PLANT-MICROBE INTERACTION: MECHANISMS AND APPLICATIONS FOR IMPROVING CROP YIELD AND QUALITY
DOI: http://dx.doi.org/10.30970/sbi.1703.730
Abstract
In light of the dual challenges posed by climate change and the burgeoning global population, which are putting food security at risk, there is an urgent need to develop sustainable agricultural innovations. These innovations must be capable of increasing crop productivity and maintaining soil health, reducing our dependence on synthetic agrochemical inputs, and preserving the nutritional quality of our food crops. It is crucial to delve into the biological and physiological processes that underlie plant-microbe interactions. Such knowledge is paramount in harnessing the advantages of these interactions for sustainable agriculture. This review delves into the intricate mechanisms through which beneficial rhizosphere and soil bacteria, known as plant growth-promoting bacteria (PGPB), contribute to enhancing crop yields, bolstering stress resilience, and improving the nutritional quality of crops. We explore the vital capabilities of PGPB, encompassing nitrogen fixation, phosphorus solubilization, iron chelation through microbial siderophores, and modulation of hormonal signaling pathways. The PGPB taxa in focus include rhizobial diazotrophs (genera Rhizobium, Bradyrhizobium) and diverse heterotrophic genera (Azotobacter, Bacillus, Pseudomonas).
Recent studies have provided compelling evidence of the effectiveness of PGPB in biofortification interventions, which involve enriching essential micronutrients in crops through microbial enhancement of nutrient mobilization, uptake, translocation, and acquisition. Understanding the genomic and metabolic mechanisms that govern plant growth promotion, abiotic stress tolerance, pathogen inhibition, and biofortification by PGPR is pivotal. Such insights can inform endeavors to optimize, formulate, and apply tailored PGPR inoculants. Adopting a systems perspective that acknowledges the intricate interactions among plants, microbes, and soil in this context is essential. Furthermore, we advocate for continued research in various domains, including microbiota recruitment, PGPR screening, the cumulative effects of various approaches, developing effective delivery systems, field testing, and integrating these findings with breeding programs. Interdisciplinary collaboration among microbial ecologists, plant physiologists, crop scientists, and farmers will be instrumental in unlocking the full potential of plant-microbe associations to ensure sustainable agriculture and food crop quality. In summary, more profound insights into PGPB biology and their interactions with plants offer a promising path toward enhancing productivity and sustainability in the face of escalating demands.
Keywords
Full Text:
PDFReferences
Aasfar, A., Bargaz, A., Yaakoubi, K., Hilali, A., Bennis, I., Zeroual, Y., & Meftah Kadmiri, I. (2021). Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Frontiers in Microbiology, 12, 628379. doi:10.3389/fmicb.2021.628379 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Allison, J. C. S., Williams, H. T., & Pammenter, N. W. (1997). Effect of specific leaf nitrogen content on photosynthesis of sugarcane. Annals of Applied Biology, 131(2), 339-350. doi:10.1111/j.1744-7348.1997.tb05160.x Crossref ● Google Scholar | ||||
| ||||
Almeida, D. S., Menezes-Blackburn, D., Zhang, H., Haygarth, P. M., & Rosolem, C. A. (2019). Phosphorus availability and dynamics in soil affected by long-term ruzigrass cover crop. Geoderma, 337, 434-443. doi:10.1016/j.geoderma.2018.09.056 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Bechtaoui, N., Rabiu, M. K., Raklami, A., Oufdou, K., Hafidi, M., & Jemo, M. (2021). Phosphate-dependent regulation of growth and stresses management in plants. Frontiers in Plant Science, 12, 679916. doi:10.3389/fpls.2021.679916 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Beltran-Medina, I., Romero-Perdomo, F., Molano-Chavez, Lady, Gutiérrez, A. Y., Silva, A. M. M., & Estrada-Bonilla, G. (2023). Inoculation of phosphate-solubilizing bacteria improves soil phosphorus mobilization and maize productivity. Nutrient Cycling in Agroecosystems, 126(1), 21-34. doi:10.1007/s10705-023-10268-y Crossref ● Google Scholar | ||||
