2+ TRANSPORTING SYSTEMS IN SECRETORY CELLS OF THE RAT EXORBITAL LACRIMAL GLAND. I. Cа2+ PUMPS OF PLASMA MEMBRANE AND ENDOPLASMIC RETICULUM

A. B. Kotliarova, V. V. Manko


DOI: http://dx.doi.org/10.30970/sbi.0602.232

Abstract


The mechanism of secretion by lacrimal glands, the innervation and orientation effects, and the mechanism of transduction of primary agonists are similar to the major salivary glands. However, unlike the major salivary glands, about organization of Ca2+ signalling and Ca2+-transporting systems contribution to Ca2+ homeostasis maintenance in secretory cells of the lacrimal glands is not totally clear yet. The purpose of the work was to investigate the role of plasma membrane (PMCA) and endoplasmic reticulum (SERCA) Ca2+ pumps in maintenance of Ca2+ homeostasis in the secretory cells of the lacrimal glands. The study was performed on intact and digitonin-permeabilized secretory cells of exorbital lacrimal glands of rats. The functioning of the Ca2+-transporting systems was estimated by changes of Ca2+ content in cells, after incubation with agonists or antagonists. Ca2+ content  was determined using metalochromic dye Arsenazo III. The baseline Ca2+ content in intact and permeabilized cells decreases during incubation time. This decrease is caused by dysfunction of SERCA. This pump is high effectively inhibited by eosin Y (10 µmol/l) and thapsigargin (1 µmol/l). PMCA plays important role in maintaining of Ca2+ homeostasis in the lacrimal gland  secretory cells. Thus, the content of Ca2+ in intact cells of rat lacrimal glands did not change under inhibition by eosin Y in wide concentration range (5–20 µmol/l) (unlike digitonin-permeabilized cells). In addition, eosin Y (5 µmol/l) prevented time-dependent reduction of Ca2+ content in intact cells. In both cases, inhibition of PMCA eliminates the effect of inhibition of SERCA. Results of two-factor analysis of variance confirmed that in the absence of eosin Y incubation time and permeabilization of plasma membrane significantly affect the content of Ca2+ in cells. At the same time, in the presence of eosin Y (5 µmol/l) only permeabilization of plasma membrane reliably affects of the changes of Ca2+ content. Because in permeabilized cells, as well as eosin Y influence in concentration 5 µmol/l, PMCA does not transport Ca2+ from the cell.


Keywords


eosin Y, Са2+ transport systems, Са2+ pump of plasma membrane (PMCA), Са2+ pump of endoplasmic reticulum (SERCA), lacrimal gland, secretory cells

References


1. Вац Ю.О., Клевець М.Ю., Федірко Н.В. Кінетичні характеристики Са2+, Mg2+, ATPаз клітин підщелепної слинної залози щурів. Укр. біохім. журнал, 2004; 76(6): 44-54.

2. Великопольська О.Ю., Манько Б.О., Манько В.В. Ендоплазматично-мітохондріальна Са2+-функціональна одиниця: залежність дихання секреторних клітин від активності ріанодин- та ІФ3-чутливих Са2+-каналів. Укр. біохім. журнал, 2012; 84(5): 76-88.

3. Деркач М.П., Гумецький Р.Я., Чабан М.Е. Курс варіаційної статистики. Київ: Вища школа, 1977. 206 с.

4. Дубицький Л.О. Енергозалежні Са2+-транспортувальні системи секреторних клітин екзокринних залоз та механізми взаємодії їх з катіонами металів: автореф. дис. ... д-ра біол. наук. Київ, 2006. 39 с.

5. Костерин С.А., Браткова Н.Ф., Бабич Л.Г. и др. Влияние ингибиторов энергозависимых Са2+-транспортирующих систем на кальциевые насосы гладкомышечной клетки. Укр. біохім. журнал, 1996; 68(6): 50-61.

6. Костерин С.А., Бурдыга Н.В. Транспорт и внутриклеточный гомеостаз Са2+ в миометрии. Успехи соврем. биологии, 1993; 113(4): 485-506.

7. Манько В.В. Системи транспортування Са2+ у секреторних клітинах екзокринних залоз: монографія. Львів: Львівський національний університет імені Івана Франка, 2011. 271 с. [Серія «Біологічні Студії»].

