HYPOXIC REGULATION OF THE EXPRESSION OF ANTI-ANGIOGENIC GENES IN U87 GLIOMA CELLS WITH ERN1 SIGNALING ENZYME LOSS OF FUNCTION

K. I. Kubaichuk, D. O. Minchenko, S. V. Danilovskyi, A. Y. Kuznetsova, A. K. Jassim, O. H. Minchenko


DOI: http://dx.doi.org/10.30970/sbi.0603.235

Abstract


The angiogenesis is an important component of tumor growth and tightly associated with hypoxia. The expression level of genes related to regulation of angiogenesis (BAI2, SPARC, TIMP1, TIMP2, TIMP3, TIMP4, THBS1, THBS2, ADAMTS5 and FGF2) in glioma U87cells and cells with suppressed function of signaling enzyme ERN1, a major mediator of the endoplasmic reticulum stress by qPCR, was studied. We have shown that the expression of genes encoding BAI2, SPARC, TIMP2, TIMP3, THBS1 and THBS2 is strongly increased in glioma cells with ERN1 signaling enzyme loss of function, being more intense for TIMP2, TIMP3 and THBS1 genes. At the same time, the expression of genes encoding TIMP1, TIMP4, ADAMTS5 and FGF2 is significantly decreased with more strong effect for ADAMTS5 and TIMP4 genes. At hypoxia, the expression of most of studied genes in both glioma cell types is affected. Hypoxia induced the expression of TIMP1, TIMP3 and ADAMTS5 genes both in control glioma cells and cells with ERN1 enzyme loss of function. However, the effect of hypoxia towards TIMP2 gene expression was observed only in control glioma cells. At the same time, the expression of genes encoding BAI2, SPARC, THBS1, THBS2, ADAMTS5 and FGF2 is decreased under hypoxia action, but its expression mostly depended on ERN1 signaling enzyme function. The results of this study provide strong evidence that suppression of ERN1 signaling enzyme function, as well as hypoxia, changes the expression of genes related to regulation of angiogenesis in glioma cells. It is possible that changes in the expression of these genes contribute to the suppression of glioma cells’ proliferation by blockade of ERN1 signaling enzyme functioning.


Keywords


gene expression, BAI2, SPARC, TIMP1, TIMP2, TIMP3, TIMP4, THBS1, THBS2, ADAMTS5, FGF2, ERN1, glioma cells, hypoxia

Full Text:

PDF

References


1. Moenner M., Pluquet O., Bouchecareilh M., Chevet E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Research, 2007; 67(22): 10631-10634.
https://doi.org/10.1158/0008-5472.CAN-07-1705
PMid:18006802

2. Zhang K., Kaufman R.J. Signaling the unfolded protein response from the endoplasmic reticulum. The Journal of Biological Chemistry, 2004; 279(25): 25935-25938.
https://doi.org/10.1074/jbc.R400008200
PMid:15070890

3. Bi M., Naczki C., Koritzinsky M. et al. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. The EMBO Journal, 2005; 24(19): 3470-3481.
https://doi.org/10.1038/sj.emboj.7600777
PMid:16148948 PMCid:PMC1276162

4. Fels D.R., Koumenis C. The PERK/eIF2- a/ATF4 module of the UPR in hypoxia resistance and tumor growth. Cancer Biology and Therapy, 2006; 5(7): 723-728.
https://doi.org/10.4161/cbt.5.7.2967
PMid:16861899

5. Romero-Ramirez L., Cao H., Nelson D. et al. XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Research, 2004; 64(17): 5943-5947.
https://doi.org/10.1158/0008-5472.CAN-04-1606
PMid:15342372

6. Hollien J., Lin J.H., Li H. et al. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. The Journal of Cell Biology, 2009; 186(3): 323-331.
https://doi.org/10.1083/jcb.200903014
PMid:19651891 PMCid:PMC2728407

7. Aragón T., van Anken E., Pincus D. et al. Messenger RNA targeting to endoplasmic reticulum stress signalling sites. Nature, 2009; 457(7230): 736-740.
https://doi.org/10.1038/nature07641
PMid:19079237 PMCid:PMC2768538

8. Hetz C., Glimcher L.H. Fine-tuning of the unfolded protein response: Assembling the IRE1alpha interactome. Molecular Cell, 2009; 35(): 551-561.
https://doi.org/10.1016/j.molcel.2009.08.021
PMid:19748352 PMCid:PMC3101568

9. Korennykh A.V., Egea P.F., Korostelev A.A. et al. The unfolded protein response signals through high-order assembly of Ire1. Nature, 2009; 457(): 687- 693.
https://doi.org/10.1038/nature07661
PMid:19079236 PMCid:PMC2846394

10. Acosta-Alvear D., Zhou Y., Blais A. et al. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Molecular Cell, 2007; 27: 53-66.
https://doi.org/10.1016/j.molcel.2007.06.011
PMid:17612490