| ||||
Boubekri, K., Soumare, A., Mardad, I., Lyamlouli, K., Hafidi, M., Ouhdouch, Y., & Kouisni, L. (2021). The screening of potassium- and phosphate-solubilizing actinobacteria and the assessment of their ability to promote wheat growth parameters. Microorganisms, 9(3), 470. doi:10.3390/microorganisms9030470 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Bouis, H. E., & Welch, R. M. (2010). Biofortification - a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Science, 50(1), 20-32. doi:10.2135/cropsci2009.09.0531 Crossref ● Google Scholar | ||||
| ||||
Çakmakçı, R., Mosber, G., Milton, A. H., Alatürk, F., & Ali, B. (2020). The effect of auxin and auxin-producing bacteria on the growth, essential oil yield, and composition in medicinal and aromatic plants. Current Microbiology, 77(4), 564-577. doi:10.1007/s00284-020-01917-4 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Chaudhary, D. Y., Gosavi, P., & Durve-Gupta, A. (2017). Isolation and application of siderophore producing bacteria. International Journal of Applied Research, 3(4): 246-250. Google Scholar | ||||
| ||||
Chen, P., Zhang, C., Ju, X., Xiong, Y., Xing, K., & Qin, S. (2019). Community composition and metabolic potential of endophytic actinobacteria from coastal salt marsh plants in Jiangsu, China. Frontiers in Microbiology, 10, 1063. doi:10.3389/fmicb.2019.01063 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Chen, Y. R., Kuo, C. Y., Fu, S. F., & Chou, J. Y. (2023). Plant growth-promoting properties of the phosphate-solubilizing red yeast Rhodosporidium paludigenum. World Journal of Microbiology & Biotechnology, 39(2), 54. doi:10.1007/s11274-022-03498-9 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Daly, D. H., Velivelli, S. L. S., & Prestwich, B. D. (2017). The role of soil microbes in crop biofortification. In V. Meena, P. Mishra, J. Bisht, & A. Pattanayak (Eds.), Agriculturally important microbes for sustainable agriculture. Springer, Singapore. doi:10.1007/978-981-10-5589-8_16 Crossref ● Google Scholar | ||||
| ||||
D'Amours, E., Bertrand, A., Cloutier, J., Claessens, A., Rocher, S., & Seguin, P. (2022). Impact of Sinorhizobium meliloti strains and plant population on regrowth and nodule regeneration of alfalfa after a freezing event. Plant and Soil. doi:10.1007/s11104-022-05662-4 Crossref ● Google Scholar | ||||
| ||||
Dhiman, K., Sharma, D., Kumari, R., & Tomar, P. (2023). Biofortification of crops using microbes - a promising sustainable agriculture strategy. Journal of Plant Nutrition, 46(12), 2912-2935. doi:10.1080/01904167.2022.2160755 Crossref ● Google Scholar | ||||
| ||||
Ehsan, S., Riaz, A., Qureshi, M. A., Ali, A., Saleem, I., Aftab, M., Mehmood, K., Mujeeb, F., Ali, M. A., Javed, H., Ijaz, F., Haq, A., Rehman, K., & Saleem, M. U. (2022). Isolation, purification and application of siderophore producing bacteria to improve wheat growth. Pakistan Journal of Agricultural Research, 35(2), 449-459. doi:10.17582/journal.pjar/2022/35.2.449.459 Crossref ● Google Scholar | ||||
| ||||
Fahde, S., Boughribil, S., Sijilmassi, B., & Amri, A. (2023). Rhizobia: a promising source of plant growth-promoting molecules and their non-legume interactions: examining applications and mechanisms. Agriculture, 13(7), 1279. doi:10.3390/agriculture13071279 Crossref ● Google Scholar | ||||
| ||||
