SPECIES AND HYBRID COMPOSITION AND GENETIC DIVERSITY OF WATER FROGS (PELOPHYLAX ESCULENTUS COMPLEX) IN WESTERN UKRAINIAN HEMICLONAL POPULATION SYSTEMS

Vasylyna Strus, Iurii Strus, Ihor Khamar


DOI: http://dx.doi.org/10.30970/sbi.1703.726

Abstract


Background. Two species of water frogs, Pelophylax ridibundus and Pelophylax lessonae, and their hybrid, Pelophylax kl. esculentus, are widespread in Ukraine. The purpose of this study was to investigate the population structure of various types of hemiclonal population systems (HPS) of water frogs formed due to the coexistence of frogs in the same territory. In Ukraine, a hybridization centre with the spread of triploid individuals of hybrid nature has been identified. Triploid hybrids are an intriguing research subject due to the diverse hypotheses about their origin and role in HPS. Outside the hybridization centre in Kharkiv Region, triploids are not commonly found. In our study, we describe the initial findings of triploid specimens in Lviv Region and analyze the genetic structure of the HPS where such individuals were detected.
Methods. In total, 193 specimens of green frogs were collected between 2011 and 2015. Here we present population structure analysis which was conducted using two microsatellite loci, Rrid059A and RlCA1b5. A wide range of software programs were utilized for processing the genetic analysis data, including GenePop 4.7.5, Micro-Checker and NewHybrids 1.1.
Results. Three types of hemiclonal population systems were identified: R-E type in Perekalky and Lake Pisochne, L-E type in Lake Luky, and R-E-L type in Nyzhankovychi, Velykyi Lyubin, Zhovtantsi and Cholgyni. Additionally, population systems with hybrids of mixed ploidy (diploids and triploids) were found in Perekalky, Velykyi Lyubin and Zhovtantsi.
Conclusions. Genetic diversity analysis revealed variations in the number of alleles per population. P. ridibundus individuals exhibited higher genetic diversity compared to P. lessonae individuals, whereas hybrids showed intermediate genetic diversity. Further investigations of the localities where potential triploids were detected are necessary to assess the survival and reproductive potential of hybrid individuals and determine all types of hybrids and individuals of both marsh and pool frogs.


Keywords


water frogs, Rrid059A, RlCA1b5, NewHybrids, hemiclonal population systems (HPS)

Full Text:

PDF

References


Ambu, J., & Dufresnes, C. (2023). Buccal swabs for amphibian genomics. Amphibia-Reptilia, 44(2), 249-255. doi:10.1163/15685381-bja10130
CrossrefGoogle Scholar

Anderson, E., & Thompson, E. (2002). A model-based method for identifying species hybrids using multilocus genetic data. Genetic, 160(3), 1217-1229. doi:10.1093/genetics/160.3.1217
CrossrefPubMedPMCGoogle Scholar

Berger, L. (1964). Is Rana esculenta lessonae Camerano a distinct species? Annales Zoologici, 22(13), 245-261.
Google Scholar

Berger, L., & Berger, A. (1994). Persistence of all-hybrid water frog populations (Rana kl. esculenta) in northern German. Genetica Polonica, 35(1-2), 73-80.
Google Scholar

Biriuk, O., Shabanov, D., Korshunov, O., Borkin, L., Lada, G., Pasynkova, R., Rosanov, J., & Litvinchuk, S. (2015). Gamete production patterns and mating systems in water frogs of the hybridogenetic Pelophylax esculentus complex in north-eastern Ukraine. Journal of Zoological Systematics and Evolutionary Research, 54(3), 215-225. doi:10.1111/jzs.12132
CrossrefGoogle Scholar

Bohling, J., Adams, J., & Waits, L. (2013). Evaluating the ability of Bayesian clustering methods to detect hybridization and introgression using an empirical red wolf data set. Molecular Ecology, 22(1), 74-86. doi:10.1111/mec.12109
CrossrefGoogle Scholar

