PLANT-MICROBE INTERACTION: MECHANISMS AND APPLICATIONS FOR IMPROVING CROP YIELD AND QUALITY

Orysia Makar, Yana Kavulych, Olga Terek, Nataliya Romanyuk


DOI: http://dx.doi.org/10.30970/sbi.1703.730

Abstract


In light of the dual challenges posed by climate change and the burgeoning global population, which are putting food security at risk, there is an urgent need to develop sustainable agricultural innovations. These innovations must be capable of increasing crop productivity and maintaining soil health, reducing our dependence on synthetic agrochemical inputs, and preserving the nutritional quality of our food crops. It is crucial to delve into the biological and physiological processes that underlie plant-microbe interactions. Such knowledge is paramount in harnessing the advantages of these interactions for sustainable agriculture. This review delves into the intricate mechanisms through which beneficial rhizosphere and soil bacteria, known as plant growth-promoting bacteria (PGPB), contribute to enhancing crop yields, bolstering stress resilience, and improving the nutritional quality of crops. We explore the vital capabilities of PGPB, encompassing nitrogen fixation, phosphorus solubilization, iron chelation through microbial siderophores, and modulation of hormonal signaling pathways. The PGPB taxa in focus include rhizobial diazotrophs (genera RhizobiumBradyrhizobium) and diverse heterotrophic genera (Azotobacter, Bacillus, Pseudomonas).
Recent studies have provided compelling evidence of the effectiveness of PGPB in biofortification interventions, which involve enriching essential micronutrients in crops through microbial enhancement of nutrient mobilization, uptake, translocation, and acquisition. Understanding the genomic and metabolic mechanisms that govern plant growth promotion, abiotic stress tolerance, pathogen inhibition, and biofortification by PGPR is pivotal. Such insights can inform endeavors to optimize, formulate, and apply tailored PGPR inoculants. Adopting a systems perspective that acknowledges the intricate interactions among plants, microbes, and soil in this context is essential. Furthermore, we advocate for continued research in various domains, including microbiota recruitment, PGPR screening, the cumulative effects of various approaches, developing effective delivery systems, field testing, and integrating these findings with breeding programs. Interdisciplinary collaboration among microbial ecologists, plant physiologists, crop scientists, and farmers will be instrumental in unlocking the full potential of plant-microbe associations to ensure sustainable agriculture and food crop quality. In summary, more profound insights into PGPB biology and their interactions with plants offer a promising path toward enhancing productivity and sustainability in the face of escalating demands.


Keywords


plant growth-promoting bacteria, biofortification, plant nutrition, sustainable agriculture, soil microbiome, plant-microbe interaction

Full Text:

PDF

References


Aasfar, A., Bargaz, A., Yaakoubi, K., Hilali, A., Bennis, I., Zeroual, Y., & Meftah Kadmiri, I. (2021). Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Frontiers in Microbiology, 12, 628379. doi:10.3389/fmicb.2021.628379
CrossrefPubMedPMCGoogle Scholar

Allison, J. C. S., Williams, H. T., & Pammenter, N. W. (1997). Effect of specific leaf nitrogen content on photosynthesis of sugarcane. Annals of Applied Biology, 131(2), 339-350. doi:10.1111/j.1744-7348.1997.tb05160.x
CrossrefGoogle Scholar

Almeida, D. S., Menezes-Blackburn, D., Zhang, H., Haygarth, P. M., & Rosolem, C. A. (2019). Phosphorus availability and dynamics in soil affected by long-term ruzigrass cover crop. Geoderma, 337, 434-443. doi:10.1016/j.geoderma.2018.09.056
CrossrefPubMedPMCGoogle Scholar

Bechtaoui, N., Rabiu, M. K., Raklami, A., Oufdou, K., Hafidi, M., & Jemo, M. (2021). Phosphate-dependent regulation of growth and stresses management in plants. Frontiers in Plant Science, 12, 679916. doi:10.3389/fpls.2021.679916
CrossrefPubMedPMCGoogle Scholar