Feng, Z., Sun, H., Qin, Y., Zhou, Y., Zhu, H., & Yao, Q. (2023). A synthetic community of siderophore-producing bacteria increases soil selenium bioavailability and plant uptake through regulation of the soil microbiome. Science of The Total Environment, 871, 162076. doi:10.1016/j.scitotenv.2023.162076 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Frébortová, J., & Frébort, I. (2021). Biochemical and structural aspects of cytokinin biosynthesis and degradation in bacteria. Microorganisms, 9(6), 1314. doi:10.3390/microorganisms9061314 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Gaby, J. C., & Buckley, D. H. (2014). A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria. Database, 2014, bau001. doi:10.1093/database/bau001 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Garg, M., Sharma, N., Sharma, S., Kapoor, P., Kumar, A., Chunduri, V., & Arora, P. (2018). Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Frontiers in Nutrition, 5, 12. doi:10.3389/fnut.2018.00012 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Ghavami, N., Alikhani, H. A., Pourbabaei, A. A., & Besharati, H. (2017). Effects of two new siderophore-producing rhizobacteria on growth and iron content of maize and canola plants. Journal of Plant Nutrition, 40(5), 736-746. doi:10.1080/01904167.2016.1262409 Crossref ● Google Scholar | ||||
| ||||
Gordon, M. H. (1990). Amino acids and other nitrogen-containing compounds. In M. H. Gordon (Ed.), Principles and applications of gas chromatography in food analysis (pp. 176-188). Boston, MA: Springer. doi:10.1007/978-1-4613-0681-8_6 Crossref ● Google Scholar | ||||
| ||||
Graham, P. H., & Vance, C. P. (2003). Legumes: importance and constraints to greater use. Plant Physiology, 131(3), 872-877. doi:10.1104/pp.017004 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Großkinsky, D. K., Tafner, R., Moreno, M. V., Stenglein, S. A., García de Salamone, I. E., Nelson, L. M., Novák, O., Strnad, M., van der Graaff, E., & Roitsch, T. (2016). Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Scientific Reports, 6(1), 23310. doi:10.1038/srep23310 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
He, D., & Wan, W. (2022). Distribution of culturable phosphate-solubilizing bacteria in soil aggregates and their potential for phosphorus acquisition. Microbiology Spectrum, 10(3), e0029022. doi:10.1128/spectrum.00290-22 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Hernández-García, J., Briones-Moreno, A., & Blázquez, M. A. (2021). Origin and evolution of gibberellin signaling and metabolism in plants. Seminars in Cell & Developmental Biology, 109, 46-54. doi:10.1016/j.semcdb.2020.04.009 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Igarashi, Y. (2004). Screening of new bioactive compounds from plant-associated actinomycetes. Actinomycetologica, 18(2), 63-66. doi:10.3209/saj.18_63 Crossref ● Google Scholar | ||||
| ||||
Johnstone, T. C., & Nolan, E. M. (2015). Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Transactions, 44(14), 6320-6339. doi:10.1039/c4dt03559c Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kalayu, G. (2019). Phosphate solubilizing microorganisms: promising approach as biofertilizers. International Journal of Agronomy, 2019, 1-7. doi:10.1155/2019/4917256 Crossref ● Google Scholar | ||||
| ||||
Kang, S.-M., Khan, A. L., Waqas, M., You, Y.-H., Hamayun, M., Joo, G.-J., Shahzad, R., Choi, K.-S., & Lee, I.-J. (2015). Gibberellin-producing Serratia nematodiphila PEJ1011 ameliorates low temperature stress in Capsicum annuum L. European Journal of Soil Biology, 68, 85-93. doi:10.1016/j.ejsobi.2015.02.005 Crossref ● Google Scholar | ||||
| ||||
Kang, S.-M., Waqas, M., Shahzad, R., You, Y.-H., Asaf, S., Khan, M. A., Lee, K.-E., Joo, G.-J., Kim, S.-J., & Lee, I.-J. (2017). Isolation and characterization of a novel silicate-solubilizing bacterial strain Burkholderia eburnea CS4-2 that promotes growth of japonica rice (Oryza sativa L. cv. Dongjin). Soil Science and Plant Nutrition, 63(3), 233-241. doi:10.1080/00380768.2017.1314829 Crossref ● Google Scholar | ||||
| ||||
Kavulych, Y., Kobyletska, M., Romanyuk, N., & Terek, O. (2023). Stress-protective and regulatory properties of salicylic acid and prospects of its use in plant production. Studia Biologica, 17(2), 173-200. doi:10.30970/sbi.1702.718 Crossref ● Google Scholar | ||||
| ||||
Khan, A., Singh, J., Upadhayay, V. K., Singh, A. V., & Shah, S. (2019). Microbial biofortification: a green technology through plant growth promoting microorganisms. In S. Shah, V. Venkatramanan, R. Prasad (Eds.), Sustainable green technologies for environmental management (pp. 255-269). Singapore: Springer. doi:10.1007/978-981-13-2772-8_13 Crossref ● Google Scholar | ||||