8. Манько В.В., Бичкова С.В., Клевець М.Ю. Ідентифікація каналів вивільнення Са2+ у секреторних клітинах слинних залоз личинки комара-дергуна. Укр. біохім. журнал, 2004; 76(1): 65-71.

9. Манько В.В., Клевець М.Ю., Федірко Н.В., Король Т.В. Вплив хлорпромазину на Са2+-транспортні системи плазматичної мембрани секреторних клітин слинної залози личинки Chironomus plumosus L. Укр. біохім. журнал, 2000; 72 (2): 36-41.

10. Мерлавський В.М., Манько Б.О., Іккерт О.В., Манько В.В. Енергетичні процеси ізольованих гепатоцитів за різної тривалості дії інсуліну. Біологічні Студії / Studia Biologica, 2010; 4(3): 15-22.
https://doi.org/10.30970/sbi.0403.120

11. Слінченко Н.М., Черниш І.Г., Костерін С.О. Використання очищеної Са2+, Mg2+-ATPази плазматичної мембрани клітин міометрія для порівняльної оцінки ефективності дії інгібіторів енергозалежного транспортування іонів кальцію. Укр. біохім. журнал, 2003; 75(2): 33-38.

12. Чорна Т., Манько В., Клевець М. Системи транспортування Са2+ у слинних залозах личинки Drosophila melanogaster. Вісник Львів. ун-ту. Сер. біол, 2009; 49: 182-189.

13. Шлыков С.Г., Бабич Л.Г., Костерин С.А. Суспензия гладкомышечных клеток, обработанных раствором дигитонина, как модель для изучения кальциевого насоса эндоплазматического ретикулума миометрия. Биохимия, 1997; 62: 1666-1671.

14. Belan P.V., Gerasimenko O.V., Tepikin A.V., Petersen O.H. Localization of Ca2+ extrusion sites in pancreatic acinar cells. J. Biol. Chem, 1996; 271(13): 7615-7619.
https://doi.org/10.1074/jbc.271.13.7615
PMid:8631796

15. Botelho S.Y., Goldstein A.M., Martinez E.V. Norepinephrine-responsive beta-adrenergic receptors in rabbit lacrimal gland. Am. J. Physiol, 1973; 224(5): 1119-1122.
https://doi.org/10.1152/ajplegacy.1973.224.5.1119
PMid:4144765

16. Dartt D.A. Signal transduction and control of lacrimal gland protein secretion: a review. Curr Eye Res, 1989; 8(6): 619-636.
https://doi.org/10.3109/02713688908995762

17. Dartt D.A., Hodges R.R. Cholinergic agonists activate P2X7 receptors to stimulate protein secretion by the rat lacrimal gland. Invest. Ophthalmol. Vis. Sci, 2011; 52(6): 3381-3390.
https://doi.org/10.1167/iovs.11-7210
PMid:21421880 PMCid:PMC3109033

18. Ding C., Walcott B., Keyser K. Sympathetic neural control of the mouse lacrimal gland. Invest. Ophthalmol. Vis. Sci, 2003; 44(4): 1513-1520.
https://doi.org/10.1167/iovs.02-0406
PMid:12657587

19. Foskett J. K., Roifman C. M., Wong D. Activation of calcium oscillations by thapsigargin in parotid acinar cells. J. Biol. Chem, 1991; 266(5): 2778-2782.

20. Foskett J., Wong D. Calcium oscillations in parotid acinar cells induced by microsomal Ca2+-ATPase inhibition. Am. J. Physiol. Cell. Physiol, 1992; 262(3): C656-C663.
https://doi.org/10.1152/ajpcell.1992.262.3.C656
PMid:1532294

21. Gatto C., Hale C.C., Xu W., Milanick M.A. Eosin, a potent inhibitor of the plasma membrane Ca pump, does not inhibit the cardiac Na-Ca exchanger. Biochemistry, 1995; 34(3): 965-972.
https://doi.org/10.1021/bi00003a031
PMid:7530047

22. Gatto C., Milanick M.A. Inhibition of the red blood cell calcium pump by eosin and other fluorescein analogues. Am. J. Physiol. Cell Physiol, 1993; 264(6): 1577-1586.
https://doi.org/10.1152/ajpcell.1993.264.6.C1577
PMid:7687411

