CHARACTERISTICS OF SODIUM-PROTON ANTIPORTER OF EMBRYO CELLS AND CANCER CELLS

Z. Ya. Fedorovych


DOI: http://dx.doi.org/10.30970/sbi.0601.186

Abstract


Review presents the structure, regulation, function and biochemical properties on the  Na+/H+ exchanger. We cousider factors that influence activation and inhibition of the Na+/H+ exchanger. Review of literature on involving Na+/H+ exchanger in the process of embryonic and tumor cells activation has been carried. Na+/H+ exchanger plays a major role in the pathophysiological processes as hypertension, cancer, tissue or organ hypertrophy. Exchange maintains рНі that for most cells is approximately 7.2, controls cell growth and proliferation, regulates cell volume. Thus, the study of Na+/H+ exchanger of plasma membrane of embryo cell contributes to the understanding of physiological and pathophysiological processes.


Keywords


sodium-proton exchanger, blastomere, intracellular pH

References


1. Балаболкин М.И., Белоярцева М.Ф. Роль Na+-H+ обменника в патогенезе сахарного диабета 2 типа. Сахарный диабет, 2001; 2: 49-55.

2. Aharonovitz O., Kapus A., Szaґszi K. et al. Modulation of Na+/H+ exchange activity by Cl-. Am. J. Physiol. Cell Physiol, 2001; 281: C133-C141.
https://doi.org/10.1152/ajpcell.2001.281.1.C133
PMid:11401835

3. Aharonovitz O., Zaun H.C., Balla T. et al. Intracellular pH regulation by Na+/H+ exchange requires phosphatidylinositol 4,5-bisphosphate. J. Cell Biol, 2000; 150: 213-224.
https://doi.org/10.1083/jcb.150.1.213
PMid:10893269

4. Aronson P.S., Nee J., Suhm M.A. Modifier role of internal H+ with the Na+/H+ exchanger in renal microvillus membrane vesicles. Nature, 1982; 299: 161-163.
https://doi.org/10.1038/299161a0
PMid:7110335

5. Aviv A. The link between cytosolic Ca2+ and the Na+/H+ antiport: A unifying factor for essential hypertension. J. Hypertens, 1988; 6: 685-691.
https://doi.org/10.1097/00004872-198809000-00001
PMid:2972768

6. Aviv A., Livne A. The Na+/H+ antiport, cytosolic free Ca2+, and essential hypertension: A hypothesis. Am. J. Hypertens, 1988; 1: 410-413.
https://doi.org/10.1093/ajh/1.4.410
PMid:3063291

7. Barisic K., Karuzic O., Petrik J. et al. Regulation of Na+/H+ exchanger by urogastrone, a potent activator of cell proliferation. Physiol. Res, 2002; 51(5): 483-91.

8. Barr K.J., Garrill A., Jones D.H. et al. Contributions of Na+/H+ exchanger isoforms to preimplantation development of the mouse. Mol. Reprod. Dev, 1998; 50(2): 146-53.
https://doi.org/10.1002/(SICI)1098-2795(199806)50:2<146::AID-MRD4>3.3.CO;2-A

9. Beltrán A.R., Ramírez M.A., Carraro-Lacroix L.R. et al. NHE1, NHE2, and NHE4 contribute to regulation of cell pH in T84 colon cancer cells. Pflugers Arch, 2008; 455(5): 799-810.
https://doi.org/10.1007/s00424-007-0333-0
PMid:17943310

10. Benos D.J. Amiloride: chemistry, kinetics and structure-activity relationships. In Na+/H+ Exchange. Boca Raton: CRC Press, 1988; 121-136.

11. Bertrand B., Wakabayashi S., Ikeda T. et al. The Na+/H+ exchanger isoform 1 (NHE1) is a novel member of the calmodulin-binding proteins. Identification and characterization of calmodulin-binding sites. J. Biol. Chem, 1994; 269(18): 13703-9.

12. Bianchini L., Poussǔgur J. Molecular structure and regulation of vertebrate Na+/H+ exchangers. J. Exp. Biol, 1994; 196: 337-45.

13. Boyer M.J., Tannock I.F. Regulation of intracellular pH in tumor cell lines: influence of microenvironmental conditions. Cancer Research, 1992; 52: 4441-4447.