Bondarieva, A., Bibik, Y., Samilo, S., & Shabanov, D. (2012). Erythrocytes cytogenetic characteristics of green frogs from Siversky Donets centre of Pelophylax esculentus complex diversity. The Journal of V. N. Karazin Kharkiv National University. Series "Biology", 15(1008), 116-123. (In Russian)
Google Scholar

Christiansen, D. G. (2005). A microsatellite-based method for genotyping diploid and triploid water frogs of the Rana esculenta hybrid complex. Molecular Ecology Notes, 5(1), 190-193. doi:10.1111/j.1471-8286.2004.00869.x
CrossrefGoogle Scholar

Christiansen, D. G. (2009). Gamete types, sex determination and stable equilibria of all-hybrid populations of diploid and triploid edible frogs (Pelophylax esculentus). BMC Evolutionary Biology, 9(1), 135. doi:10.1186/1471-2148-9-135
CrossrefPubMedPMCGoogle Scholar

Cuevas, А., Patrelle, С., Ciavatti, F., Gendre, T., Sourrouille, P., Geniez, P., Doniol-Valcroze, P., & Crochet, P.-A. (2022). A new PCR-RFLP method for the identification of parental and hybridogenetic western European water frogs, including the Pelophylax perezi-grafi system. Salamandra, 58(3), 218-230.
Google Scholar

Dedukh, D., Mazepa, G., Shabanov, D., Rosanov, J., Litvinchuk, S., Borkin, L., Saifitdinova, A., & Krasikova, A. (2013). Cytological maps of lampbrush chromosomes of European water frogs (Pelophylax esculentus complex) from the eastern Ukraine. BMC Genetics, 14(1), 26. doi:10.1186/1471-2156-14-26
CrossrefPubMedPMCGoogle Scholar

Dedukh, D., Litvinchuk, S., Rosanov, J., Mazepa, G., Saifitdinova, A., Shabanov, D., & Krasikova, A. (2015). Optional endoreplication and selective elimination of parental genomes during oogenesis in diploid and triploid hybrid European water frogs. PLoS One, 10(4), e0123304. doi:10.1371/journal.pone.0123304
CrossrefPubMedPMCGoogle Scholar

Dedukh, D., Litvinchuk, S., Rosanov, J., Shabanov, D., & Krasikova, A. (2017). Mutual maintenance of di-and triploid Pelophylax esculentus hybrids in R-E systems: results from artificial crossings experiments. BMC Evolutionary Biology, 17(1), 220. doi:10.1186/s12862-017-1063-3
CrossrefPubMedPMCGoogle Scholar

Delmotte, F., Leterme, N., & Simon, J. C. (2001). Microsatellite allele sizing: difference between automated capillary electrophoresis and manual technique. Biotechniques, 31(4), 810-814.
Google Scholar

Doležálková, M., Sember, A., Marec, F., Ráb, P., Plötner, J., & Choleva, L. (2016). Is premeiotic genome elimination an exclusive mechanism for hemiclonal reproduction in hybrid males of the genus Pelophylax? BMC Genetics, 17(1), 100. doi:10.1186/s12863-016-0408-z
CrossrefPubMedPMCGoogle Scholar

Doležálková-Kaštánková, M., Pruvost, N., Plötner, J., Reyer, H. U., Janko, K., & Choleva, L. (2018). All-male hybrids of a tetrapod Pelophylax esculentus share its origin and genetics of maintenance. Biology of Sex Differences, 9(1), 13. doi:10.1186/s13293-018-0172-z
CrossrefPubMedPMCGoogle Scholar

Dufresnes, C., Denoël, M., Di Santo, L., & Dubey, S. (2017). Multiple uprising invasions of Pelophylax water frogs, potentially inducing a new hybridogenetic complex. Scientific Reports, 7(1), 6506. doi:10.1038/s41598-017-06655-5
CrossrefPubMedPMCGoogle Scholar