23. Gerasimenko O.V., Gerasimenko J.V., Belan P.V., Petersen O.H. Inositol triphosphate and cyclic ADP-ribose-mediated release of Ca2+ from single isolated pancreatic zymogen granules. Cell, 1996; 84(3): 473-480.
https://doi.org/10.1016/S0092-8674(00)81292-1

24. Godfrey P.P., Putney J.W. Jr. Receptor-mediated metabolism of the phosphoinositides and phosphatidic acid in rat lacrimal acinar cells. Biochem. J, 1984; 218(1): 187-195.
https://doi.org/10.1042/bj2180187
PMid:6324749 PMCid:PMC1153323

25. Goldstein A.M, de Palau A., Botelho S.Y. Inhibition and facilitation of pilocarpine-induced lacrimal flow by norepinephrine. Invest. Ophthalmol. Vis. Sci, 1967; 6(5): 498-511.

26. Harmer A.R., Smith P.M., Gallacher D.V. Local and global calcium signals and fluid and electrolyte secretion in mouse submandibular acinar cells. Am. J. Physiol. Gastrointest. Liver Physiol, 2005; 288(1): G118-G124.
https://doi.org/10.1152/ajpgi.00096.2004
PMid:15308468

27. Herzog V., Sies H., Miller F. Exocytosis in secretory cells of rat lacrimal gland peroxidase release from lobules and isolated cells upon cholinergic stimulation. J. Cell Biol, 1976; 70: 692-706.
https://doi.org/10.1083/jcb.70.3.692
PMid:956271

28. Hodges R.R., Vrouvlianis J., Shatos M.A., Dartt D.A. Characterization of P2X7 purinergic receptors and their function in rat lacrimal gland. Invest. Ophthalmol. Vis. Sci, 2009; 50(12): 5681-5689.
https://doi.org/10.1167/iovs.09-3670
PMid:19608535 PMCid:PMC2819099

29. Horbay R.O., Manko B.O., Manko V.V. et al. Respiration characteristics of mitochondria in parental and giant transformed cells of the murine Nemeth-Kellner lymphoma. Cell Biol. Int, 2012; 36(1): 71-77.
https://doi.org/10.1042/CBI20110017
PMid:21899518

30. Iwabuchi Y., Masuhara T. Effects of cholinergic and adrenergic agonists on the secretion of fluid and protein by submandibular glands of the hamster and the rat. Comp. Biochem. Physiol. C, 1992; 103(2): 277-283.
https://doi.org/10.1016/0742-8413(92)90008-U

31. Kwan C.Y., Takemura H., Obie J.F. et al. Effects of MeCh, thapsigargin, and La3+ on plasmalemmal and intracellular Ca2+ transport in lacrimal acinar cells. Am. J. Physiol. Cell Physiol, 1990; 258(6 Pt 1): C1006-C1015.
https://doi.org/10.1152/ajpcell.1990.258.6.C1006
PMid:2360617

32. Lee M.G., Xu X., Zeng W., Diaz J. et al. Polarized expression of Ca2+ pumps in pancreatic and salivary gland cells. Role in initiation and propagation of [Ca2+]i waves. J. Biol. Chem, 1997; 272 (25): 15771-15776.
https://doi.org/10.1074/jbc.272.25.15771
PMid:9188473

33. Manko B.O., Klevets M.Y., Manko V.V. An implication of novel methodology to study pancreatic acinar mitochondria under in situ conditions. Cell Biochem. Funct, 2012.
https://doi.org/10.1002/cbf.2864
PMid:22886484

34. Mauduit P., Jammes H., Rossignol B. M3 muscarinic acetylcholine receptor coupling to PLC in rat exorbital lacrimal acinar cells. Am. J. Physiol, 1993; 264(6 Pt 1): C1550-C1560.
https://doi.org/10.1152/ajpcell.1993.264.6.C1550
PMid:8333505

35. Mauduit P., Herman G., Rossignol B. Protein secretion in lacrimal gland: Alpha 1-beta-adrenergic synergism. Am. J. Physiol, 1986; 250(5, Pt. 1): C704-С712.
https://doi.org/10.1152/ajpcell.1986.250.5.C704
PMid:2871760