14. Busch S., Burckhardt B.C., Siffert W. Expression of the human sodium/proton exchanger NHE-1 in Xenopus laevis oocytes enhances sodium/proton exchange activity and establishes sodium/lithium countertransport. Pflugers Arch, 1995; 429(6): 859-69.
https://doi.org/10.1007/BF00374811
PMid:7603840

15. Busch S., Rosskopf D., Lang H.J. et al. Expression, functional characterization and tissue distribution of a Na+/H+ exchanger cloned from Xenopus laevis oocytes (XL-NHE). Pflugers Arch, 1998; 436(6): 828-33.
https://doi.org/10.1007/s004240050711
PMid:9799395

16. Clark J.D., Limbird L.L. Na+/H+ exchanger subtypes, a predictive review. Am. J.Physiol, 1991; 261: G945-G953.
https://doi.org/10.1152/ajpcell.1991.261.6.C945
PMid:1662907

17. Counillon L., Pouysseégur J. The Expanding Family of Eucaryotic Na+/H+ Exchangers. J. Biol. Chem, 2000; 275(7): 1-4.
https://doi.org/10.1074/jbc.275.1.1
PMid:10617577

18. Demaurex N., Grinstein S. Na+/H+ antiport: modulation by ATP and role in cell volume regulation. J. Exp. Biol, 1994; 196: 389-404.

19. Demaurex N., Romanek R.R., Orlowski J. et al. ATP Dependence of Na+/H+ Exchange Nucleotide Specificity and Assessment of the Role of Phospholipids. Physiol, 1997; 109: 117-128.
https://doi.org/10.1085/jgp.109.2.117
PMid:9041442 PMCid:PMC2220063

20. Denker S.P., Huang D.C., Orlowski J. et al. Direct binding of the Na-H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H+ translocation. Mol. Cell, 2000; 6: 1425-1436.
https://doi.org/10.1016/S1097-2765(00)00139-8

21. Donowitz M., Mohan S., Zhu C. X. et al. NHE3 regulatory complexes. J. Exp. Biol, 2009; 212: 1638-1646.
https://doi.org/10.1242/jeb.028605
PMid:19448074 PMCid:PMC2683010

22. Erdogan S., Cetinkaya A., Tuli A. et al. Changes in the activity of defense mechanisms against induced acidosis during meiotic maturation in mouse oocytes. Theriogenology, 2011; 75(6): 1057-66.
https://doi.org/10.1016/j.theriogenology.2010.11.014
PMid:21220154

23. Fafournoux P., Nod J., Pouyssegur J. Evidence that Na+/H+ exchanger isoforms NHEl stable dimers in membranes witah high degree homodimers. J. Biol. Chem, 1994; 269(4): 2589-2596.

24. Fine L.G., Nord E.P., Gunther R. et al. Chronic adaptations of Na+/H+ exchange in renal disease. Boca Raton. Fla. CRC Press, 1988; 325-334.

25. Gerchman Y., Rimon A., Padan E. A pH-dependent Conformational Change of NhaA Na+/H+ Antiporter of Escherichia coli Involves Loop VIII-IX, Plays a Role in the pH Response of the Protein, and Is Maintained by the Pure Protein in Dodecyl Maltoside. J. Biol. Chem, 1999; 274: 24617-24624.
https://doi.org/10.1074/jbc.274.35.24617
PMid:10455127

26. Goldman A., Chen H., Khan M.R. et al. The Na+/H+ exchanger controls deoxycholic acid-induced apoptosis by a H+-activated, Na+-dependent ionic shift in esophageal cells. PLoS One, 2011; 6(8): 238-235.
https://doi.org/10.1371/journal.pone.0023835
PMid:21887327 PMCid:PMC3161789

27. Goss G.G., Jiang L., Vandorpe D.H. et al. Role of JNK in hypertonic activation of Cl(-)-dependent Na(+)/H(+) exchange in Xenopus oocytes. Am. J. Physiol. Cell Physiol, 2001; 281(6): C1978-1990.
https://doi.org/10.1152/ajpcell.2001.281.6.C1978
PMid:11698257

28. Green J., Muallem S. A common mechanism for activation of the Na/H exchanger by different types of stimuli. FASEBJ, 1989; 3: 2408-2414.
https://doi.org/10.1096/fasebj.3.12.2551762
PMid:2551762