| ||||
Khan, A., Singh, P., & Srivastava, A. (2018). Synthesis, nature and utility of a versatile iron chelator - siderophore: a review. Microbiological Research, 212-213, 103-111. doi:10.1016/j.micres.2017.10.012 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Kirui, C. K., Njeru, E. M., & Runo, S. (2022). Diversity and phosphate solubilization efficiency of phosphate solubilizing bacteria isolated from semi-arid agroecosystems of eastern Kenya. Microbiology Insights, 15, 11786361221088991. doi:10.1177/11786361221088991 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Koç, E., & Karayiğit, B. (2022). Assessment of biofortification approaches used to improve micronutrient-dense plants that are a sustainable solution to combat hidden hunger. Journal of Soil Science and Plant Nutrition, 22(1), 475-500. doi:10.1007/s42729-021-00663-1 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kochar, M., Vaishnavi, A., Upadhyay, A., & Srivastava, S. (2013). Bacterial biosynthesis of indole-3-acetic acid: signal messenger service. Molecular Microbial Ecology of the Rhizosphere, 1, 309-325. doi:10.1002/9781118297674.ch29 Crossref ● Google Scholar | ||||
| ||||
Kots, S. Ya., Vorobei, N. A., Mykhalkiv, L. M., & Karaushu, O. V. (2021). Influence of nodule bacteria strains of Sinorhizobium meliloti on the amino acid content in the tops of alfalfa under different water supply. Agriciltural Microbiology, 33, 25-32. doi:10.35868/1997-3004.33.25-32 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
Kurth, C., Kage, H., & Nett, M. (2016). Siderophores as molecular tools in medical and environmental applications. Organic & Biomolecular Chemistry, 14(35), 8212-8227. doi:10.1039/c6ob01400c Crossref ● PubMed ● Google Scholar | ||||
| ||||
Li, Y., Liu, X., Hao, T., & Chen, S. (2017). Colonization and maize growth promotion induced by phosphate solubilizing bacterial isolates. International Journal of Molecular Sciences, 18(7), 1253. doi:10.3390/ijms18071253 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Lindström, K., & Mousavi, S. A. (2020). Effectiveness of nitrogen fixation in rhizobia. Microbial Biotechnology, 13(5), 1314-1335. doi:10.1111/1751-7915.13517 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Liu, C., Yamamura, H., Hayakawa, M., Zhang, Z., Oku, N., & Igarashi, Y. (2022a). Plant growth-promoting and antimicrobial chloropyrroles from a rare actinomycete of the genus Catellatospora. The Journal of Antibiotics, 75(12), 655-661. doi.10.1038/s41429-022-00567-x Crossref ● PubMed ● Google Scholar | ||||
| ||||
Liu, C., Zhang, Z., Fukaya, K., Urabe, D., Harunari, E., Oku, N., & Igarashi, Y. (2022b). Catellatolactams A-C, plant growth-promoting ansamacrolactams from a rare actinomycete of the genus Catellatospora. Journal of Natural Products, 85(8), 1993-1999. doi:10.1021/acs.jnatprod.2c00331 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Lohosha, O., Vorobei, Y., & Leonova, N. (2023). Symbiotic efficiency and cytokinin activity of new Mesorhizobium cicerі strains. Mikrobiolohichnyi Zhurnal, 85(1), 3-11. doi:10.15407/microbiolj85.01.003 Crossref ● Google Scholar | ||||
| ||||
Lu, S., Harunari, E., Oku, N., & Igarashi, Y. (2022). Trehangelin E, a bisacyl trehalose with plant growth promoting activity from a rare actinomycete Polymorphospora sp. RD064483. The Journal of Antibiotics, 75(5), 296-300. doi:10.1038/s41429-022-00519-5 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Makar, O. O., & Romanyuk, N. D. (2022). Endophytic bacteria of wheat and the potential to improve microelement composition of grain. Studia Biologica, 16(3): 101-128. doi:10.30970/sbi.1603.692 Crossref ● Google Scholar | ||||
| ||||
Makar, O., Kuźniar, A., Patsula, O., Kavulych, Y., Kozlovskyy, V., Wolińska, A., Skórzyńska-Polit, E., Vatamaniuk, O., Terek, O., & Romanyuk, N. (2021). Bacterial endophytes of spring wheat grains and the potential to acquire Fe, Cu, and Zn under their low soil bioavailability. Biology, 10(5), 409. doi:10.3390/biology10050409 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Malik, J. A. (Ed.). (2021). Handbook of research on microbial remediation and microbial biotechnology for sustainable soil. IGI Global. doi:10.4018/978-1-7998-7062-3 Crossref ● Google Scholar | ||||