Dufresnes, C., Leuenberger, J., Amrhein, V., Bühler, C., Thiébaud, J., Bohnenstengel, T., & Dubey, S. (2018). Invasion genetics of marsh frogs (Pelophylax ridibundus sensu lato) in Switzerland. Biological Journal of the Linnean Society, 123(2), 402-410. doi:10.1093/biolinnean/blx140
CrossrefGoogle Scholar

Falush, D., Stephens, M., & Pritchard, J. K. (2007). Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology Notes, 7(4), 574-578. doi:10.1111/j.1471-8286.2007.01758.x
CrossrefPubMedPMCGoogle Scholar

Garner, T. W. J., Gautschi, B., Röthlisberger, S., & Reyer, H. U. (2000). A set of CA repeat microsatellite markers derived from the pool frog, Rana lessonae. Molecular Ecology, 9(12), 2173-2175. doi:10.1046/j.1365-294X.2000.105311.x
CrossrefPubMedGoogle Scholar

Herczeg, D., Vörös, J., Christiansen, D. G., Benovics, M., & Mikulíček, P. (2017). Taxonomic composition and ploidy level among European water frogs (Anura: Ranidae: Pelophylax) in eastern Hungary. Journal of Zoological Systematics and Evolutionary Research, 55(2), 129-137. doi:10.1111/jzs.12158
CrossrefGoogle Scholar

Hill, G. E. (2019). Mitonuclear ecology. New York, NY: Oxford University Press. doi:10.1093/oso/978098818250.001.0001
CrossrefGoogle Scholar

Hofman, S., Pabijan, M., Dziewulska-Szwajkowska, D., & Szymura, J. M. (2012). Mitochondrial genome organization and divergence in hybridizing central European waterfrogs of the Pelophylax esculentus complex (Anura, Ranidae). Gene, 491(1), 71-80. doi:10.1016/j.gene.2011.08.004
CrossrefPubMedGoogle Scholar

Hoffmann, A., Plötner, J., Pruvost, N. B. M., Christiansen, D. G., Röthlisberger, S., Choleva, L., Mikulíček, P., Cogălniceanu, D., Sas-Kovács, I., Shabanov, D., Morozov-Leonov, S., & Reyer, H.-U. (2015). Genetic diversity and distribution patterns of diploid and polyploid hybrid water frog populations (Pelophylax esculentus complex) across Europe. Molecular Ecology, 24(17), 4371-4391. doi:10.1111/mec.13325
CrossrefPubMedGoogle Scholar

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 65-70.
Google Scholar

Holsbeek, G., & Jooris, R. (2010). Potential impact of genome exclusion by alien species in the hybridogenetic water frogs (Pelophylax esculentus complex). Biological Invasions, 12(1), 1-13. doi:10.1007/s10530-009-9427-2
CrossrefGoogle Scholar

Hotz, H., & Uzzell, T. (1982). Biochemically detected sympatry of two water frog species: two different cases in the Adriatic Balkans (Amphibia, Ranidae). Proceedings of the Academy of Natural Sciences of Philadelphia, 134, 50-79.
Google Scholar

Hotz, H., Uzzell, T., Guex, G. D., Alpers, D., Semlitsch, R. D., & Beerli, P. (2001). Microsatellites: a tool for evolutionary genetic studies of western Palearctic water frogs. Zoosystematics and Evolution, 77(1), 43-50. doi:10.1002/mmnz.20010770108
CrossrefGoogle Scholar

Hyne, R., Wilson, S., & Byrne, M. (2009). Frogs as bioindicators of chemical usage and farm practices in an irrigated agricultural area. Final Report to Land & Water Australia.
Google Scholar