29. Harding E.A., Gibb C.A., Johnson M.H. et al. Developmental changes in the management of acid loads during preimplantation mouse development. Biol. Reprod, 2002; 67(5): 1419-1429.
https://doi.org/10.1095/biolreprod.102.005637
PMid:12390871

30. Hediger M.A., Romero M.F., Peng J.B. et al. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins: Introduction. Pflugers Arch, 2004; 447(5): 465-468.
https://doi.org/10.1007/s00424-003-1192-y
PMid:14624363

31. Hove T.M., Van Emous J., Van Echteld C. Na+ overload during ischemia and reperfusion in rat hearts: comparison of the Na+/H+ exchange blockers EIPA, cariporide and eniporide. Mol. Cell. Biochem, 2003; 250 (1-2): 47-54.

32. Inagaki N., Suzuki S., Kuji N. et al. Egg activation induced by osmotic pressure change and the effects of amiloride on the cryopreservation of mouse oocytes. Mol. Hum. Reprod, 1996; 2(11): 835-43.
https://doi.org/10.1093/molehr/2.11.835
PMid:9237223

33. Ivanis G., Esbaugh A.J., Perry S.F. Branchial expression and localization of SLC9A2 and SLC9A3 sodium/hydrogen exchangers and their possible role in acid-base regulation in freshwater rainbow trout (Oncorhynchus mykiss). Exp. Biol, 2008; 211(15): 2467-77.
https://doi.org/10.1242/jeb.017491
PMid:18626081

34. Jiang L., Chernova M.N., Alper S.L. Secondary regulatory volume increase conferred on Xenopus oocytes by expression of AE2 anion exchanger. Am. J. Physiol. Cell Physiol, 1997; 272: C191-C202.
https://doi.org/10.1152/ajpcell.1997.272.1.C191
PMid:9038825

35. Johansson M., Glazier J.D., Sibley C.P. et al. Activity and protein expression of the Na+/H+ exchanger is reduced in syncytiotrophoblast microvillous plasma membranes isolated from preterm intrauterine growth restriction pregnancies. J. Clin. Endocrinol. Metab, 2002; 87(12): 5686-5694.
https://doi.org/10.1210/jc.2002-020214
PMid:12466372

36. Johnstone E.D., Speake P.F., Sibley C.P. Epidermal growth factor and sphingosine-1-phosphate stimulate Na+/H+ exchanger activity in the human placental syncytiotrophoblast. Am. J. Physiol. Regul. Integr. Comp. Physiol, 2007; 293(6): R2290-2294.
https://doi.org/10.1152/ajpregu.00328.2007
PMid:17913870

37. Karmazyn M., Gan X.T., A Humphreys R. et al. The Myocardial Na+-H+ Exchange: Structure, Regulation, and Its Role in Heart Disease. Circulation Research, 1999; 85:777-786.
https://doi.org/10.1161/01.RES.85.9.777
PMid:10532945

38. Kawagishi R., Tahara M., Sawada K. et al. Na+/H+ exchanger-3 is involved in mouse blastocyst formation. J. Exp. Zool. A Comp. Exp. Biol, 2004; 301(9): 767-775.
https://doi.org/10.1002/jez.a.90
PMid:15559938

39. Khaled A.R., Moor A.N., Li A. et al. Trophic factor withdrawal: p38 mitogen-activated protein kinase activates NHE1, which induces intracellular alkalinization. Mol. Cell Biol, 2001; 21(22): 7545-7557.
https://doi.org/10.1128/MCB.21.22.7545-7557.2001
PMid:11604491 PMCid:PMC99926

40. Kinsella J.L., Heller P., Froehlich J.P. Na+/H+ exchanger: proton modifier site regulation of activity. Biochem. and Cell Biol, 1998; 76:(5) 743-749.
https://doi.org/10.1139/o98-087
PMid:10353707

41. Kinsella J. Froehlich J. NHE Proton Modifier Site: Activation and Inactivation Are Controlled by Slow Protein Conformational Changes: INABIS '98 - 5th Internet World Congress on Biomedical Sciences at McMaster University, Dec 7-16th 1998. Canada, 1998.

