SULFATE-REDUCING BACTERIA OF HUMAN INTESTINE. I. DISSIMILATORY SULFATE REDUCTION

I. V. Kushkevych


DOI: http://dx.doi.org/10.30970/sbi.0601.181

Abstract


Modern literature data concerning sulfate-reducing bacteria of human intestine are summarized. The characterictics and mechanisms of dissimilatory sulfate reduction by these bacteria are described. Special attention is paid to the redox potentials of some electron donors and intermediate products of the dissimilatory sulfate reduction. The detailed characteristics of substrates for sulfate-reducing bacteria obtained from the intestine of man is presented. There are presented the most widespread concepts about the trophic interactions of studied bacteria with other microorganisms. The phylogenetic diversity of sulfate-reducing bacteria is described.


Keywords


sulfate-reducing bacteria, sulfate, hydrogen sulfide, intestinal microflora

References


1. Асауленко Л.Г., Пуріш Л.М., Козлова І.П. Етапи формування біоплівки сульфатвідновлювальними бактеріями. Мікробіол. журнал, 2004; 66(3): 72-79.

2. Галушка А., Перетятко Т., Гудзь С. Бактерії циклу сірки та їхня роль у природі. Вісн. Львів. ун-ту. Сер. біол, 2007; 43: 61-77.

3. Кузнецов С.И. Микрофлора озер и ее биохимическая деятельность. М.: Мир, 1972. 362 с.

4. Перетятко Т., Галушка А., Гнатуш С. та ін. Використання органічних сполук сульфатвідновлювальними бактеріями роду Desulfovibrio. Наук. вісн. Ужгород. ун-ту. Сер. Біол, 2006; 18: 157-160.

5. Перетятко Т., Гнатуш С., Гудзь С. Сульфатвідновлювальні бактерії Яворівського сіркового родовища. Мікробіол. журнал, 2006; 68(5): 84-91.

6. Перетятко Т., Гудзь С. АФС-редуктаза Desulfovibrio desulfuricans Ya-11. Біол. вісн. Харків. 2007; 11(1): 64-66.

7. Перетятко Т.Б., Гудзь С.П. Здатність сульфатвідновлювальних бактерій Desulfovibrio desulfuricans Ya-11 i Desulfobacter sp. використовувати нітрат як акцептор електронів. Біол. студії, 2011; 5(2): 51-60.
https://doi.org/10.30970/sbi.0502.150

8. Розанова Е.П., Назина Т.Н. Сульфатвосстанавливающие бактерии (систематика и метаболизм). Успехи микробиологии, 1989; 23: 191-226.

9. Сорокин Ю.И. Исследование конструктивного обмена сульфатредуцирующих бактерий с помощью С14. Микробиология, 1966; 35(4): 967-977.

10. Сорокин Ю.И. Источник энергии и углерода для биосинтеза у сульфатредуцирующих бактерий. Микробиология, 1966; 35(5): 761-766.

11. Франк Ю.А., Лушников С.В. Биотехнологический потенциал сульфатредуцирующих бактерий. Экология и промышленность, 2006; 1: 10-13.

12. Barton L.L., Hamilton W.A. Sulphate-reducing Bacteria. Environmental and Engineered. Cambridge University Press, 2007. 553 р.
https://doi.org/10.1017/CBO9780511541490

13. Badziong W., Thauer R. Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulphate and hydrogen plus thiosulphate as the sole energy sources. Arch. Microbiol, 1978; 117: 209-214.
https://doi.org/10.1007/BF00402310
PMid:28099

14. Beijerinck M.W. Uber Spirillum desulfuricans als Ursache von Sulfatreduktion. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyd, Abt. II, 1895; 1: 49-59.

15. Boopathy R., Robichaux M, LaFont D., Howell M. Activity of sulphate-reducing bacteria in human periodontal pocket. Can. J. Microbiol, 2002; 48: 1099-1103.
https://doi.org/10.1139/w02-104
PMid:12619823

16. Broco M., Rousset M., Oliveira S., Rodrigues-Pousada C. Deletion of flavoredoxin gene in Desulfovibrio gigas reveals its participation in thiosulphate reduction. FEBS Lett, 2005; 579: 4803-4807.
https://doi.org/10.1016/j.febslet.2005.07.044
PMid:16099456

17. Castro H.F., Williams N.H., Ogram A. Phylogeny of sulphate-reducing bacteria. FEMS Microbiol. Ecol, 2000; 31: 1-9.
https://doi.org/10.1016/S0168-6496(99)00071-9

18. Castro H., Reddy K.R., Ogram A. Composition and function of sulphate-reducing prokaryotes in eutrophic and pristine areas of the Florida Everglades. Appl. Environ. Microbiol, 2002; 68: 6129-6137.
https://doi.org/10.1128/AEM.68.12.6129-6137.2002
PMid:12450837 PMCid:PMC134442

19. Cole J.A. Assimilatory and dissimilatory reduction of nitrate to ammonia // Cole J.A., Ferguson S.J. The Nitrogen and Sulphur Cycles, Cambridge: Cambridge University Press, 1988; 42: 281-329.