Beltran-Medina, I., Romero-Perdomo, F., Molano-Chavez, Lady, Gutiérrez, A. Y., Silva, A. M. M., & Estrada-Bonilla, G. (2023). Inoculation of phosphate-solubilizing bacteria improves soil phosphorus mobilization and maize productivity. Nutrient Cycling in Agroecosystems, 126(1), 21-34. doi:10.1007/s10705-023-10268-y
CrossrefGoogle Scholar

Boubekri, K., Soumare, A., Mardad, I., Lyamlouli, K., Hafidi, M., Ouhdouch, Y., & Kouisni, L. (2021). The screening of potassium- and phosphate-solubilizing actinobacteria and the assessment of their ability to promote wheat growth parameters. Microorganisms, 9(3), 470. doi:10.3390/microorganisms9030470
CrossrefPubMedPMCGoogle Scholar

Bouis, H. E., & Welch, R. M. (2010). Biofortification - a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Science, 50(1), 20-32. doi:10.2135/cropsci2009.09.0531
CrossrefGoogle Scholar

Çakmakçı, R., Mosber, G., Milton, A. H., Alatürk, F., & Ali, B. (2020). The effect of auxin and auxin-producing bacteria on the growth, essential oil yield, and composition in medicinal and aromatic plants. Current Microbiology, 77(4), 564-577. doi:10.1007/s00284-020-01917-4
CrossrefPubMedGoogle Scholar

Chaudhary, D. Y., Gosavi, P., & Durve-Gupta, A. (2017). Isolation and application of siderophore producing bacteria. International Journal of Applied Research, 3(4): 246-250.
Google Scholar

Chen, P., Zhang, C., Ju, X., Xiong, Y., Xing, K., & Qin, S. (2019). Community composition and metabolic potential of endophytic actinobacteria from coastal salt marsh plants in Jiangsu, China. Frontiers in Microbiology, 10, 1063. doi:10.3389/fmicb.2019.01063
CrossrefPubMedPMCGoogle Scholar

Chen, Y. R., Kuo, C. Y., Fu, S. F., & Chou, J. Y. (2023). Plant growth-promoting properties of the phosphate-solubilizing red yeast Rhodosporidium paludigenum. World Journal of Microbiology & Biotechnology, 39(2), 54. doi:10.1007/s11274-022-03498-9
CrossrefPubMedPMCGoogle Scholar

Daly, D. H., Velivelli, S. L. S., & Prestwich, B. D. (2017). The role of soil microbes in crop biofortification. In V. Meena, P. Mishra, J. Bisht, & A. Pattanayak (Eds.), Agriculturally important microbes for sustainable agriculture. Springer, Singapore. doi:10.1007/978-981-10-5589-8_16
CrossrefGoogle Scholar

D'Amours, E., Bertrand, A., Cloutier, J., Claessens, A., Rocher, S., & Seguin, P. (2022). Impact of Sinorhizobium meliloti strains and plant population on regrowth and nodule regeneration of alfalfa after a freezing event. Plant and Soil. doi:10.1007/s11104-022-05662-4
CrossrefGoogle Scholar

Dhiman, K., Sharma, D., Kumari, R., & Tomar, P. (2023). Biofortification of crops using microbes - a promising sustainable agriculture strategy. Journal of Plant Nutrition, 46(12), 2912-2935. doi:10.1080/01904167.2022.2160755
CrossrefGoogle Scholar

Ehsan, S., Riaz, A., Qureshi, M. A., Ali, A., Saleem, I., Aftab, M., Mehmood, K., Mujeeb, F., Ali, M. A., Javed, H., Ijaz, F., Haq, A., Rehman, K., & Saleem, M. U. (2022). Isolation, purification and application of siderophore producing bacteria to improve wheat growth. Pakistan Journal of Agricultural Research, 35(2), 449-459. doi:10.17582/journal.pjar/2022/35.2.449.459
CrossrefGoogle Scholar

Fahde, S., Boughribil, S., Sijilmassi, B., & Amri, A. (2023). Rhizobia: a promising source of plant growth-promoting molecules and their non-legume interactions: examining applications and mechanisms. Agriculture, 13(7), 1279. doi:10.3390/agriculture13071279
CrossrefGoogle Scholar