| ||||
Manasa, M., Ravinder, P., Gopalakrishnan, S., Srinivas, V., Sayyed, R. Z., El Enshasy, H. A., Yahayu, M., Kee Zuan, A. T., Kassem, H. S., & Hameeda, B. (2021). Co-inoculation of Bacillus spp. for growth promotion and iron fortification in sorghum. Sustainability, 13(21), 12091. doi:10.3390/su132112091 Crossref ● Google Scholar | ||||
| ||||
Masson-Boivin, C., & Sachs, J. L. (2018). Symbiotic nitrogen fixation by rhizobia-the roots of a success story. Current Opinion in Plant Biology, 44, 7-15. doi:10.1016/j.pbi.2017.12.001 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Matilla, M. A., Daddaoua, A., Chini, A., Morel, B., & Krell, T. (2018). An auxin controls bacterial antibiotics production. Nucleic Acids Research, 46(21), 11229-11238. doi:10.1093/nar/gky766 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Mekureyaw, M. F., Pandey, C., Hennessy, R. C., Nicolaisen, M. H., Liu, F., Nybroe, O., & Roitsch, T. (2022). The cytokinin-producing plant beneficial bacterium Pseudomonas fluorescens G20-18 primes tomato (Solanum lycopersicum) for enhanced drought stress responses. Journal of Plant Physiology, 270, 153629. doi:10.1016/j.jplph.2022.153629 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Miri, M., Janakirama, P., Held, M., Ross, L., & Szczyglowski, K. (2016). Into the root: how cytokinin controls rhizobial infection. Trends in Plant Science, 21(3), 178-186. doi:10.1016/j.tplants.2015.09.003 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Nitawaki, Y., Kitabayashi, H., Mason, M. L. T., Yamamoto, A., & Saeki, Y. (2021). Effect of salt stress on soybean growth and nodulation under inoculation with soybean rhizobia. Soil Science and Plant Nutrition, 67(2), 103-113. doi:10.1080/00380768.2020.1860644 Crossref ● Google Scholar | ||||
| ||||
Normand, P., & Fernandez, M. P. (2019). Frankia Brunchorst 1886, 174AL. In W. Whitman (Ed.), Bergey's manual of systematics of archaea and bacteria (pp. 1-19). NJ, USA: John Wiley & Sons, Inc.; Hoboken. doi:10.1002/9781118960608.gbm00042.pub2 Crossref ● Google Scholar | ||||
| ||||
Ostash, B., Gren, T., Hrubskyy, Y., Tistechok, S., Beshley, S., Baranov, V., & Fedorenko, V. (2013). Cultivable actinomycetes from rhizosphere of birch (Betula pendula) growing on a coal mine dump in Silets, Ukraine. Journal of Basic Microbiology, 54(8), 851-857. doi:10.1002/jobm.201200551 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Pahari, A., Pradhan, A., Nayak, S. K., & Mishra, B. B. (2017). Bacterial siderophore as a plant growth promoter. In J. Patra, C. Vishnuprasad & G. Das (Eds.), Microbial biotechnology (pp. 163-180). Singapore: Springer. doi:10.1007/978-981-10-6847-8_7 Crossref ● Google Scholar | ||||
| ||||
Pang, Z., Mao, X., Zhou, S., Yu, S., Liu, G., Lu, C., Wan, J., Hu, L., & Xu, P. (2023). Microbiota-mediated nitrogen fixation and microhabitat homeostasis in aerial root-mucilage. Microbiome, 11(1), 85. doi:10.1186/s40168-023-01525-x Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Pantigoso, H. A., He, Y., Manter, D. K., Fonte, S. J., & Vivanco, J. M. (2022). Phosphorus-solubilizing bacteria isolated from the rhizosphere of wild potato Solanum bulbocastanum enhance growth of modern potato varieties. Bulletin of the National Research Centre, 46(1). doi:10.1186/s42269-022-00913-x Crossref ● Google Scholar | ||||
| ||||
Patel, P., Trivedi, G., & Saraf, M. (2018). Iron biofortification in mungbean using siderophore producing plant growth promoting bacteria. Environmental Sustainability, 1(4), 357-365. doi:10.1007/s42398-018-00031-3 Crossref ● Google Scholar | ||||
| ||||
