PECULIARITIES OF ACCUMULATION AND LOCALIZATION OF INDOLE-3-ACETIC ACID IN ORGANS OF SALVINIA NATANS (L.) ALL. SPOROPHYTE AT THE DIFFERENT PHENOLOGICAL DEVELOPMENT PHASES

L. V. Voytenko, R. V. Likhnyovskiy, I. V. Kosakivska


DOI: http://dx.doi.org/10.30970/sbi.1003.492

Abstract


Plants of heterosporous annual fern hydrophyte Salvinia natans L. were collected in ponds of the Desniansky district of Kyiv city during summer time beginning from June, 2015 at one-month interval. Biometric studies of the whole plant (clone) and some segments of floating and submerged fronds showed that changes in the sporophyte weight and length at the various phenological phases of development occurred mostly owing to newly formed organs (modules) while linear dimensions of some formed fronds remained practically unchanged.  The weight and length of an individual submerged frond considerably exceeded those of floating one. At the steady-state growth phase (July) the weight of an individual submerged frond increased two times due to an intensive formation of multi-cellular filamentous hairs while the length remained almost unchanged. During the reproductive development (August-September) the sporophyte weight increased as a result of sporocarps formation. The pattern of IAA accumulation and localization in organs of the sporophyte S. natans was for the first time analyzed using HPLC. At the phase of a fern intensive growth (June), the total IAA content of floating and submerged fronds was shown to be similarly high and reached 182 ng/g of fresh weight.  During an active overgrowth and pubescence of submerged fronds (July) the endogenous IAA content was 546.3 ng/g of fresh weight while the quantity of this hormone in floating fronds remained at the level of the previous phase. A considerable reduction of this hormone content in ageing floating and submerged fronds was observed following the sporogenesis beginning at the phase of sporocarp formation and spore ripening. At the stage of late sporogenesis in the beginning of vegetative organs dying phase (September), the total IAA content in sporocarps that contained mature spores was 193 ng/g of fresh weight. The free hormone form dominated at the stage of an active and steady-state growth of floating and submerged fronds. Conjugated IAA was localized mostly in submerged fronds in quantity which exceeded that of floating ones 4 and 36 times, respectively. Distribution of this hormone between floating and submerged fronds shows that during the steady-state growth phase IAA is localized in submerged fronds, while at the phase of vegetative organs dying – in sporocarps. Specific changes in accumulation and localization of endogenous IAA revealed the correlation between growth processes and distribution, and content of phytohormone free and conjugated forms in sporophyte vegetative and reproductive organs of S. natans water fern during its individual development.


Keywords


Salvinia natans (L.) All, sporophyte, indole-acetic acid, growth, deve­lopment

References


1. Abul Y., Menéndez V., Gómez-Campo C. et al. Occurrence of plant growth regulators in Psilotum nudum. Journal of Plant Physiology, 2010; 167: 1211-1213.
https://doi.org/10.1016/j.jplph.2010.03.015
PMid:20488581

2. Arthur G.D., Stirk W.A., Novak O. et al. Occurrence of nutrients and plant hormones (cytokinins and IAA) in the water fern Salvinia molesta during growth and composting. Environ. and Exp. Botany, 2007; 61(2): 134-144.
https://doi.org/10.1016/j.envexpbot.2007.05.002

3. Babenko L.M., Sheyko O.A., Kosakivska I.V. et al. Structural and functional characteristics of pteridophytes (Polypodiophyta) The Biulleten of Kharkiv National. Agrar. University (Ser. Biology), 2015; 1(34): 80-103. (In Ukrainian)

4. Benková E., Michniewicz M., Sauer M. et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 2003; 115: 591-602.
https://doi.org/10.1016/S0092-8674(03)00924-3

5. Cholodny N.G. About metamorphosis of plastids in hairs of Salvinia natans submerged leaves. J. of Russian Bot. Soc, 1924; 7: 153-160. (In Russian)