Feng, Z., Sun, H., Qin, Y., Zhou, Y., Zhu, H., & Yao, Q. (2023). A synthetic community of siderophore-producing bacteria increases soil selenium bioavailability and plant uptake through regulation of the soil microbiome. Science of The Total Environment, 871, 162076. doi:10.1016/j.scitotenv.2023.162076
CrossrefPubMedGoogle Scholar

Frébortová, J., & Frébort, I. (2021). Biochemical and structural aspects of cytokinin biosynthesis and degradation in bacteria. Microorganisms, 9(6), 1314. doi:10.3390/microorganisms9061314
CrossrefPubMedPMCGoogle Scholar

Gaby, J. C., & Buckley, D. H. (2014). A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria. Database, 2014, bau001. doi:10.1093/database/bau001
CrossrefPubMedPMCGoogle Scholar

Garg, M., Sharma, N., Sharma, S., Kapoor, P., Kumar, A., Chunduri, V., & Arora, P. (2018). Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Frontiers in Nutrition, 5, 12. doi:10.3389/fnut.2018.00012
CrossrefPubMedPMCGoogle Scholar

Ghavami, N., Alikhani, H. A., Pourbabaei, A. A., & Besharati, H. (2017). Effects of two new siderophore-producing rhizobacteria on growth and iron content of maize and canola plants. Journal of Plant Nutrition, 40(5), 736-746. doi:10.1080/01904167.2016.1262409
CrossrefGoogle Scholar

Gordon, M. H. (1990). Amino acids and other nitrogen-containing compounds. In M. H. Gordon (Ed.), Principles and applications of gas chromatography in food analysis (pp. 176-188). Boston, MA: Springer. doi:10.1007/978-1-4613-0681-8_6
CrossrefGoogle Scholar

Graham, P. H., & Vance, C. P. (2003). Legumes: importance and constraints to greater use. Plant Physiology, 131(3), 872-877. doi:10.1104/pp.017004
CrossrefPubMedPMCGoogle Scholar

Großkinsky, D. K., Tafner, R., Moreno, M. V., Stenglein, S. A., García de Salamone, I. E., Nelson, L. M., Novák, O., Strnad, M., van der Graaff, E., & Roitsch, T. (2016). Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Scientific Reports, 6(1), 23310. doi:10.1038/srep23310
CrossrefPubMedPMCGoogle Scholar

He, D., & Wan, W. (2022). Distribution of culturable phosphate-solubilizing bacteria in soil aggregates and their potential for phosphorus acquisition. Microbiology Spectrum, 10(3), e0029022. doi:10.1128/spectrum.00290-22
CrossrefPubMedPMCGoogle Scholar

Hernández-García, J., Briones-Moreno, A., & Blázquez, M. A. (2021). Origin and evolution of gibberellin signaling and metabolism in plants. Seminars in Cell & Developmental Biology, 109, 46-54. doi:10.1016/j.semcdb.2020.04.009
CrossrefPubMedGoogle Scholar

Igarashi, Y. (2004). Screening of new bioactive compounds from plant-associated actinomycetes. Actinomycetologica, 18(2), 63-66. doi:10.3209/saj.18_63
CrossrefGoogle Scholar

Johnstone, T. C., & Nolan, E. M. (2015). Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Transactions, 44(14), 6320-6339. doi:10.1039/c4dt03559c
CrossrefPubMedPMCGoogle Scholar

Kalayu, G. (2019). Phosphate solubilizing microorganisms: promising approach as biofertilizers. International Journal of Agronomy, 2019, 1-7. doi:10.1155/2019/4917256
CrossrefGoogle Scholar

Kang, S.-M., Khan, A. L., Waqas, M., You, Y.-H., Hamayun, M., Joo, G.-J., Shahzad, R., Choi, K.-S., & Lee, I.-J. (2015). Gibberellin-producing Serratia nematodiphila PEJ1011 ameliorates low temperature stress in Capsicum annuum L. European Journal of Soil Biology, 68, 85-93. doi:10.1016/j.ejsobi.2015.02.005
CrossrefGoogle Scholar