42. Klip A. Action of insulin on Na+/H+ exchange. Boca Raton. Fla. CRC Press, 1988: 285-303.

43. Kyte J., Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol, 1982; 157: 105-132.
https://doi.org/10.1016/0022-2836(82)90515-0

44. Lane M., Baltz J.M. Bavister B.D. Regulation of intracellular pH in hamster preimplantation embryos by the sodium hydrogen (Na+/H+) antiporter. Biol. Reprod, 1998; 59: 1483-1490.
https://doi.org/10.1095/biolreprod59.6.1483
PMid:9828196

45. Lane M., Lyons E.A., Bavister B.D. Cryopreservation reduces the ability of hamster 2-cell embryos to regulate intracellular pH. Human Reproduction, 2000; 15(2): 389-394.
https://doi.org/10.1093/humrep/15.2.389
PMid:10655311

46. Lang F., Busch G.L., Ritter M. et al. Functional significance of cell volume regulatory mechanisms. Physiol. Rev, 1998; 78: 247-306.
https://doi.org/10.1152/physrev.1998.78.1.247
PMid:9457175

47. Letovsky S.I., Cottingham R.W., Porter C.J. et al. GDB: The Human Genome Database. Nucleic Acids Research, 1998; 26(1): 94-99.
https://doi.org/10.1093/nar/26.1.94
PMid:9399808 PMCid:PMC147203

48. Levine S.A., Montrose M.H., Tse C.-M. et al. Kinetics and Regulation of Three Cloned Mammalian Na+/H+ Exchangers Stably Expressed in a Fibroblast Cell Line. J. Biol. Chem, 1993; 268(34): 25527-25535.

49. Li X., Alvarez B., Casey J.R. et al. Carbonic anhydrase II binds to and enhances activity of the Na+/H+ exchanger. J. Biol. Chem, 2002; 277: 36085-36091.
https://doi.org/10.1074/jbc.M111952200
PMid:12138085

50. Li X., Liu Y., Alvarez B.V. et al. A novel carbonic anhydrase II binding site regulates NHE1 activity. Biochemistry, 2006; 45(7): 2414-2424.
https://doi.org/10.1021/bi051132d
PMid:16475831

51. Lin Y., Wang J., Jin W. et al. NHE1 mediates migration and invasion of HeLa cells via regulating the expression and localization of MT1-MMP. Cell Biochem. Funct, 2012; 30: 41-46.
https://doi.org/10.1002/cbf.1815
PMid:21997166

52. Malo M.E., Fliegel L. Physiological role and regulation of the Na+/H+ exchanger. Can. J. Physiol. Pharmacol, 2006; 84: 1081-1095.
https://doi.org/10.1139/y06-065
PMid:17218973

53. Masereel B., Pochet L., Laeckmann D. An overview of inhibitors of Na+/H+ exchanger. Eur. J. Med. Chem, 2003; 38: 547-554.
https://doi.org/10.1016/S0223-5234(03)00100-4

54. McLean L.A., Roscoe J., Jorgensen N.K. et al. Malignant gliomas display altered pH regulation by NHE1 compared with nontransformed astrocytes. Am. J. Physiol. Cell Physiol, 2000; 278: C676-C688.
https://doi.org/10.1152/ajpcell.2000.278.4.C676
PMid:10751317

55. Motais R., Borgese F., Fievet B. et al. Regulation of Na+/H+ exchange and pH in erythrocytes of fish. Comp. Biochem. Physiol, 1992; 102: 597-602.
https://doi.org/10.1016/0300-9629(92)90710-8

56. Oberstein S.Y., Byun J., Herrera D. et al. Cell proliferation in human epiretinal membranes: characterization of cell types and correlation with disease condition and duration. Mol. Vis, 2011; 17: 1794-1805.

57. Olkhova E., Hunte C., Screpanti E. et al. Multiconformation continuum electrostatics analysis of the NhaA Na+/H+ antiporter of Escherichia coli with functional implications. PNAS, 2006; 103(8): 2629-2634.
https://doi.org/10.1073/pnas.0510914103
PMid:16477015 PMCid:PMC1413810

58. Orlowski J., Grinstein S. Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch, 2004; 447(5): 549-65.
https://doi.org/10.1007/s00424-003-1110-3
PMid:12845533

59. Orlowski J., Grinstein S. Na+/H+ exchangers of mammalian cells. J. Biol. Chem, 1997; 272: 22373-22376.
https://doi.org/10.1074/jbc.272.36.22373
PMid:9278382

60. Padan E., Kozachkov L., Herz K. et al. NhaA crystal structure: functional-structural insights. J. Exp. Biol, 2009; 212: 1593-1603.
https://doi.org/10.1242/jeb.026708
PMid:19448069

61. Padan E., Schuldiner S. Na+/H+ antiporters, molecular devices that couple the Na+ and H+ circulation in cells. J. Bioenerg. Biomembr, 1993; 25(6): 647-69.