Pecoraro, L., Wang, X., Shah, D., Song, X., Kumar, V., Shakoor, A., Tripathi, K., Ramteke, P. W., & Rani, R. (2021). Biosynthesis pathways, transport mechanisms and biotechnological aapplications of fungal siderophores. Journal of Fungi, 8(1), 21. doi:10.3390/jof8010021 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Pi, H. W., Lin, J. J., Chen, C. A., Wang, P. H., Chiang, Y. R., Huang, C. C., Young, C. C., & Li, W. H. (2022). Origin and evolution of nitrogen fixation in prokaryotes. Molecular Biology and Evolution, 39(9), msac181. doi:10.1093/molbev/msac181 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Radhakrishnan, R., & Lee, I. J. (2016). Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce. Plant Physiology and Biochemistry, 109, 181-189. doi:10.1016/j.plaphy.2016.09.018 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Raheem, A., Shaposhnikov, A., Belimov, A. A., Dodd, I. C., & Ali, B. (2018). Auxin production by rhizobacteria is associated with increased wheat (Triticum aestivum L.) yield under drought stress. Archives of Agronomy and Soil Science, 64(4), 574-587. doi:10.1080/03650340.2017.1362105 Crossref ● Google Scholar | ||||
| ||||
Razafintsalama, H., Trap, J., Rabary, B., Razakatiana, A. T. E., Ramanankierana, H., Rabeharisoa, L., Becquer, T. (2022). Effect of Rhizobium inoculation on growth of common bean in low-fertility tropical soil amended with phosphorus and lime. Sustainability, 14(9), 4907. doi:10.3390/su14094907 Crossref ● Google Scholar | ||||
| ||||
Saha, M., Sarkar, S., Sarkar, B., Sharma, B. K., Bhattacharjee, S., & Tribedi, P. (2016). Microbial siderophores and their potential applications: a review. Environmental Science and Pollution Research, 23, 3984-3999. doi:10.1007/s11356-015-4294-0 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Salazar-Cerezo, S., Martínez-Montiel, N., García-Sánchez, J., Pérez-Y-Terrón, R., & Martínez-Contreras, R. D. (2018). Gibberellin biosynthesis and metabolism: a convergent route for plants, fungi and bacteria. Microbiological Research, 208, 85-98. doi:10.1016/j.micres.2018.01.010 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Scheerer, U., Trube, N., Netzer, F., Rennenberg, H., & Herschbach, C. (2019). ATP as phosphorus and nitrogen source for nutrient uptake by Fagus sylvatica and Populus x canescens roots. Frontiers in Plant Science, 10, 378. doi:10.3389/fpls.2019.00378 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Sellstedt, A., & Richau, K. H. (2013). Aspects of nitrogen-fixing Actinobacteria, in particular free-living and symbiotic Frankia. FEMS Microbiology Letters, 342(2), 179-186. doi:10.1111/1574-6968.12116 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Sepehri, M., & Khatabi, B. (2021). Combination of siderophore-producing bacteria and Piriformospora indica provides an effective approach to improve cadmium tolerance in alfalfa. Microbial Ecology, 81, 717-730. doi:10.1007/s00248-020-01629-z Crossref ● PubMed ● Google Scholar | ||||
| ||||
Shahzad, R., Jamil, S., Ahmad, S., Nisar, A., Khan, S., Amina, Z., Kanwal, S., Aslam, H. M. U., Gill, R. A., & Zhou, W. (2021). Biofortification of cereals and pulses using new breeding techniques: current and future perspectives. Frontiers in Nutrition, 8, 721728. doi:10.3389/fnut.2021.721728 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Sheoran, S., Kumar, S., Ramtekey, V., Kar, P., Meena, R. S., & Jangir, C. K. (2022). Current status and potential of biofortification to enhance crop nutritional quality: an overview. Sustainability, 14(6), 3301. doi:10.3390/su14063301 Crossref ● Google Scholar | ||||
| ||||
Silva, L. I. da, Pereira, M. C., Carvalho, A. M. X. de, Buttrós, V. H., Pasqual, M., & Dória, J. (2023). Phosphorus-solubilizing microorganisms: a key to sustainable agriculture. Agriculture, 13(2), 462. doi:10.3390/agriculture13020462 Crossref ● Google Scholar | ||||
| ||||
Singh, P., Chauhan, P. K., Upadhyay, S. K., Singh, R. K., Dwivedi, P., Wang, J., Jain, D., & Jiang, M. (2022). Mechanistic insights and potential use of siderophores producing microbes in rhizosphere for mitigation of stress in plants grown in degraded land. Frontiers in Microbiology, 13, 898979. doi:10.3389/fmicb.2022.898979 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Stacey, G., Burris, R. H., & Evans, H. J. (1992). Biological nitrogen fixation. New York: Chapman and Hall. Google Scholar | ||||
| ||||