Kang, S.-M., Waqas, M., Shahzad, R., You, Y.-H., Asaf, S., Khan, M. A., Lee, K.-E., Joo, G.-J., Kim, S.-J., & Lee, I.-J. (2017). Isolation and characterization of a novel silicate-solubilizing bacterial strain Burkholderia eburnea CS4-2 that promotes growth of japonica rice (Oryza sativa L. cv. Dongjin). Soil Science and Plant Nutrition, 63(3), 233-241. doi:10.1080/00380768.2017.1314829
CrossrefGoogle Scholar

Kavulych, Y., Kobyletska, M., Romanyuk, N., & Terek, O. (2023). Stress-protective and regulatory properties of salicylic acid and prospects of its use in plant production. Studia Biologica, 17(2), 173-200. doi:10.30970/sbi.1702.718
CrossrefGoogle Scholar

Khan, A., Singh, J., Upadhayay, V. K., Singh, A. V., & Shah, S. (2019). Microbial biofortification: a green technology through plant growth promoting microorganisms. In S. Shah, V. Venkatramanan, R. Prasad (Eds.), Sustainable green technologies for environmental management (pp. 255-269). Singapore: Springer. doi:10.1007/978-981-13-2772-8_13
CrossrefGoogle Scholar

Khan, A., Singh, P., & Srivastava, A. (2018). Synthesis, nature and utility of a versatile iron chelator - siderophore: a review. Microbiological Research, 212-213, 103-111. doi:10.1016/j.micres.2017.10.012
CrossrefPubMedGoogle Scholar

Kirui, C. K., Njeru, E. M., & Runo, S. (2022). Diversity and phosphate solubilization efficiency of phosphate solubilizing bacteria isolated from semi-arid agroecosystems of eastern Kenya. Microbiology Insights, 15, 11786361221088991. doi:10.1177/11786361221088991
CrossrefPubMedPMCGoogle Scholar

Koç, E., & Karayiğit, B. (2022). Assessment of biofortification approaches used to improve micronutrient-dense plants that are a sustainable solution to combat hidden hunger. Journal of Soil Science and Plant Nutrition, 22(1), 475-500. doi:10.1007/s42729-021-00663-1
CrossrefPubMedPMCGoogle Scholar

Kochar, M., Vaishnavi, A., Upadhyay, A., & Srivastava, S. (2013). Bacterial biosynthesis of indole-3-acetic acid: signal messenger service. Molecular Microbial Ecology of the Rhizosphere, 1, 309-325. doi:10.1002/9781118297674.ch29
CrossrefGoogle Scholar

Kots, S. Ya., Vorobei, N. A., Mykhalkiv, L. M., & Karaushu, O. V. (2021). Influence of nodule bacteria strains of Sinorhizobium meliloti on the amino acid content in the tops of alfalfa under different water supply. Agriciltural Microbiology, 33, 25-32. doi:10.35868/1997-3004.33.25-32 (In Ukrainian)
CrossrefGoogle Scholar

Kurth, C., Kage, H., & Nett, M. (2016). Siderophores as molecular tools in medical and environmental applications. Organic & Biomolecular Chemistry, 14(35), 8212-8227. doi:10.1039/c6ob01400c
CrossrefPubMedGoogle Scholar

Li, Y., Liu, X., Hao, T., & Chen, S. (2017). Colonization and maize growth promotion induced by phosphate solubilizing bacterial isolates. International Journal of Molecular Sciences, 18(7), 1253. doi:10.3390/ijms18071253
CrossrefPubMedPMCGoogle Scholar

Lindström, K., & Mousavi, S. A. (2020). Effectiveness of nitrogen fixation in rhizobia. Microbial Biotechnology, 13(5), 1314-1335. doi:10.1111/1751-7915.13517
CrossrefPubMedPMCGoogle Scholar

Liu, C., Yamamura, H., Hayakawa, M., Zhang, Z., Oku, N., & Igarashi, Y. (2022a). Plant growth-promoting and antimicrobial chloropyrroles from a rare actinomycete of the genus Catellatospora. The Journal of Antibiotics, 75(12), 655-661. doi.10.1038/s41429-022-00567-x
CrossrefPubMedGoogle Scholar

