THERMOMECHANOKINETICS OF VISCOELASTIC DEFORMATION OF SMOOTH MUSCLES IN THE RAT GASTROINTESTINAL TRACT. II. THERMOMECHANOKINETICS OF HYSTERESIS OF STOMACH AND LARGR INTESTINE SMOOTH MUSCLES

O. V. Tsymbalyuk, S. O. Kosterin


DOI: http://dx.doi.org/10.30970/sbi.0603.214

Abstract


The thermomechanokinetical properties of smooth muscle to a certain extent determine the functional properties of the gastrointestinal tract. We has previously investigated the changes induced by temperature on the kinetics of elastic deformation of rats gastric smooth muscle. In the present study, the thermomechanokinetical properties of stress-induced deformation and relaxation (hysteresis curves) of smooth muscle strips of the stomach and the large intestine (colon and caecum) were analyzed. Proposed and tested mathematical phenomenological description of the hysteresis curves of muscles using quantitative parameters: force constants k1 and k2 (for the application and removal of the load, respectively); indexes P1/2,c (the load value, which causes the demimaximal strip deformation) and P1/2,r (the residual load, which is half the strip length recovery). An area of full cycle hysteresis is characterized hysteresis loop quantitatively, and serves as the energy characteristic of temporary irreversibility of the length return of deformed smooth muscle strips to the unladen condition. Using these quantitative parameters shows that the deformation of the stomach smooth muscle has a relatively low temperature sensitivity and physical sense is a passive process. Discusses possible mechanisms that cause thermoinduced mechanokinetical changes of hysteresis parameters in smooth muscles.


Keywords


smooth muscle, stomach, large intestine, thermomechanokinetics, viscoelastic deformation, hysteresis

References


1. Цимбалюк О.В., Костерін С.О. Термомеханокінетика високоеластичної деформації гладеньких м'язів шлунково-кишкового тракту щура. І. Динамічні закономірності розтягування м'язів шлунку. Біологічні студії/Studia Biologica, 2012: 6(2); 87-98.
https://doi.org/10.30970/sbi.0602.213

2. Amrico M.F, Ietsugu M.V., Romeiro F.G. et al. Effects of meal size and proximal-distal segmentation on gastric activity. World. J. Gastroenterol, 2010; 16 (46): 5861-5868.
https://doi.org/10.3748/wjg.v16.i46.5861
PMid:21155008 PMCid:PMC3001978

3. Apter J.T. Correlation of visco-elastic properties with microscopic structure of large arteries: IV thermal responses of collagen, elastin, smooth muscle, and intact artesries. Circ. Res, 1967; 21: 901-918.
https://doi.org/10.1161/01.RES.21.6.901
PMid:6078150

4. Bennett A.F. Thermal dependence of muscle function. Am. J. Physiol, 1984; 247: R217-R229.
https://doi.org/10.1152/ajpregu.1984.247.2.R217
PMid:6380314

5. Bharucha A.E., Hubmayr R.D., Ferber I.J. et al. Viscoelastic properties of the human colon. Am. J. Physiol. Gastrointest. Liver. Physiol, 2001; 281: G459-G466.
https://doi.org/10.1152/ajpgi.2001.281.2.G459
PMid:11447026

6. Burdyga T.V., Kosterin S.A. Kinetic analysis of smooth muscle relaxation. Gen. Physiol. Biophys, 1991; 10: 589-598.

7. Ford M.J., Camilleri M., Wiste J.A. et al. Differences in colonic tone and phasic response to a meal in the transverse and sigmoid human colon. Gut, 1995; 37: 264-269.
https://doi.org/10.1136/gut.37.2.264
PMid:7557579 PMCid:PMC1382729

8. Gibbs C.L., Loiselle D.S. Effect of temperature on mechanical and myothermic properties of rabbit smooth muscle. Am. J. Physiol, 1980; 238 (Cell Physiol. 7): C49-C55.
https://doi.org/10.1152/ajpcell.1980.238.1.C49
PMid:7356010

9. Gregersen H., Christensen J. Gastrointestinal tone. Neurogastroenterol. Mot, 2000; 12: 501-508.
https://doi.org/10.1046/j.1365-2982.2000.00233.x