36. Melvin J.E., Yule D., Shuttleworth T., Begenisich T. Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annu. Rev. Physiol, 2005; 67: 445-469.
https://doi.org/10.1146/annurev.physiol.67.041703.084745
PMid:15709965

37. Métioui M., Grosfils K., Dehaye J.P. Regulation by thapsigargin and carbachol of the intracellular calcium concentration in rat submandibular glands. Gen Pharmacol, 1994; 25(7): 1353-1359.
https://doi.org/10.1016/0306-3623(94)90159-7

38. Mogami H., Nakano K., Tepikin A.V., Petersen O.H. Ca2+ flow via tunnels in polarized cells: recharging of apical Ca2+ stores by focal Ca2+ entry through basal membrane patch. Cell, 1997; 88(1): 49-55.
https://doi.org/10.1016/S0092-8674(00)81857-7

39. Moreno M., de Victoria M., López M. Effect of sympathetic stimulation on salivary secretion in submandibular gland in the rabbit stimulated by pilocarpine. Rev. Esp. Fisiol, 1984; 40(1): 15-18.

40. Ogi M., Yokomori H., Inao M. et al. Hepatic stellate cells express Ca2+ pump-ATPase and Ca2+ Mg2+-ATPase in plasma membrane of caveolae. J. Gastroenterol, 2000; 35(12): 912-918.
https://doi.org/10.1007/s005350070005
PMid:11573727

41. Petersen C.C., Petersen O.H., Berridge M.J. The role of endoplasmic reticulum calcium pumps during cytosolic calcium spiking in pancreatic acinar cells. J. Biol. Chem, 1993; 268(30): 22262-22264.

42. Petersen O.H., Verkhratsky A. Endoplasmic reticulum calcium tunnels integrate signalling in polarised cells. Cell Calcium, 2007; 42(4-5): 373-378.
https://doi.org/10.1016/j.ceca.2007.05.012
PMid:17624427

43. Quissell D.O., Barzen K.A., Deisher L.M. Rat submandibular and parotid protein phosphorylation and exocytosis: effect of site-selective cAMP analogs. Crit. Rev. Oral Biol. Med, 1993; 4(3-4): 443-448.
https://doi.org/10.1177/10454411930040032601

44. Smith M.M., Gallacher D.V. Thapsigargin-induced Ca2+ mobilization in acutely isolated mouse lacrimal acinar cells is dependent on a basal level of Ins(1,4,5)P3 and is inhibited by heparin. Biochem. J, 1994; 299(Pt 1): 37-40.
https://doi.org/10.1042/bj2990037
PMid:8166657 PMCid:PMC1138017

45. Thastrup O., Dawson A.P., Scharff O. et al. Thapsigargin, a novel molecular probe for studying intracellular calcium release and storage. Agents Action, 1989; 27(1-2): 17-23.
https://doi.org/10.1007/BF02222186
PMid:2787587

46. Thorn P., Lawrie A.M., Smith P.M. et al. Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. Cell, 1993; 74(4): 661-668.
https://doi.org/10.1016/0092-8674(93)90513-P

47. Toescu E.C., Petersen O.H. Region-specific activity of the plasma membrane Ca2+-pump and delayed activation of Ca2+ entry characterize the polarized, agonist-evoked Ca2+ signals in exocrine cells. J. Biol. Chem, 1995; 270(15): 8528-8535.
https://doi.org/10.1074/jbc.270.15.8528
PMid:7721751

48. Turner R.Y., Sugiya H. Understanding salivary fluid and protein secretion. Oral Dis, 2002; 8(1): 3-11.
https://doi.org/10.1034/j.1601-0825.2002.10815.x

49. Watson E.L., Abel P.W., DiJulio D. et al. Identification of muscarinic receptor subtypes in mouse parotid gland. Am. J. Physiol. Cell Physiol, 1996; 271(3): C905-С913.
https://doi.org/10.1152/ajpcell.1996.271.3.C905
PMid:8843721

50. Zoukhri D., Hodges R.R., Rawe I.M. et al. Ca2+ signaling by cholinergic and alpha1-adrenergic agonists is up-regulated in lacrimal and submandibular glands in a murine model of Sjögren's syndrome. Clin. Immunol. Immunopathol, 1998; 89(2): 134-140.
https://doi.org/10.1006/clin.1998.4598


Refbacks

  • There are currently no refbacks.


Copyright (c) 2012 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.