Liu, C., Zhang, Z., Fukaya, K., Urabe, D., Harunari, E., Oku, N., & Igarashi, Y. (2022b). Catellatolactams A-C, plant growth-promoting ansamacrolactams from a rare actinomycete of the genus Catellatospora. Journal of Natural Products, 85(8), 1993-1999. doi:10.1021/acs.jnatprod.2c00331
CrossrefPubMedGoogle Scholar

Lohosha, O., Vorobei, Y., & Leonova, N. (2023). Symbiotic efficiency and cytokinin activity of new Mesorhizobium cicerі strains. Mikrobiolohichnyi Zhurnal, 85(1), 3-11. doi:10.15407/microbiolj85.01.003
CrossrefGoogle Scholar

Lu, S., Harunari, E., Oku, N., & Igarashi, Y. (2022). Trehangelin E, a bisacyl trehalose with plant growth promoting activity from a rare actinomycete Polymorphospora sp. RD064483. The Journal of Antibiotics, 75(5), 296-300. doi:10.1038/s41429-022-00519-5
CrossrefPubMedGoogle Scholar

Makar, O. O., & Romanyuk, N. D. (2022). Endophytic bacteria of wheat and the potential to improve microelement composition of grain. Studia Biologica, 16(3): 101-128. doi:10.30970/sbi.1603.692
CrossrefGoogle Scholar

Makar, O., Kuźniar, A., Patsula, O., Kavulych, Y., Kozlovskyy, V., Wolińska, A., Skórzyńska-Polit, E., Vatamaniuk, O., Terek, O., & Romanyuk, N. (2021). Bacterial endophytes of spring wheat grains and the potential to acquire Fe, Cu, and Zn under their low soil bioavailability. Biology, 10(5), 409. doi:10.3390/biology10050409
CrossrefPubMedPMCGoogle Scholar

Malik, J. A. (Ed.). (2021). Handbook of research on microbial remediation and microbial biotechnology for sustainable soil. IGI Global. doi:10.4018/978-1-7998-7062-3
CrossrefGoogle Scholar

Manasa, M., Ravinder, P., Gopalakrishnan, S., Srinivas, V., Sayyed, R. Z., El Enshasy, H. A., Yahayu, M., Kee Zuan, A. T., Kassem, H. S., & Hameeda, B. (2021). Co-inoculation of Bacillus spp. for growth promotion and iron fortification in sorghum. Sustainability, 13(21), 12091. doi:10.3390/su132112091
CrossrefGoogle Scholar

Masson-Boivin, C., & Sachs, J. L. (2018). Symbiotic nitrogen fixation by rhizobia-the roots of a success story. Current Opinion in Plant Biology, 44, 7-15. doi:10.1016/j.pbi.2017.12.001
CrossrefPubMedGoogle Scholar

Matilla, M. A., Daddaoua, A., Chini, A., Morel, B., & Krell, T. (2018). An auxin controls bacterial antibiotics production. Nucleic Acids Research, 46(21), 11229-11238. doi:10.1093/nar/gky766
CrossrefPubMedPMCGoogle Scholar

Mekureyaw, M. F., Pandey, C., Hennessy, R. C., Nicolaisen, M. H., Liu, F., Nybroe, O., & Roitsch, T. (2022). The cytokinin-producing plant beneficial bacterium Pseudomonas fluorescens G20-18 primes tomato (Solanum lycopersicum) for enhanced drought stress responses. Journal of Plant Physiology, 270, 153629. doi:10.1016/j.jplph.2022.153629
CrossrefPubMedGoogle Scholar

Miri, M., Janakirama, P., Held, M., Ross, L., & Szczyglowski, K. (2016). Into the root: how cytokinin controls rhizobial infection. Trends in Plant Science, 21(3), 178-186. doi:10.1016/j.tplants.2015.09.003
CrossrefPubMedGoogle Scholar