6. Cooke T.J., Poli D., Cohen J.D. Did auxin play a crucial role in the evolution of novel body plans during the Late Silurian-Early Devonian radiation of land plants? The Evolution of Plant Physiology, 2003, 5 (21): 85-116.
https://doi.org/10.1016/B978-012339552-8/50006-8

7. Croxdale J.G. Hormones and Apical Dominance in the Fern Davallia. J. of Exp. Bot, 1976; 27: 801-815.
https://doi.org/10.1093/jxb/27.4.801

8. Davies P.J. (ed). Plant hormones: biosynthesis, signal transduction, action. Revised 3rd edn. Dordrecht: Springer, 2010. 816 р.
https://doi.org/10.1007/978-1-4020-2686-7

9. Didukh Ya.P., Pluta P.G., Protopopova V.V. et al. Ecoflora of Ukraine. Kyiv: Phytosociocenter, 2000. 284 p. (In Ukrainian)

10. Dun E.A., Ferguson B.J., Beveridge C.A. Apical dominance and shoot branching. Divergent opinions or divergent mechanisms? Plant Physiology, 2006; 142: 812-819.
https://doi.org/10.1104/pp.106.086868
PMid:17093134 PMCid:PMC1630731

11. Enders T.A., Strader L.C. Auxin activity: past, present, and future. Amer. J. Botany, 2015; 102 (2): 180-196.
https://doi.org/10.3732/ajb.1400285
PMid:25667071 PMCid:PMC4854432

12. Esmon C.A., Tinsley A.G., Ljung K. et al. A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proc. Natl. Acad. Sci. USA, 2006; 103: 236-241.
https://doi.org/10.1073/pnas.0507127103
PMid:16371470 PMCid:PMC1324985

13. Finkelstein R.R. The role of hormones during seed development and germination. In: Davies, P.J. (Ed), Plant Hormones: Biosynthesis, Signal Transduction. The Netherlands, Kluwer Academic Publishers, Dordrecht, 2004: 513-537.

14. Friml J., Vieten A., Sauer M. et al. Efflux-dependent auxin gradients establish the apical basal axis of Arabidopsis. Nature, 2003; 426: 147-153.
https://doi.org/10.1038/nature02085
PMid:14614497

15. Gaіka A., Szmeja J. Phenology of the aquatic fern Salvinia natans (L.) All. in the Vistula Delta in the context of climate warming. Limnologica, 2013; 43: 100-105.
https://doi.org/10.1016/j.limno.2012.07.001

16. Gregoric M., Fisher R. Auxin regulates lateral meristem activation in developing gametophytes of Ceratopteris richardii. Can. J. Bot, 2006; 84 (10): 1520-1530.
https://doi.org/10.1139/b06-113

17. Hill J.P. Meristem development at the sporophyll pinna apex in Ceratopteris richardii. International Journal of Plant Sciences, 2001; 162: 235-247.
https://doi.org/10.1086/319576

18. Hou G., Hill J.P., Blancaflor E.B. Developmental anatomy and auxin response of lateral root formation in Ceratopteris richardii. J. Exp. Bot, 2004: 685-693.
https://doi.org/10.1093/jxb/erh068
PMid:14754921

19. Ikeda Y., Men S., Fischer U. et al. Local auxin biosynthesis modulates gradient-directed planar polarity in Arabidopsis. Nat. Cell Biol, 2009; 11: 731-738.
https://doi.org/10.1038/ncb1879
PMid:19448626

20. Jones B., Ljung K. Subterranean space exploration: the development of root system architecture. Curr. Opin. Plant Biol, 2012; 15: 97-102.
https://doi.org/10.1016/j.pbi.2011.10.003
PMid:22037466

21. Kaźmierczak A., Stepiński D. GA3 content in young and mature antheridia of Chara tomentosa estimated by capillary electrophoresis. Folia Histochemica et Cytobiologica, 2005; 43(1): 65-67.