62. Padan E., Venturi M., Gerchman Y. et al. Na(+)/H(+) antiporters. Biochim. Biophys. Acta, 2001; 1505(1): 144-57.
https://doi.org/10.1016/S0005-2728(00)00284-X

63. Paradiso A., Cardone R.A., Bellizzi A. et al. The Na+-H+ exchanger-1 induces cytoskeletal changes involving reciprocal RhoA and Rac1 signaling, resulting in motility and invasion in MDA-MB-435 cells. Breast Cancer Res, 2004; 6(6): R616-28.
https://doi.org/10.1186/bcr922
PMid:15535843 PMCid:PMC1064074

64. Pedersen S.F., O'Donnell M.E., Anderson S.E. et al. Physiology and pathophysiology of Na+/H+ exchange and Na+-K+-2Cl− cotransport in the heart, brain, and blood. Am. J. Physiol. Regul. Integr. Comp. Physiol, 2006; 291: R1-R25.
https://doi.org/10.1152/ajpregu.00782.2005
PMid:16484438

65. Pepe G.J., Burch M.G., Albrecht E.D. Developmental regulation of the sodium/hydrogen ion exchangers and their regulatory factors in baboon placental syncytiotrophoblast. Endocrinology, 2006; 147(6): 2986-2996.
https://doi.org/10.1210/en.2005-0887
PMid:16527850

66. Pepe G.J., Burch M.G., Sibley C.P. et al. Expression of the mRNAs and Proteins for the Na(+)/H(+) exchangers and their regulatory factors in baboon and human placental syncytiotrophoblast. Endocrinology, 2001; 42(8): 3685-3692.
https://doi.org/10.1210/endo.142.8.8343
PMid:11459818

67. Reshkin S.J., Bellizzi A., Albarani V. et al. Phosphoinositide 3-kinase is involved in the tumor-specific activation of human breast cancer cell Na(+)/H(+) exchange, motility, and invasion induced by serum deprivation. J. Biol. Chem, 2000; 275(8): 5361-9.
https://doi.org/10.1074/jbc.275.8.5361
PMid:10681510

68. Rezai K., Kulisz A., Wasserman W.J. Protooncogene product, c-mos kinase, is involved in upregulating Na+/H+ antiporter in Xenopus oocytes. Am. J. Physiol. Cell Physiol, 1994; 267(6): C1717-C1722.
https://doi.org/10.1152/ajpcell.1994.267.6.C1717
PMid:7810614

69. Romero M.F., Fulton C.M., Boron W.F. The SLC4 family of HCO3- transporters. Pflugers Arch, 2004; 447: 495-509.
https://doi.org/10.1007/s00424-003-1180-2
PMid:14722772

70. Rosskopf D., Dusing R., Siffert W. Membrane sodium-proton exchange and primary hypertension. Hypertension, 1993; 21: 60-617.
https://doi.org/10.1161/01.HYP.21.5.607
PMid:8387960

71. Rossmann H., Sonnentag T., Heinzmann A. et al. Differential expression and regulation of Na+-H+ exchanger isoforms in rabbit parietal and mucous cells. Am. J. Physiol, 2001; 281: G447-G458.
https://doi.org/10.1152/ajpgi.2001.281.2.G447
PMid:11447025

72. Rotin D., Steele-Norwood D., Grinstein S. et al. Requirement of the Na+/H+ exchanger for tumor growth. Cancer Research, 1989; 49(1): 205-211.

73. Sacktor B., Kinsella J. Regulation of Na+/H+ exchange activity by adaptive mechanisms. Boca Raton. Fla. CRC Press, 1988: 307-324.