Nitawaki, Y., Kitabayashi, H., Mason, M. L. T., Yamamoto, A., & Saeki, Y. (2021). Effect of salt stress on soybean growth and nodulation under inoculation with soybean rhizobia. Soil Science and Plant Nutrition, 67(2), 103-113. doi:10.1080/00380768.2020.1860644
CrossrefGoogle Scholar

Normand, P., & Fernandez, M. P. (2019). Frankia Brunchorst 1886, 174AL. In W. Whitman (Ed.), Bergey's manual of systematics of archaea and bacteria (pp. 1-19). NJ, USA: John Wiley & Sons, Inc.; Hoboken. doi:10.1002/9781118960608.gbm00042.pub2
CrossrefGoogle Scholar

Ostash, B., Gren, T., Hrubskyy, Y., Tistechok, S., Beshley, S., Baranov, V., & Fedorenko, V. (2013). Cultivable actinomycetes from rhizosphere of birch (Betula pendula) growing on a coal mine dump in Silets, Ukraine. Journal of Basic Microbiology, 54(8), 851-857. doi:10.1002/jobm.201200551
CrossrefPubMedGoogle Scholar

Pahari, A., Pradhan, A., Nayak, S. K., & Mishra, B. B. (2017). Bacterial siderophore as a plant growth promoter. In J. Patra, C. Vishnuprasad & G. Das (Eds.), Microbial biotechnology (pp. 163-180). Singapore: Springer. doi:10.1007/978-981-10-6847-8_7
CrossrefGoogle Scholar

Pang, Z., Mao, X., Zhou, S., Yu, S., Liu, G., Lu, C., Wan, J., Hu, L., & Xu, P. (2023). Microbiota-mediated nitrogen fixation and microhabitat homeostasis in aerial root-mucilage. Microbiome, 11(1), 85. doi:10.1186/s40168-023-01525-x
CrossrefPubMedPMCGoogle Scholar

Pantigoso, H. A., He, Y., Manter, D. K., Fonte, S. J., & Vivanco, J. M. (2022). Phosphorus-solubilizing bacteria isolated from the rhizosphere of wild potato Solanum bulbocastanum enhance growth of modern potato varieties. Bulletin of the National Research Centre, 46(1). doi:10.1186/s42269-022-00913-x
CrossrefGoogle Scholar

Patel, P., Trivedi, G., & Saraf, M. (2018). Iron biofortification in mungbean using siderophore producing plant growth promoting bacteria. Environmental Sustainability, 1(4), 357-365. doi:10.1007/s42398-018-00031-3
CrossrefGoogle Scholar

Pecoraro, L., Wang, X., Shah, D., Song, X., Kumar, V., Shakoor, A., Tripathi, K., Ramteke, P. W., & Rani, R. (2021). Biosynthesis pathways, transport mechanisms and biotechnological aapplications of fungal siderophores. Journal of Fungi, 8(1), 21. doi:10.3390/jof8010021
CrossrefPubMedPMCGoogle Scholar

Pi, H. W., Lin, J. J., Chen, C. A., Wang, P. H., Chiang, Y. R., Huang, C. C., Young, C. C., & Li, W. H. (2022). Origin and evolution of nitrogen fixation in prokaryotes. Molecular Biology and Evolution, 39(9), msac181. doi:10.1093/molbev/msac181
CrossrefPubMedPMCGoogle Scholar

Radhakrishnan, R., & Lee, I. J. (2016). Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce. Plant Physiology and Biochemistry, 109, 181-189. doi:10.1016/j.plaphy.2016.09.018
CrossrefPubMedGoogle Scholar

Raheem, A., Shaposhnikov, A., Belimov, A. A., Dodd, I. C., & Ali, B. (2018). Auxin production by rhizobacteria is associated with increased wheat (Triticum aestivum L.) yield under drought stress. Archives of Agronomy and Soil Science, 64(4), 574-587. doi:10.1080/03650340.2017.1362105
CrossrefGoogle Scholar