Tian, J., Ge, F., Zhang, D., Deng, S., & Liu, X. (2021). Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle. Biology, 10(2), 158. doi:10.3390/biology10020158 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Van Deynze, A., Zamora, P., Delaux, P. M., Heitmann, C., Jayaraman, D., Rajasekar, S., Graham, D., Maeda, J., Gibson, D., Schwartz, K. D., Berry, A. M., Bhatnagar, S., Jospin, G., Darling, A., Jeannotte, R., Lopez, J., Weimer, B. C., Eisen, J. A., Shapiro, H. Y., Ané, J. M., … Bennett, A. B. (2018). Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biology, 16(8), e2006352. doi:10.1371/journal.pbio.2006352 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Vance, C. P. (2001). Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiology, 127(2), 390-397. doi: 10.1104/pp.010331 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Wagner, S. C. (2011). Biological nitrogen fixation. Nature Education Knowledge, 3(10), 15. Google Scholar | ||||
| ||||
Xu, S., Martin, N. F., Matthews, J. W., & Arai, Y. (2022). Accumulation and release of organic phosphorus (P) from legacy P-affected soils to adjacent drainage water. Environmental Science and Pollution Research International, 29(22), 33885-33899. doi:10.1007/s11356-021-18481-4 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Xu, X. L, Mao, X. L., Van Zwieten, L., Niazi, N. K., Lu, K. P., Bolan, N. S., & Wang, H. L. (2020). Wetting-drying cycles during a rice-wheat crop rotation rapidly (im)mobilize recalcitrant soil phosphorus. Journal of Soils and Sediments, 20(11), 3921-3930. doi:10.1007/s11368-020-02712-1 Crossref ● Google Scholar | ||||
| ||||
Xu, X., Liu, G. H., Fan, Q., Chen, J., Wang, Y., Zhang, Y., Yang, Y., Wang, J., Zhang, Y., Jiang, H., Qi, L., & Wang, H. (2018). Effects of gibberellin on the activity of anammox bacteria. Journal of Environmental Management, 225, 104-111. doi:10.1016/j.jenvman.2018.07.099 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Yadav, R., Ror, P., Rathore, P., & Ramakrishna, W. (2020). Bacteria from native soil in combination with arbuscular mycorrhizal fungi augment wheat yield and biofortification. Plant Physiology and Biochemistry, 150, 222-233. doi:10.1016/j.plaphy.2020.02.039 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Yandigeri, M. S., Meena, K. K., Srinivasan, R., & Pabbi, S. (2011). Effect of mineral phosphate solubilization on biological nitrogen fixation by diazotrophic cyanobacteria. Indian Journal of Microbiology, 51(1), 48-53. doi:10.1007/s12088-011-0081-x Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zhan, J., & Sun, Q. (2012). Diversity of free-living nitrogen-fixing microorganisms in the rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings. Microbiological Research, 167(3), 157-165. doi:10.1016/j.micres.2011.05.006 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Zhang, L., Feng, G., & Declerck, S. (2018a). Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. The ISME Journal, 12(10), 2339-2351. doi:10.1038/s41396-018-0171-4 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zhang, T., Hu, F. & Ma, L. (2018b). Phosphate-solubilizing bacteria from safflower rhizosphere and their effect on seedling growth. Open Life Sciences, 14(1), 246-254. doi:10.1515/biol-2019-0028 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zhang, X., Zhang, D., Sun, W., & Wang, T. (2019). The adaptive mechanism of plants to iron deficiency through iron uptake, transport and homeostasis. International Journal of Molecular Sciences, 20(10), 2424. doi:10.3390/ijms20102424 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zhu, Z., Zhang, H., Leng, J., Niu, H., Chen, X., Liu, D., Chen, Y., Gao, N., & Ying, H. (2020). Isolation and characterization of plant growth-promoting rhizobacteria and their effects on the growth of Medicago sativa L. under salinity conditions. Antonie van Leeuwenhoek, 113(9), 1263-1278. doi:10.1007/s10482-020-01434-1 Crossref ● PubMed ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Orysia Makar, Yana Kavulych, Olga Terek, Nataliya Romanyuk
This work is licensed under a Creative Commons Attribution 4.0 International License.