20. Cypionka H. Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol, 2000; 54: 827-848.
https://doi.org/10.1146/annurev.micro.54.1.827
PMid:11018146

21. Deplancke B., Finster K., Graham W. et al. Gastrointestinal and microbial responses to sulphate-supplemented drinking water in mice. Exp. Biol. Med, 2003; 228: 424-433.
https://doi.org/10.1177/153537020322800413
PMid:12671187

22. Dimroth P., Cook G. Bacterial Na+ or H+-coupled ATP synthases operating at low electrochemical potential. Adv. Microb. Physiol, 2004; 49: 175-218.
https://doi.org/10.1016/S0065-2911(04)49004-3

23. Dolla A., Pohorelic B., Voordouw J., Voordouw G. Deletion of the hmc operon of Desulfovibrio vulgaris subsp vulgaris Hildenborough hampers hydrogen metabolism and low-redox-potential niche establishment. Arch. Microbiol, 2000; 174: 143-151.
https://doi.org/10.1007/s002030000183
PMid:11041344

24. Eccles H. Biotreatment of metals: site dependent // OESD Documents "Wider application and diffusion of bioremediation technologies". Amsterdam, 1995. P. 296-302.

25. Ehrlich H.L. Microbes as geologic agents: their role in mineral formation. Geomicrobiol. J, 1999; 16: 135-153.
https://doi.org/10.1080/014904599270659

26. Fareleira P., Santos B.S., Antonio C. et al. Response of a strict anaerobe to oxygen: survival strategies in Desulfovibrio gigas. Microbiolog-SGM, 2003; 149: 1513-1522.
https://doi.org/10.1099/mic.0.26155-0
PMid:12777491

27. Farquhar J., Wing B.A. Multiple sulfur isotopes and the evolution of the atmosphere. Earth and Planetary Science Letters, 2003; 213: 1-13.
https://doi.org/10.1016/S0012-821X(03)00296-6

28. Finster K., Liesack W., Thamdrup B. Elemental sulfur and thiosulphate disproportionation by Desulfocapsa sulfoexigens sp nov, a new anaerobic bacterium isolated from marine surface sediment. Appl. Environ. Microbiol, 1998; 64: 119-125.

29. Fite A., Macfarlane G.T., Cummings J.H. et al. Identification and quantitation of mucosal and faecal desulfovibrios using real-time PCR. Gut, 2004; 53: 523-529.
https://doi.org/10.1136/gut.2003.031245
PMid:15016746 PMCid:PMC1774019

30. Forzi L., Koch J., Guss A.M. et al. Assignment of the 4Fe-4S clusters of ech hydrogenase from Methanosarcina barkeria to individual subunits via the characterization of site-directed mutants. FEBS J, 2005; 272: 4741-4753.
https://doi.org/10.1111/j.1742-4658.2005.04889.x
PMid:16156794

31. Frederiksen T.M., Finster K. Sulfite-oxido-reductase is involved in the oxidation of sulfite in Desulfocapsa sulfoexigens during disproportionation of thiosulphate and elemental sulfur. Biodegradation, 2003; 14: 189-198.
https://doi.org/10.1023/A:1024255830925

32. Fricke W.F., Seedorf H., Henne A. et al. The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis. J. Bacteriol, 2006; 188: 642-658.
https://doi.org/10.1128/JB.188.2.642-658.2006
PMid:16385054 PMCid:PMC1347301

33. Friedrich C.G., Mitrenga G. Oxidation of thiosulphate by Paracoccus denitrificans and other hydrogen bacteria. FEMS Microbiol. Lett, 1981; 10: 209-212.
https://doi.org/10.1016/0378-1097(81)90182-8

34. Friedrich M.W. Phylogenetic analysis reveals multiple lateral transfers of adenosine-5′-phosphosulphate reductase genes among sulphate-reducing microorganisms. J. Bacteriol, 2002; 184: 278-289.
https://doi.org/10.1128/JB.184.1.278-289.2002
PMid:11741869 PMCid:PMC134748

35. Fritz G., Buchert T., Kroneck P.M.H. The Function of the [4Fe-4S] clusters and FAD in bacterial and archaeal adenylylsulfate reductases. J. Biol. Chem, 2002; 277: 26066-26073.
https://doi.org/10.1074/jbc.M203397200
PMid:12006599

36. Galouchko A.S., Rozanova E.P. Sulfidogenic oxidation of acetate by a syntrophic association of anaerobic mesophilic bacteria. Microbiology, 1996; 65: 134-139.