Razafintsalama, H., Trap, J., Rabary, B., Razakatiana, A. T. E., Ramanankierana, H., Rabeharisoa, L., Becquer, T. (2022). Effect of Rhizobium inoculation on growth of common bean in low-fertility tropical soil amended with phosphorus and lime. Sustainability, 14(9), 4907. doi:10.3390/su14094907
CrossrefGoogle Scholar

Saha, M., Sarkar, S., Sarkar, B., Sharma, B. K., Bhattacharjee, S., & Tribedi, P. (2016). Microbial siderophores and their potential applications: a review. Environmental Science and Pollution Research, 23, 3984-3999. doi:10.1007/s11356-015-4294-0
CrossrefPubMedGoogle Scholar

Salazar-Cerezo, S., Martínez-Montiel, N., García-Sánchez, J., Pérez-Y-Terrón, R., & Martínez-Contreras, R. D. (2018). Gibberellin biosynthesis and metabolism: a convergent route for plants, fungi and bacteria. Microbiological Research, 208, 85-98. doi:10.1016/j.micres.2018.01.010
CrossrefPubMedGoogle Scholar

Scheerer, U., Trube, N., Netzer, F., Rennenberg, H., & Herschbach, C. (2019). ATP as phosphorus and nitrogen source for nutrient uptake by Fagus sylvatica and Populus x canescens roots. Frontiers in Plant Science, 10, 378. doi:10.3389/fpls.2019.00378
CrossrefPubMedPMCGoogle Scholar

Sellstedt, A., & Richau, K. H. (2013). Aspects of nitrogen-fixing Actinobacteria, in particular free-living and symbiotic Frankia. FEMS Microbiology Letters, 342(2), 179-186. doi:10.1111/1574-6968.12116
CrossrefPubMedGoogle Scholar

Sepehri, M., & Khatabi, B. (2021). Combination of siderophore-producing bacteria and Piriformospora indica provides an effective approach to improve cadmium tolerance in alfalfa. Microbial Ecology, 81, 717-730. doi:10.1007/s00248-020-01629-z
CrossrefPubMedGoogle Scholar

Shahzad, R., Jamil, S., Ahmad, S., Nisar, A., Khan, S., Amina, Z., Kanwal, S., Aslam, H. M. U., Gill, R. A., & Zhou, W. (2021). Biofortification of cereals and pulses using new breeding techniques: current and future perspectives. Frontiers in Nutrition, 8, 721728. doi:10.3389/fnut.2021.721728
CrossrefPubMedPMCGoogle Scholar

Sheoran, S., Kumar, S., Ramtekey, V., Kar, P., Meena, R. S., & Jangir, C. K. (2022). Current status and potential of biofortification to enhance crop nutritional quality: an overview. Sustainability, 14(6), 3301. doi:10.3390/su14063301
CrossrefGoogle Scholar

Silva, L. I. da, Pereira, M. C., Carvalho, A. M. X. de, Buttrós, V. H., Pasqual, M., & Dória, J. (2023). Phosphorus-solubilizing microorganisms: a key to sustainable agriculture. Agriculture, 13(2), 462. doi:10.3390/agriculture13020462
CrossrefGoogle Scholar

Singh, P., Chauhan, P. K., Upadhyay, S. K., Singh, R. K., Dwivedi, P., Wang, J., Jain, D., & Jiang, M. (2022). Mechanistic insights and potential use of siderophores producing microbes in rhizosphere for mitigation of stress in plants grown in degraded land. Frontiers in Microbiology, 13, 898979. doi:10.3389/fmicb.2022.898979
CrossrefPubMedPMCGoogle Scholar

Stacey, G., Burris, R. H., & Evans, H. J. (1992). Biological nitrogen fixation. New York: Chapman and Hall.
Google Scholar

Tian, J., Ge, F., Zhang, D., Deng, S., & Liu, X. (2021). Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle. Biology, 10(2), 158. doi:10.3390/biology10020158
CrossrefPubMedPMCGoogle Scholar