22. Kende H., Zeeavaart J.A.D. The five "classical" plant hormones. The Plant Cell, 1997; 9: 1197-1210.
https://doi.org/10.1105/tpc.9.7.1197
PMid:12237383 PMCid:PMC156991

23. Korasick D.A., Enders T.A., Strader L.C. Auxin biosynthesis and storage forms. J. Exper. Botany, 2013; 64: 2541-255.
https://doi.org/10.1093/jxb/ert080
PMid:23580748 PMCid:PMC3695655

24. Korchagina I.А. Taxonomy of Higher Spore Plants with Fundamentals of Paleobotany. St. Petersburg, 2011. P. 514-522. (In Russian)

25. Kosakivska I.V. Physiological-biochemical fundamentals of plant adaptation to stres­ses. Kyiv: Stal, 2003. 191 p. (In Ukrainian)

26. Kosakivska I.V., Voytenko L.V., Likhnyovskiy R.V., Ustinova A.Y. Effect of temperature on accumulation of abscisic acid and indole-3-acetic acid in Triticum aestivum L. seedlings. Genetics and Plant Physiology, 2014; 4(3-4): 201-208.

27. Kwa S.H., Wee Y.C., Lim T.M., Kumar P.P. IAA-induced apogamy in Platycerium coronarium (Koening) Desv. Gametophytes cultured in vitro. Plant Cell Rep, 1995; 14: 598-602.
https://doi.org/10.1007/BF00231946
PMid:24185605

28. Kwa S.H., Wee Y.C., Lim T.M., Kumar P.P. Morphogenetic plasticity of callus reinitiated from cell suspension cultures of the fern Platycerium coronarium. Plant Cell Tissue Organ Cult, 1997; 48: 37-44.
https://doi.org/10.1023/A:1005756822370

29. Ljung K. Auxin metabolism and homeostasis during plant development. Development, 2013; 140: 943-950.
https://doi.org/10.1242/dev.086363
PMid:23404103

30. Ludwig-Müller J. Auxin conjugates: their role for plant development and in the evolution of land plants. J. Exp. Bot, 2011; 62: 1757-1773.
https://doi.org/10.1093/jxb/erq412
PMid:21307383

31. Menéndez V., Abul Y., Bohanec B. et al. The effect of exogenous and endogenous phytohormones on the in vitro development of gametophyte and sporophyte in Asplenium nidus (L.). Acta Physiol. Plant, 2011; 33: 2493-2500.
https://doi.org/10.1007/s11738-011-0794-9

32. Menéndez V., Villacorta N.F., Revilla M.A. et al. Exogenous and endogenous growth regulators on apogamy in Dryopteria affinis (Lowe) Frasser-Jenkins. Plant Cell Rep, 2006; 25(2): 85-91.
https://doi.org/10.1007/s00299-005-0041-1
PMid:16408178

33. Miller P.M., Sweet H.C., Miller J.H. Growth Regulation by Ethylene in Fern Gametophytes. I. Effects on Protonemal and Rhizoidal Growth and Interaction with Auxin. American Journal of Botany, 1970; 57 (2): 212-217.
https://doi.org/10.1002/j.1537-2197.1970.tb09809.x

34. Miransari M., Smith D.L. Plant hormones and seed germination. Environmental and Experimental Botany, 2014; 99: 110-121.
https://doi.org/10.1016/j.envexpbot.2013.11.005

35. Mockeviиiūtė R. Indole-3-acetic acid-protein complexes in chloroplasts and mitochondria / Summary of doctoral dissertation Biomedical sciences botany (04 B), 2010. 37 p.

36. Nakazawa S. Morphogenesis of the fern protonema. II. Modification of the apical differentiation in Dryopteris affected by IAA. Protoplasma, 1959 (1); 52: 1-4.
https://doi.org/10.1007/BF02665680

37. Paciorek T., Friml J. Auxin signaling. J. Cell Sci, 2006; 119: 1199-1202.
https://doi.org/10.1242/jcs.02910
PMid:16554435

38. Pati C.K., Bhattacharjee A. Influence of IAA on the retention of detached leaf senescence of three aquatic plant species. International Journal of Science and Knowledge, 2013; 2(1): 42-46.