Kaeuffer, R., Réale, D., Coltman, D. W., & Pontier, D. (2007). Detecting population structure using STRUCTURE software: effect of background linkage disequilibrium. Heredity, 99(4), 374-380. doi:10.1038/sj.hdy.6801010
CrossrefPubMedGoogle Scholar

Kravchenko, M., Shabanov, D. (2008). Possible ways of transformation of population systems of Pelophylax esculentus complex (Ranidae, Anura, Amphibia). Proceeding of the Ukranian Herpetological Society, 1, 15-20. (In Russian)
Google Scholar

Kryvoltsevych, A., Fedorova, A., Shabanov, D., & Pustovalova, E. (2022). Anomalies in marsh frogs (Pelophylax ridibundus) and hybrid waterfrogs (P. esculentus) (Anura: Ranidae) from two ponds in the Kharkiv region of Ukraine. Reptiles & Amphibians, 29(1), 204-209. doi:10.17161/randa.v29i1.16446
CrossrefGoogle Scholar

Meleshko, O. V., Korshunov, O. V., & Shabanov, D. A. (2014). The study of three hemiclonal population systems Pelophylax esculentus complex from the Seversko-Donetskiy center of green frogs diversity. The Journal of V. N. Karazin Kharkiv National University. Series "Biology", 20(1100), 153-158.
Google Scholar

Ogielska-Nowak, M. (1978). DNA content in erythrocyte nuclei of diploid and triploid green frog hybrid of Rana esculenta L. complex. Zoologica Poloniae, 27, 109-115.
Google Scholar

Perez-Enriquez, R., Medina-Espinoza, J. A., Max-Aguilar, A., & Saucedo-Barrón, C. J. (2018). Genetic tracing of farmed shrimp (Decapoda: Penaeidae) in wild populations from a main aquaculture region in Mexico. Revista de Biología Tropical, 66(1), 381-393. doi:10.15517/rbt.v66i1.27112
CrossrefGoogle Scholar

Pidancier, N., Miquel, C., & Miaud, C. (2003). Buccal swabs as a non-destructive tissue sampling method for DNA analysis in amphibians. Herpetological Journal, 13(4), 175-178.
Google Scholar

Plötner, J. (2005). Die westpaläarktichen Wasserfrösche [West palearctic water frogs]. Bielefeld: Laurenti-Verlag.
Google Scholar

Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945-959. doi:10.1093/genetics/155.2.945
CrossrefPubMedPMCGoogle Scholar

Pruvost, N. B., Hoffmann, A., & Reyer, H. U. (2013). Gamete production patterns, ploidy, and population genetics reveal evolutionary significant units in hybrid water frogs (Pelophylax esculentus). Ecology and Evolution, 3(9), 2933-2946. doi:10.1002/ece3.687
CrossrefPubMedPMCGoogle Scholar

Pruvost, N. B. M., Mikulíček, P., Choleva, L., & Reyer, H. U. (2015). Contrasting reproductive strategies of triploid hybrid males in vertebrate mating systems. Journal of Evolutionary Biology, 28(1), 189-204. doi:10.1111/jeb.12556
CrossrefPubMedGoogle Scholar

Pysanets, Y. (2007). Zemnovodni Ukrainy [The amphibians of Ukraine]. Kyiv: Zoological Museum of the National Museum of Natural History of NAS of Ukraine. (In Ukrainian)
Google Scholar

Quilodran, C. S., Montoya-Burgos, J. I., & Currat, M. (2015). Modelling interspecific hybridization with genome exclusion to identify conservation actions: the case of native and invasive Pelophylax waterfrogs. Evolutionary Applications, 8(2), 199-210. doi:10.1111/eva.12245
CrossrefPubMedPMCGoogle Scholar

Raymond, M., & Rousset, F. (1995a). Genepop (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity, 86(3), 248-249. doi:10.1093/oxfordjournals.jhered.a111573
CrossrefGoogle Scholar