11. Lee J., Sun C., Zhou Y. et al. p38 MAPK-mediated regulation of Xbp1s is crucial for glucose homeostasis. Nature Medicine, 2011; 17(10): 1251-1260.
https://doi.org/10.1038/nm.2449
PMid:21892182 PMCid:PMC4397266

12. Zhou Y., Lee J., Reno C.M. et al. Regulation of glucose homeostasis through a XBP-1-FoxO1 interaction. Nature Medicine, 2011; 17(3): 356-365.
https://doi.org/10.1038/nm.2293
PMid:21317886 PMCid:PMC3897616

13. Park S.W., Zhou Y., Lee J. et al. The regulatory subunits of PI3K, p85alpha and p85beta, interact with XBP-1 and increase its nuclear translocation. Nature Medicine, 2010; 16(4): 429-437.
https://doi.org/10.1038/nm.2099
PMid:20348926 PMCid:PMC3071012

14. Drogat B., Auguste P., Nguyen D.T. et al. IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Research, 2007; 67(14): 6700-6707.
https://doi.org/10.1158/0008-5472.CAN-06-3235
PMid:17638880

15. Auf G., Jabouille A., Guérit S. et al. A shift from an an-giogenic to invasive phenotype induced in malignant glioma by inhibition of the unfolded protein response sen-sor IRE1. The Proceeding of the National Academy of Sciences of the United States of America, 2010; 107(35): 1555-1558.
https://doi.org/10.1073/pnas.0914072107
PMid:20702765 PMCid:PMC2932600

16. Neill T., Painter H., Buraschi S. et al. Decorin antagonizes the angiogenic network: concurrent inhibition of Met, hypoxia inducible factor 1alpha, vascular endothelial growth factor A, and induction of thrombospondin-1 and TIMP3. The Journal of Biological Chemistry, 2012; 287(8), 5492-5506.
https://doi.org/10.1074/jbc.M111.283499
PMid:22194599 PMCid:PMC3285326

17. Takahashi K., Mernaugh R.L., Friedman D.B. et al. Thrombospondin-1 acts as a ligand for CD148 tyrosine phosphatase. The Proceeding of the National Academy of Sciences of the United States of America, 2012; 109(6), 1985-1990.
https://doi.org/10.1073/pnas.1106171109
PMid:22308318 PMCid:PMC3277540

18. John A.S., Hu X., Rothman V.L., Tuszynski G.P. Thrombospondin-1 (TSP-1) up-regulates tissue inhibitor of metalloproteinase-1 (TIMP-1) production in human tumor cells: exploring the functional significance in tumor cell invasion. Experimental and Molecular Pathology, 2009; 87(3):184-188.
https://doi.org/10.1016/j.yexmp.2009.09.002
PMid:19747478 PMCid:PMC2783349

19. Seo D.W., Saxinger W.C., Guedez L. et al. An integrin-binding N-terminal peptide region of TIMP-2 retains potent angio-inhibitory and anti-tumorigenic activity in vivo. Peptides, 2011; 32(9): 1840-1848.
https://doi.org/10.1016/j.peptides.2011.08.010
PMid:21871510 PMCid:PMC3177407

20. Stetler-Stevenson W.G. Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities. Science Signaling, 2008; 1: re6.
https://doi.org/10.1126/scisignal.127re6
PMid:18612141 PMCid:PMC2493614

21. Dews M., Homayouni A., Yu D. et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genetics, 2006; 38(9): 1060-1065.
https://doi.org/10.1038/ng1855
PMid:16878133 PMCid:PMC2669546

22. Hashimoto G., Inoki I., Fujii Y. et al. Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. The Journal of Biological Chemistry, 2002; 277(39): 36288-36295.
https://doi.org/10.1074/jbc.M201674200
PMid:12114504

23. Kee H.J., Koh J.T., Kim M.Y. et al. Expression of brain-specific angiogenesis inhibitor 2 (BAI2) in normal and ischemic brain: involvement of BAI2 in the ischemia-induced brain angiogenesis. Journal of Cerebral Blood Flow and Metabolism, 2002; 22(9): 1054-1067.
https://doi.org/10.1097/00004647-200209000-00003
PMid:12218411

24. Rivera L.B., Bradshaw A.D., Brekken R.A. The regulatory function of SPARC in vascular biology. Cellular and Molecular Life Sciences, 2011; 68(19): 3165-3173.
https://doi.org/10.1007/s00018-011-0781-8
PMid:21822645

25. Minchenko D.О., Kubajchuk К.І., Hubenia О.V. et al. The effect of hypoxia and ischemic condition on the expression of VEGF genes in glioma U87 cells is dependent from ERN1 knockdown. Advances in Biological Chemistry, 2011; 2(2): 198-206.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2012 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.