39. Peleg Z., Blumwald E. Hormone balance and abiotic stress tolerance in crop plants. Current Opinion Plant Biol, 2011; 14: 290-295.
https://doi.org/10.1016/j.pbi.2011.02.001
PMid:21377404

40. Pilate G., Sossountzov L., Miginiac E. Hormone Levels and Apical Dominance in the Aquatic Fern Marsilea drummondii A. Br. Plant Physiol, 1989; 90: 907-912.
https://doi.org/10.1104/pp.90.3.907
PMid:16666896 PMCid:PMC1061819

41. Ross J.J., Reid J.B. Evolution of growth-promoting plant hormones. Funct. Plant Biol, 2013; 7: 795-805.

42. Sauer M., Robert S., Kleine-Vehn J. Auxin: simply complicated. Journal of Experimental Botany, 2013; 64(9): 2565-2577.
https://doi.org/10.1093/jxb/ert139
PMid:23669571

43. Shcherbatiuk M.M., Babenko L.M., Sheyko O.A., Kosakivska I.V. Microstructural features of water fern Salvinia natans (L.) All. organ surfaces. Modern Phytomorphology, 2015; 7: 129-133. (In Ukrainian)

44. Shin S., Lee J., Rudell D. et al. Transcript Profiles of Auxin Efflux Carrier and IAA-Amido Synthetase Genes Suggest the Role of Auxin on Apple (Malus × domestica) Fruit Maturation Patterns. American Journal of Plant Sciences, 2015; 6: 620-632.
https://doi.org/10.4236/ajps.2015.65067

45. Simon S., Petrášek J. Why plants need more than one type of auxin. Plant Sci, 2011; 180: 454-460.
https://doi.org/10.1016/j.plantsci.2010.12.007
PMid:21421392

46. Slovin J.P., Bandurski R.S., Cohen J.D. Auxin. In: Hooykaas P.J.J., Hall M.A., Libbenga K.R., eds. Biochemistry and molecular biology of plant hormones. Amsterdam: Elsevier, 1999; 115-140.
https://doi.org/10.1016/S0167-7306(08)60485-8

47. Smith A.R., Pryer K.M., Schuettpelz E. et al. A classification for extant ferns. Taxon, 2006; 55: 705-731.
https://doi.org/10.2307/25065646

48. Strader L.C., Nemhauser J.L. Auxin 2012: A rich mea ho'oulu. Development, 2013; 140: 1153-1157.
https://doi.org/10.1242/dev.090530
PMid:23444348 PMCid:PMC3585655

49. Szmeja J., Galka A. Survival and reproduction of the aquatic fern Salvinia natans (L.) All. during expansion in the Vistula Delta, south Baltic Sea coast. Journal of Freshwater Ecology, 2013; 28: 113-123.
https://doi.org/10.1080/02705060.2012.716375

50. Tivendale N.D., Davidson S.E., Davies N.W. et al. Biosynthesis of the halogenated auxin, 4-chloroindole-3-acetic acid. Plant Physiol, 2012; 159: 1055-1063.
https://doi.org/10.1104/pp.112.198457
PMid:22573801 PMCid:PMC3387693

51. Vasheka О.V., Bezsmertna О.О. Atlas of the fern flora of Ukraine: Kyiv: Palivoda, 2012. 284 p. (In Ukrainian).

52. Voytenko L.V., Musatenko L.I. Phytohormones as growth regulators in thallus of fresh-water charophytes at the various ontogenesis stages: In: Morgun V.V. (Ed.) Plant Physiology: Problems and Prospects of their Development. Kyiv: Lagos, 2009, 2: 423-437. (In Ukrainian)

53. Woodward A.W., Bartel B. Auxin regulation, action, and interaction. Annals of Botany, 2005; 95: 707-735.
https://doi.org/10.1093/aob/mci083
PMid:15749753 PMCid:PMC4246732

54. Zažímalová E., Murphy A. S., Yang H. et al. Auxin transporters - why so many? Cold Spring Harb. Perspect. Biol, 2010; 2: a001552.
https://doi.org/10.1101/cshperspect.a001552
PMid:20300209 PMCid:PMC2829953


Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.