Raymond, M., & Rousset, F. (1995b). An exact test for population differentiation. Evolution, 49(6) 1280-1283. doi:10.2307/2410454
CrossrefPubMedGoogle Scholar

Reyer, H. U., Arioli-Jakob, C., & Arioli, M. (2015). Post-zygotic selection against parental genotypes during larval development maintains all-hybrid populations of the frog Pelophylax esculentus. BMC Evolutionary Biology, 15(1), 131. doi:10.1186/s12862-015-0404-3
CrossrefPubMedPMCGoogle Scholar

Rousset, F., & Leblois, R. (2007). Likelihood and approximate likelihood analyses of genetic structure in a linear habitat: performance and robustness to model misspecification. Molecular Biology and Evolution, 24(12), 2730-2745. doi:10.1093/molbev/msm206
CrossrefPubMedGoogle Scholar

Rousset, F. (2008). Genepop'007: a complete re-implementation of the genepop software for Windows and Linux. Molecular Ecology Resources, 8(1), 103-106. doi:10.1111/j.1471-8286.2007.01931.x
CrossrefPubMedGoogle Scholar

Rybacki, M., & Berger, L. (2001). Types of water frog populations (Rana esculenta complex) in Poland. Zoosystematics and Evolution, 77(1), 51-57. doi:10.1002/mmnz.20010770109
CrossrefGoogle Scholar

Smouse, P. E., Banks, S. C., & Peakall, R. (2017). Converting quadratic entropy to diversity: both animals and alleles are diverse, but some are more diverse than others. PLoS One, 12(10), e0185499. doi:10.1371/journal.pone.0185499
CrossrefPubMedPMCGoogle Scholar

Stakh, V., Belokon, M., Khamar, I., Belokon, Yu., Reshetylo, O. (2014). Morphological and genetic polymorphism of green frogs (Pelophylax) in water bodies of western Ukraine. Visnyk of Lviv University. Biological series, 64, 241-249. (In Ukraine)
Google Scholar

Stakh, V. O., Strus, I. M., & Khamar, I. S. (2018). Genetic diversity in population systems of green frogs (Pelophylax esculentus complex) in waterbodies of western Ukraine. Studia Biologica, 12(3-4), 17-26. doi:10.30970/sbi.1203.575
CrossrefGoogle Scholar

Stöck, M., Dedukh, D., Reifová, R., Lamatsch, D. K., Starostová, Z., & Janko, K. (2021). Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the 'extended speciation continuum'. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1833), 20200103. doi:10.1098/rstb.2020.0103
CrossrefPubMedPMCGoogle Scholar

Tunner, H., & Kárpáti, L. (1997). The water frogs (Rana esculenta complex) of the Neusiedlersee region (Austria, Hungary). Herpetozoa, 10, 139-148.
Google Scholar

Uzzell, T., Günther, R., & Berger, L. (1976). Rana ridibunda and Rana esculenta: a leaky hybridogenetic system (Amphibia Salientia). Proceedings of the Academy of Natural Sciences of Philadelphia, 147-171.
Google Scholar

Van Oosterhout, C., Hutchinson, W. F., Wills, D. P., & Shipley, P. (2004). Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4(3), 535-538. doi:10.1111/j.1471-8286.2004.00684.x
CrossrefGoogle Scholar

Yin, S., Wang, Y., & Nan, Z. (2018). Genetic diversity studies of alfalfa germplasm (Medicago sativa L. subsp. sativa) of United States origin using microsatellite analysis. Legume Research-An International Journal, 41(2), 202-207. doi:10.18805/LR-358
CrossrefGoogle Scholar

Zeisset, I., Rowe, G., & Beebee, T. (2001). Polymerase chain reaction primers for microsatellite loci in the north European water frogs Rana ridibunda and R. lessonae. Molecular Ecology, 9(8), 1173-1174. doi:10.1046/j.1365-294x.2000.00954-2.x
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Vasylyna Strus, Iurii Strus, Ihor Khamar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.