74. Sardet C., Franchi A., Pouyssegur J. Molecular cloning, primary struc ture, and expression of the human growth factor-activatable Na+/H+ antiporter. Cell, 1989; 56: 271-280.
https://doi.org/10.1016/0092-8674(89)90901-X

75. Schelling J.R., Abu Jawdeh B.G. Regulation of cell survival by Na+/H+ exchanger-1. Am. J. Physiol. Renal. Physiol, 2008; 295(3): F625-F632.
https://doi.org/10.1152/ajprenal.90212.2008
PMid:18480176 PMCid:PMC2653110

76. Shen M.R., Wilkins R.J., Chou C.Y. et al. Anion exchanger isoform 2 operates in parallel with Na(+)/H(+) exchanger isoform 1 during regulatory volume decrease of human cervical cancer cells. FEBS, 2002; 512(1-3): 52-8.
https://doi.org/10.1016/S0014-5793(01)03317-8

77. Sherstobitov A.O., Lapin A.V., Glazunov V.V. et al. Accumulation of sodium and potassium ions in oocytes of the river lamprey Lampetra fluviatilis during prespawning period. Zh. Evol. Biokhim. Fiziol, 2011; 47(4): 278-82.
https://doi.org/10.1134/S0022093011040037

78. Silva N.L., Haworth R.S., Singh D. et al. The carboxyl-terminal region of the Na+/H+ exchanger interacts with mammalian heat shock protein. Biochemistry, 1995; 34: 10412-10420.
https://doi.org/10.1021/bi00033a013
PMid:7654695

79. Slepkov E.R., Rainey J.K., Sykes B.D. et al. Structural and functional analysis of the Na+/H+ exchanger. Biochem. J, 2007; 401: 623-633.
https://doi.org/10.1042/BJ20061062
PMid:17209804 PMCid:PMC1770851

80. Steeves C.L., Lane M., Bavister B.D. et al. Differences in Intracellular pH Regulation by Na+/H+ Antiporter among Two-Cell Mouse Embryos Derived from Females of Different Strains. Biol. Reprod, 2001; 65: 14-22.
https://doi.org/10.1095/biolreprod65.1.14
PMid:11420218

81. Takaichi K., Wang D., Balkovetz D.F. et al. Cloning, sequencing, and expression of Na+/H+ antiporter cDNAs from human tissues. Am. J. Physiol, 1992; 262: C1069-C1076.
https://doi.org/10.1152/ajpcell.1992.262.4.C1069
PMid:1314485

82. Titushkin I., Cho M. Altered osteogenic commitment of human mesenchymal stem cells by ERM protein-dependent modulation of cellular biomechanics. J. Biomech, 2011; 44(15): 2692-8.
https://doi.org/10.1016/j.jbiomech.2011.07.024
PMid:21864840

83. Towle D.W., Baksinski A., Richard N.E. et al. Characterization of an endogenous Na+/H+ antiporter in Xenopus laevis oocytes. J. Exp. Biol, 1991; 159: 359-69.

84. Tse C.-M., Levine S.A., Yun C.H.C. et al. Functional characteristics of a cloned epithelial Na+/H+ exchanger (NHE3): Resistance to amiloride and inhibition by protein kinase C. Proc. Natl. Acad. Sci, 1993; 90: 9110-9114.
https://doi.org/10.1073/pnas.90.19.9110
PMid:8415663 PMCid:PMC47511

85. Venturi M., Rimon A., Gerchman Y. et al. The Monoclonal Antibody 1F6 Identifies a pH-dependent Conformational Change in the Hydrophilic NH2 Terminus of NhaA Na+/H+ Antiporter of Escherichia coli. J. Biol. Chem, 2000; 275: 4734-4742.
https://doi.org/10.1074/jbc.275.7.4734
PMid:10671505

86. Vila-Petroff M., Mundiсa-Weilenmann C., Lezcano N., et al. Ca2+/calmodulin dependent protein kinase II contributes to intracellular pH recovery from acidosis via Na+/H+ exchanger activation. J. Mol. Cell Cardiol, 2010; 49(1): 106-112.
https://doi.org/10.1016/j.yjmcc.2009.12.007
PMid:20026127 PMCid:PMC2883686

87. Wakabayashi S., Bertrand B., Shigekawa M. et al. Growth factor activation and "H(+)-sensing" of the Na+/H+ exchanger isoform 1 (NHE1). Evidence for an additional mechanism not requiring direct phosphorylation. J. Biol. Chem, 1994; 269(8): 5583-5588.

