THERMOMECHANOKINETICS OF VISCOELASTIC DEFORMATION OF SMOOTH MUSCLES IN THE RAT GASTROINTESTINAL TRACT. II. THERMOMECHANOKINETICS OF HYSTERESIS OF STOMACH AND LARGR INTESTINE SMOOTH MUSCLES
DOI: http://dx.doi.org/10.30970/sbi.0603.214
Abstract
The thermomechanokinetical properties of smooth muscle to a certain extent determine the functional properties of the gastrointestinal tract. We has previously investigated the changes induced by temperature on the kinetics of elastic deformation of rats gastric smooth muscle. In the present study, the thermomechanokinetical properties of stress-induced deformation and relaxation (hysteresis curves) of smooth muscle strips of the stomach and the large intestine (colon and caecum) were analyzed. Proposed and tested mathematical phenomenological description of the hysteresis curves of muscles using quantitative parameters: force constants k1 and k2 (for the application and removal of the load, respectively); indexes P1/2,c (the load value, which causes the demimaximal strip deformation) and P1/2,r (the residual load, which is half the strip length recovery). An area of full cycle hysteresis is characterized hysteresis loop quantitatively, and serves as the energy characteristic of temporary irreversibility of the length return of deformed smooth muscle strips to the unladen condition. Using these quantitative parameters shows that the deformation of the stomach smooth muscle has a relatively low temperature sensitivity and physical sense is a passive process. Discusses possible mechanisms that cause thermoinduced mechanokinetical changes of hysteresis parameters in smooth muscles.
Keywords
Full Text:
PDF (Українська)References
1. Цимбалюк О.В., Костерін С.О. Термомеханокінетика високоеластичної деформації гладеньких м'язів шлунково-кишкового тракту щура. І. Динамічні закономірності розтягування м'язів шлунку. Біологічні студії/Studia Biologica, 2012: 6(2); 87-98. | |
| |
2. Amrico M.F, Ietsugu M.V., Romeiro F.G. et al. Effects of meal size and proximal-distal segmentation on gastric activity. World. J. Gastroenterol, 2010; 16 (46): 5861-5868. | |
| |
3. Apter J.T. Correlation of visco-elastic properties with microscopic structure of large arteries: IV thermal responses of collagen, elastin, smooth muscle, and intact artesries. Circ. Res, 1967; 21: 901-918. | |
| |
4. Bennett A.F. Thermal dependence of muscle function. Am. J. Physiol, 1984; 247: R217-R229. | |
| |
5. Bharucha A.E., Hubmayr R.D., Ferber I.J. et al. Viscoelastic properties of the human colon. Am. J. Physiol. Gastrointest. Liver. Physiol, 2001; 281: G459-G466. | |
| |
6. Burdyga T.V., Kosterin S.A. Kinetic analysis of smooth muscle relaxation. Gen. Physiol. Biophys, 1991; 10: 589-598. | |
| |
7. Ford M.J., Camilleri M., Wiste J.A. et al. Differences in colonic tone and phasic response to a meal in the transverse and sigmoid human colon. Gut, 1995; 37: 264-269. | |
| |
8. Gibbs C.L., Loiselle D.S. Effect of temperature on mechanical and myothermic properties of rabbit smooth muscle. Am. J. Physiol, 1980; 238 (Cell Physiol. 7): C49-C55. | |
| |
9. Gregersen H., Christensen J. Gastrointestinal tone. Neurogastroenterol. Mot, 2000; 12: 501-508. | |
| |
10. Gregersen H., Kassab G. Biomechanics of the gastrointestinal tract. Neurogastroenterol. Mot, 1996; 8: 277-297. | |
| |
11. Hellstrand P., Johansson B. Analysis of the length response to a force step in smooth muscle from rabbit urinary bladder. Acta Physiol. Scand, 1979; 106: 221-238. | |
| |
12. Herrera B., Desco M.M., Eisenberg G. et al. Role of elastic fibers in cooling-induced relaxation. Cryobiology, 2002; 44: 54-61. | |
| |
13. Klemt P., Peiper U. The dynamics of cross-bridge movement in vascular smooth muscle estimated from a single isometric contraction of the portal vein: the influence of temperature and calcium. Pfliigers Arch, 1978; 378: 31-36. | |
| |
14. Magaribuchi T., Ito Y., Kuriyama H. Effects of Rapid Cooling on the Mechanical and Electrical Activities of Smooth Muscles of Guinea Pig Stomach and Taenia Coli. J. Gen. Physiol, 1973; 6: 323-341. | |
| |
15. Meiss R.A. Mechanics of smooth muscle. Adv. Organ Biol, 2000; 8: 1-48. | |
| |
16. Mustafa S., Pilcher C., Williams I. cooling-induced bronchoconstriction: the role of ion-pumps and ion-carrier systems. Pharm. Res, 1999; 39(2): 125-136. | |
| |
17. Mustafa S., Thulesius O. Cooling-induced gastrointestinal smooth muscle contractions in the rat. Fund. Clin. Pharm, 2001; 15(5): 349-354. | |
| |
18. Newman S.L., Cardial R., Simmons B. Mechanical properties of tracheal smooth muscle: effects of temperature. Am. J. Physiol, 1977; 233(3): C92-C98. | |
| |
19. Peiper U., Klemt P., Schleupner R. The temperature dependence of parallel and series elastic elements in the vascular smooth muscle of the rat portal vein. Pfliigers Arch, 1978; 378: 25-30. | |
| |
20. Stephens N.L. Thermal dependence of muscle function. Am. J. Physiol, 1984; 247 (2 Pt 2): R217-R229. | |
| |
21. Sun W.M., Houghton L.A., Read N.W. et al. Effect of meal temperature on gastric emptying of liquids in man. Gut, 1988; 29: 302-305. | |
| |
22. Sun W.M., Penagini R., Hebbard G. et al. Effect of drink temperature on antropyloduodenal motility and gastric electrical activity in humans. Gut, 1995; 37: 329-334. | |
| |
23. Yeatman L., Parmley W.W., Sonnenblick E.H. Effects of temperature on series elasticity and contractile element motion in heart muscle. Am. J. Physiol, 1969; 217(4): 1030-1034. | |
| |
24. Villanova N., Azpiroz F., Malagelada J.-R. Perception and gut reflexes induced by stimulation of gastrointestinal thermoreceptors in humans. J. Physiol, 1997; 502(1): 215-222. |
Refbacks
- There are currently no refbacks.
Copyright (c) 2012 Studia biologica
This work is licensed under a Creative Commons Attribution 4.0 International License.