewis, J., Goh, M., Kong, K. W., Yang, L. K., Alfatah, M., Kanagasundaram, Y., Hoon, S., & Arumugam, P. (2022). Diethyl phthalate (DEP) perturbs nitrogen metabolism in Saccharomyces cerevisiae. Scientific Reports, 12(1), 10237. doi:10.1038/s41598-022-14284-w
CrossrefPubMedPMCGoogle Scholar

Góth, L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta, 196(2-3), 143-151. doi:10.1016/0009-8981(91)90067-m
CrossrefPubMedGoogle Scholar

Salyha, N. O. (2013). Activity of the glutathione system of antioxidant defense in rats under the action of L-glutamic acid. The Ukrainian Biochemical Journal, 85(4), 40-47. doi:10.15407/ubj85.04.040 (In Ukrainian)
CrossrefPubMedGoogle Scholar

Samuni, U., Czapski, G., & Goldstein, S. (2016). Nitroxide radicals as research tools: elucidating the kinetics and mechanisms of catalase-like and "suicide inactivation" of metmyoglobin. Biochimica et Biophysica Acta (BBA) - General Subjects, 1860(7), 1409-1416. doi:10.1016/j.bbagen.2016.04.002
CrossrefPubMedGoogle Scholar

Sekhar, K. R., Hanna, D. N., Cyr, S., Baechle, J. J., Kuravi, S., Balusu, R., Rathmell, K., & Baregamian, N. (2022). Glutathione peroxidase 4 inhibition induces ferroptosis and mTOR pathway suppression in thyroid cancer. Scientific Reports, 12(1), 19396. doi:10.1038/s41598-022-23906-2
CrossrefPubMedPMCGoogle Scholar

Serbin, A., Strelkova, C., Koval, T., Kharchenko, O., & Andriichuk, T. (2022). Research of indicators of oxidative stress in the kidneys of immature rats with hyperhomocysteinemia. Bulletin of Taras Shevchenko National University of Kyiv. Series: Biology, 91(4), 5-9. doi:10.17721/1728.2748.2022.91.5-9 (In Ukrainian)
CrossrefGoogle Scholar

Sharma, R., & Kaur, R. (2020). Elucidating physiological and biochemical alterations in giant duckweed (Spirodela polyrhiza L. Schleiden) under diethyl phthalate stress: insights into antioxidant defence system. PeerJ, 8, e8267. doi:10.7717/peerj.8267
CrossrefPubMedPMCGoogle Scholar

Smolinska-Kempisty, K., Wolska, J., & Bryjak, M. (2022). Molecularly imprinting microfiltration membranes able to absorb diethyl phthalate from water. Membranes, 12(5), 503. doi:10.3390/membranes12050503
CrossrefPubMedPMCGoogle Scholar

Trist, B. G., Hilton, J. B., Hare, D. J., Crouch, P. J., & Double, K. L. (2021). Superoxide dismutase 1 in health and disease: how a frontline antioxidant becomes neurotoxic. Angewandte Chemie International Edition, 60(17), 9215-9246. doi:10.1002/anie.202000451
CrossrefPubMedPMCGoogle Scholar

Tymoshenko, M. O., Kravchenko, O. O., Gaida, L. M., Lynchak, O. V., Ruzhytska, N. I., & Ostapchenko, L. I. (2012). Glutathione transferase activity and reduce glutathione content in the cytosol of rat gastric mucosa cells under carcinogen N-methyl-N′-nitro-N-nitrosoguanidine treatment. Biopolymers and Cell, 28(5), 374-380. doi:10.7124/bc.000073
CrossrefGoogle Scholar

Wang, Y., Zhu, H., & Kannan, K. (2019). A review of biomonitoring of phthalate exposures. Toxics, 7(2), 21. doi:10.3390/toxics7020021
CrossrefPubMedPMCGoogle Scholar

Zhang, Y., Roh, Y. J., Han, S.-J., Park, I., Lee, H. M., Ok, Y. S., Lee, B. C., & Lee, S.-R. (2020). Role of selenoproteins in redox regulation of signaling and the antioxidant system: a review. Antioxidants, 9(5), 383. doi:10.3390/antiox9050383
CrossrefPubMedPMCGoogle Scholar

Zheng, Q., Feng, M., & Dai, Y. (2013). Comparative antioxidant responses in liver of Carassius auratus exposed to phthalates: an integrated biomarker approach. Environmental Toxicology and Pharmacology, 36(3), 741-749. doi:10.1016/j.etap.2013.07.008
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Oksana Ketsa, Anastasia Shvets, Mykhailo Marchenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.