88. Wakabayashi S., Bertrand B., Ikeda T. et al. Mutation of calmodulin-binding site renders the Na+/H+ exchanger (NHE1) highly H+-sensitive and Ca2+ regulation-defective. J. Biol. Chem, 1994; 269: 13710-13715.

89. Wakabayashi S., Fafournoux P., Sardet C. et al. The Na+/H+ antiporter cytoplasmic domain mediates growth factor signals and controls 'H+ sensing'. Proc. Natn. Acad. Sci. U.S.A, 1992; 89: 2424-2428.
https://doi.org/10.1073/pnas.89.6.2424
PMid:1372444 PMCid:PMC48670

90. Wakabayashi S., Hisamitsu T., Pang T. et al. Kinetic Dissection of Two Distinct Proton Binding Sites in Na+/H+ Exchangers by Measurement of Reverse Mode Reaction. J. Biol. Chem, 2003; 278(44): 43580-43585.
https://doi.org/10.1074/jbc.M306690200
PMid:12928437

91. Wakabayashi S., Ikeda T., Iwamoto T. et al. Calmodulin-binding autoinhibitory domain controls «pH-sensing» in the Na+/H+ exchanger NHE1 through sequence-specific interaction. Biochemistry, 1997; 36: 12854-12861.
https://doi.org/10.1021/bi9715472
PMid:9335543

92. Wakabayashi S., Pang T., Su X. et al. A novel topology model of the human Na+/H+ exchanger isoform 1. J. Biol. Chem, 2000; 275: 7942-7949.
https://doi.org/10.1074/jbc.275.11.7942
PMid:10713111

93. Wakabayashi S., Shigekawa M., Pouyssegur J. Molecular physiology of vertebrae Na+/Н+ exchangers. Physiol. Rev, 1997; 77(5): 1-74.
https://doi.org/10.1152/physrev.1997.77.1.51
PMid:9016300

94. Wang H., Singh D., Fliegel L. The Na+/H+ Antiporter Potentiates Growth and Retinoic Acid-induced Differentiation of P19 Embryonal Carcinoma Cells. J. Biol. Chem, 1997; 272(42): 26545-26549.
https://doi.org/10.1074/jbc.272.42.26545
PMid:9334233

95. Weaver Y.R., Kiessling K., Cossins A.R. Responses of the Na+/H+ exchanger of european flounder red blood cells to hypertonic, b-adrenergic and acidotic stimuli. J. Exp. Biol, 1999; 202: 21-32.

96. Xue J., Zhou D., Yao H. et al. Novel functional interaction between Na+/H+ exchanger 1 and tyrosine phosphatase SHP-2. AJP - Regu. Physiol, 2007; 292(6): R2406-R2416.
https://doi.org/10.1152/ajpregu.00859.2006
PMid:17289818

97. Yonemura S., Tsukita S., Tsukita S. Direct involvement of ezrin/radixin/moesin (ERM)-binding membrane proteins in the organization of microvilli in collaboration with activated ERM proteins. J. Cell Biol, 1999; 145: 1497-1509.
https://doi.org/10.1083/jcb.145.7.1497
PMid:10385528

98. Yun C. H. C., Tse C.-M., Donowitz M. Chimeric Na+/H+ exchangers: An epithelial membrane-bound N-terminal domain requires an epithelial cytoplasmic C-terminal domain for regulation by protein kinases. Proc. Natl. Acad. Sci, 1995; 92: 10723-10727.
https://doi.org/10.1073/pnas.92.23.10723
PMid:7479872 PMCid:PMC40684

99. Zadunaisky J.A., Kinne-Saffraaf E., Kinne R. Na/H Exchange Mechanism in Apical Membrane Vesicles of the Retinal Pigment Epithelium. Investigative Ophthalmology & Visual Science, 1989; 30(11): 2332-2340.

100. Zhao Y., Chauvet P.J., Alper S.L. et al. Expression and function of bicarbonate/chloride exchangers in the preimplantation mouse embryo. J. Biol. Chem, 1995; 270: 24428-24434.
https://doi.org/10.1074/jbc.270.41.24428
PMid:7592657


Refbacks

  • There are currently no refbacks.


Copyright (c) 2012 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.