37. Gibson G.R., Cummings J.H., Macfarlane G.T. Growth and activities of sulphate-reducing bacteria in gut contents from healthysubjects and patients with ulcerative colitis. FEMS Microbiol. Ecol, 1991; 86: 103-112.
https://doi.org/10.1111/j.1574-6968.1991.tb04799.x

38. Gibson G.R., Macfarlane S., Macfarlane G.T. Metabolic interactions involving sulphate-reducing and methanogenic bacteria in the human large intestine. FEMS Microbiol. Ecol, 1993; 12: 117-125.
https://doi.org/10.1111/j.1574-6941.1993.tb00023.x

39. Goenka A., Voordouw J.K., Lubitz W. et al. Construction of a NiFe-hydrogenase deletion mutant of Desulfovibrio vulgaris Hildenborough. Biochem. Soc. Trans, 2005; 33: 59-60.
https://doi.org/10.1042/BST0330059
PMid:15667264

40. Goldstein E.J.C., Citron D.M., Peraino V.A., Cross S.A. Desulfovibrio desulfuricans bacteremia and review of human Desulfovibrio infections. J. Clin. Microbiol, 2003; 41: 2752-2754.
https://doi.org/10.1128/JCM.41.6.2752-2754.2003
PMid:12791922 PMCid:PMC156571

41. Gottschalk G. Bacterial metabolism, 2nd ed. New York-Berlin-Heidelberg-Tokyo: Springer, 1986. 359 p.
https://doi.org/10.1007/978-1-4612-1072-6_7

42. Hamilton W.A. Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling, 2003; 19: 65-76.
https://doi.org/10.1080/0892701021000041078
PMid:14618690

43. Harmsen H.J.M., Raangs G.C., He T. et al. Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. Appl. Environ. Microbiol, 2002; 68: 2982-2990.
https://doi.org/10.1128/AEM.68.6.2982-2990.2002
PMid:12039758 PMCid:PMC123985

44. Haveman S.A., Brunelle V., Voordouw J.K. et al. Gene expression analysis of energy metabolism mutants of Desulfovibrio vulgaris Hildenborough indicates an important role for alcohol dehydrogenase. J. Bacteriol, 2003; 185: 4345-4353.
https://doi.org/10.1128/JB.185.15.4345-4353.2003
PMid:12867442 PMCid:PMC165767

45. Head K.A., Jurenka J.S. Inflammatory bowel disease part 1: Ulcerative colitis. А pathophysiology and coventional and alternative treatment options. Alt. Med. Rev, 2003; 8: 247-283.

46. Hedderich R. Energy-converting NiFe hydrogenases from archaea and extremophiles: ancestors of complex I. J. Bioenerg. Biomembr, 2004; 36: 65-75.
https://doi.org/10.1023/B:JOBB.0000019599.43969.33
PMid:15168611

47. Heidelberg J.F., Seshadri R., Haveman S.A. et al. The genome sequence of the anaerobic, sulphate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat. Biotechnol, 2004; 22: 554-559.
https://doi.org/10.1038/nbt959
PMid:15077118

48. Hemme C.L., Wall J.D. Genomic insights into gene regulation of Desulfovibrio vulgaris Hildenborough. Omics, 2004; 8: 43-55.
https://doi.org/10.1089/153623104773547480
PMid:15107236

49. Hines M.E., Evans R.S., Sharak Genthner B. R. et al. Molecular phylogenetic and biogeochemical studies of sulphate-reducing bacteria in the rhizosphere of Spartina alterniflora. Appl. Environ. Microbiol, 1999;. 65: 2209-2216.

50. Hopkins M.J., Macfarlane G.T., Furrie E. et al. Characterisation of intestinal bacteria in infant stools using real-time PCR and northern hybridisation analyses. FEMS Microbiol. Ecol, 2005; 54: 77-85.
https://doi.org/10.1016/j.femsec.2005.03.001
PMid:16329974

51. Huycke M.M., Gaskins H.R. Commensal bacteria, redox stress, and colorectal cancer: mechanisms and models. Exp. Biol. Med, 2004; 229: 586-597.
https://doi.org/10.1177/153537020422900702
PMid:15229352

52. Jonkers H.M., Maarel M.J., Gemerden H., Hansen T.A. Dimethylsulfoxide reduction by marine sulphate-reducing bacteria. FEMS Microbiol. Lett, 1996; 136: 283-287.
https://doi.org/10.1111/j.1574-6968.1996.tb08062.x

53. Keon R.G., Voordouw G. Identification of the HmcF and topology of the HmcB subunit of the Hmc complex of Desulfovibrio vulgaris. Anaerobe, 1996; 2: 231-238.
https://doi.org/10.1006/anae.1996.0032

54. Klenk H.P., Clayton R.A., Tomb J.F. et al. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature, 1997; 390: 364-370.
https://doi.org/10.1038/37052
PMid:9389475

55. Koizumi Y., Kelly J.J., Nakagawa T. et al. Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology. Appl. Environ. Microbiol, 2002; 68: 3215-3225.
https://doi.org/10.1128/AEM.68.7.3215-3225.2002
PMid:12088997 PMCid:PMC126768

56. Konig H., Stetter K. O. Archaebacteria. Bergey's manual of systematic bacteriology, Baltimore: Williams and Wilkins, 1989; 3: 2171-2173.