10. Gregersen H., Kassab G. Biomechanics of the gastrointestinal tract. Neurogastroenterol. Mot, 1996; 8: 277-297.
https://doi.org/10.1111/j.1365-2982.1996.tb00267.x

11. Hellstrand P., Johansson B. Analysis of the length response to a force step in smooth muscle from rabbit urinary bladder. Acta Physiol. Scand, 1979; 106: 221-238.
https://doi.org/10.1111/j.1748-1716.1979.tb06392.x
PMid:506760

12. Herrera B., Desco M.M., Eisenberg G. et al. Role of elastic fibers in cooling-induced relaxation. Cryobiology, 2002; 44: 54-61.
https://doi.org/10.1016/S0011-2240(02)00004-4

13. Klemt P., Peiper U. The dynamics of cross-bridge movement in vascular smooth muscle estimated from a single isometric contraction of the portal vein: the influence of temperature and calcium. Pfliigers Arch, 1978; 378: 31-36.
https://doi.org/10.1007/BF00581955
PMid:569823

14. Magaribuchi T., Ito Y., Kuriyama H. Effects of Rapid Cooling on the Mechanical and Electrical Activities of Smooth Muscles of Guinea Pig Stomach and Taenia Coli. J. Gen. Physiol, 1973; 6: 323-341.
https://doi.org/10.1085/jgp.61.3.323
PMid:4689621 PMCid:PMC2203455

15. Meiss R.A. Mechanics of smooth muscle. Adv. Organ Biol, 2000; 8: 1-48.
https://doi.org/10.1016/S1569-2590(00)08002-2

16. Mustafa S., Pilcher C., Williams I. cooling-induced bronchoconstriction: the role of ion-pumps and ion-carrier systems. Pharm. Res, 1999; 39(2): 125-136.
https://doi.org/10.1006/phrs.1998.0412
PMid:10072703

17. Mustafa S., Thulesius O. Cooling-induced gastrointestinal smooth muscle contractions in the rat. Fund. Clin. Pharm, 2001; 15(5): 349-354.
https://doi.org/10.1046/j.1472-8206.2001.00034.x
PMid:11903504

18. Newman S.L., Cardial R., Simmons B. Mechanical properties of tracheal smooth muscle: effects of temperature. Am. J. Physiol, 1977; 233(3): C92-C98.
https://doi.org/10.1152/ajpcell.1977.233.3.C92
PMid:910897

19. Peiper U., Klemt P., Schleupner R. The temperature dependence of parallel and series elastic elements in the vascular smooth muscle of the rat portal vein. Pfliigers Arch, 1978; 378: 25-30.
https://doi.org/10.1007/BF00581954
PMid:569822

20. Stephens N.L. Thermal dependence of muscle function. Am. J. Physiol, 1984; 247 (2 Pt 2): R217-R229.
https://doi.org/10.1152/ajpregu.1984.247.2.R217
PMid:6380314

21. Sun W.M., Houghton L.A., Read N.W. et al. Effect of meal temperature on gastric emptying of liquids in man. Gut, 1988; 29: 302-305.
https://doi.org/10.1136/gut.29.3.302
PMid:3356361 PMCid:PMC1433604

22. Sun W.M., Penagini R., Hebbard G. et al. Effect of drink temperature on antropyloduodenal motility and gastric electrical activity in humans. Gut, 1995; 37: 329-334.
https://doi.org/10.1136/gut.37.3.329
PMid:7590426 PMCid:PMC1382811

23. Yeatman L., Parmley W.W., Sonnenblick E.H. Effects of temperature on series elasticity and contractile element motion in heart muscle. Am. J. Physiol, 1969; 217(4): 1030-1034.
https://doi.org/10.1152/ajplegacy.1969.217.4.1030
PMid:5824301

24. Villanova N., Azpiroz F., Malagelada J.-R. Perception and gut reflexes induced by stimulation of gastrointestinal thermoreceptors in humans. J. Physiol, 1997; 502(1): 215-222.
https://doi.org/10.1111/j.1469-7793.1997.215bl.x
PMid:9234208


Refbacks

  • There are currently no refbacks.


Copyright (c) 2012 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.