Van Deynze, A., Zamora, P., Delaux, P. M., Heitmann, C., Jayaraman, D., Rajasekar, S., Graham, D., Maeda, J., Gibson, D., Schwartz, K. D., Berry, A. M., Bhatnagar, S., Jospin, G., Darling, A., Jeannotte, R., Lopez, J., Weimer, B. C., Eisen, J. A., Shapiro, H. Y., Ané, J. M., … Bennett, A. B. (2018). Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biology, 16(8), e2006352. doi:10.1371/journal.pbio.2006352
CrossrefPubMedPMCGoogle Scholar

Vance, C. P. (2001). Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiology, 127(2), 390-397. doi: 10.1104/pp.010331
CrossrefPubMedPMCGoogle Scholar

Wagner, S. C. (2011). Biological nitrogen fixation. Nature Education Knowledge, 3(10), 15.
Google Scholar

Xu, S., Martin, N. F., Matthews, J. W., & Arai, Y. (2022). Accumulation and release of organic phosphorus (P) from legacy P-affected soils to adjacent drainage water. Environmental Science and Pollution Research International, 29(22), 33885-33899. doi:10.1007/s11356-021-18481-4
CrossrefPubMedGoogle Scholar

Xu, X. L, Mao, X. L., Van Zwieten, L., Niazi, N. K., Lu, K. P., Bolan, N. S., & Wang, H. L. (2020). Wetting-drying cycles during a rice-wheat crop rotation rapidly (im)mobilize recalcitrant soil phosphorus. Journal of Soils and Sediments, 20(11), 3921-3930. doi:10.1007/s11368-020-02712-1
CrossrefGoogle Scholar

Xu, X., Liu, G. H., Fan, Q., Chen, J., Wang, Y., Zhang, Y., Yang, Y., Wang, J., Zhang, Y., Jiang, H., Qi, L., & Wang, H. (2018). Effects of gibberellin on the activity of anammox bacteria. Journal of Environmental Management, 225, 104-111. doi:10.1016/j.jenvman.2018.07.099
CrossrefPubMedGoogle Scholar

Yadav, R., Ror, P., Rathore, P., & Ramakrishna, W. (2020). Bacteria from native soil in combination with arbuscular mycorrhizal fungi augment wheat yield and biofortification. Plant Physiology and Biochemistry, 150, 222-233. doi:10.1016/j.plaphy.2020.02.039
CrossrefPubMedGoogle Scholar

Yandigeri, M. S., Meena, K. K., Srinivasan, R., & Pabbi, S. (2011). Effect of mineral phosphate solubilization on biological nitrogen fixation by diazotrophic cyanobacteria. Indian Journal of Microbiology, 51(1), 48-53. doi:10.1007/s12088-011-0081-x
CrossrefPubMedPMCGoogle Scholar

Zhan, J., & Sun, Q. (2012). Diversity of free-living nitrogen-fixing microorganisms in the rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings. Microbiological Research, 167(3), 157-165. doi:10.1016/j.micres.2011.05.006
CrossrefPubMedGoogle Scholar

Zhang, L., Feng, G., & Declerck, S. (2018a). Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. The ISME Journal, 12(10), 2339-2351. doi:10.1038/s41396-018-0171-4
CrossrefPubMedPMCGoogle Scholar

Zhang, T., Hu, F. & Ma, L. (2018b). Phosphate-solubilizing bacteria from safflower rhizosphere and their effect on seedling growth. Open Life Sciences, 14(1), 246-254. doi:10.1515/biol-2019-0028
CrossrefPubMedPMCGoogle Scholar

Zhang, X., Zhang, D., Sun, W., & Wang, T. (2019). The adaptive mechanism of plants to iron deficiency through iron uptake, transport and homeostasis. International Journal of Molecular Sciences, 20(10), 2424. doi:10.3390/ijms20102424
CrossrefPubMedPMCGoogle Scholar

Zhu, Z., Zhang, H., Leng, J., Niu, H., Chen, X., Liu, D., Chen, Y., Gao, N., & Ying, H. (2020). Isolation and characterization of plant growth-promoting rhizobacteria and their effects on the growth of Medicago sativa L. under salinity conditions. Antonie van Leeuwenhoek, 113(9), 1263-1278. doi:10.1007/s10482-020-01434-1
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Orysia Makar, Yana Kavulych, Olga Terek, Nataliya Romanyuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.