57. Kuster E., Dorusch F., Altenburger R. Effects of hydrogen sulfide to Vibrio fischeri, Scenedesmus vacuolatus and Daphnia magna. Environ. Toxicol. Chem, 2005; 24 (10): 2621-2629.
https://doi.org/10.1897/04-546R.1
PMid:16268165

58. Larsen O., Lien T., Birkeland N.K. Dissimilatory sulfite reductase from Archaeoglobus profundus and Desulfotomaculum thermocisternum: phylogenetic and structural implications from gene sequences. Extremophiles, 1999; 3: 63-70.
https://doi.org/10.1007/s007920050100
PMid:10086846

59. Leaphart A.B., Friez M.J., Lovell C.R. Formyltetrahydrofolate synthetase sequences from salt marsh plant roots reveal a diversity of acetogenic bacteria and other bacterial functional groups. Appl. Environ. Microbiol, 2003; 69: 693-696.
https://doi.org/10.1128/AEM.69.1.693-696.2003
PMid:12514064 PMCid:PMC152474

60. Leclerc H., Oger C., Beerens H., Mossel D.A. Occurrence of sulphate-reducing bacteria in the human intestinal flora and in the water environment. Water Res, 1979; 14: 253-256.
https://doi.org/10.1016/0043-1354(80)90096-2

61. Lemos R.S., Gomes C.M., Santana M. et al. The "strict'' anaerobe Desulfovibrio gigas contains a membrane-bound oxygen respiratory chain. J. Inorg. Biochem, 2001; 86: 314.
https://doi.org/10.1016/S0014-5793(01)02399-7

62. Levitt M.D., Gibson G.R., Christl S.U. Gas metabolism in the large intestine. In G. R. Gibson, G.T. Macfarlane et al. Human colonic bacteria: role in nutrition, physiology and health. Boca Raton, FL: CRC Press., 1995; 131-154.

63. Lopez-Cortes A., Bursakov S., Figueiredo A. et al. Purification and preliminary characterization of tetraheme cytochrome c(3) and adenylylsulphate reductase from the peptidolytic sulphate-reducing bacterium Desulfovibrio aminophilus DSM 12254. Bioinorg. Chem. Appl, 2005; 3: 81-91.
https://doi.org/10.1155/BCA.2005.81
PMid:18365091 PMCid:PMC2267091

64. Loubinoux J., Bisson-Boutelliez C., Miller N., Le Faou A.E. Isolation of the provisionally named Desulfovibrio fairfieldensis from human periodontal pockets. Oral Microbiol. Immunol, 2002; 17: 321-323.
https://doi.org/10.1034/j.1399-302X.2002.170510.x
PMid:12354215

65. Loubinoux J., Bronowicji J.-P., Pereira I.A. et. al. Sulphate-reducing bacteria in human feces and their association with inflammatory diseases. FEMS Microbiol. Ecol, 2002; 40: 107-112.
https://doi.org/10.1016/S0168-6496(02)00201-5

66. Loubinoux J., Jaulhac B., Piemont Y. et al. Isolation of sulphate-reducing bacteria from human thoracoabdominal pus. J. Clin. Microbiol, 2003; 41: 1304-1306.
https://doi.org/10.1128/JCM.41.3.1304-1306.2003
PMid:12624073 PMCid:PMC150275

67. Loubinoux J., Mory F., Pereira I.A., Le Faou A.E. Bacteremia caused by a strain of Desulfovibrio related to the provisionally named Desulfovibrio fairfieldensis. J. Clin. Microbiol, 2000; 38: 931-934.

68. Loubinoux J., Valente F.M., Pereira A.C. et al. Reclassification of the only species of the genus Desulfomonas, Desulfomonas pigra, as Desulfovibrio piger comb. nov. Int. J. Syst. Evol. Microbiol, 2002; 52: 1305-1308.
https://doi.org/10.1099/ijs.0.02175-0

69. Lovley D.R., Holmes D.E., Nevin K.P. Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol, 2004; 49: 221-286.
https://doi.org/10.1016/S0065-2911(04)49005-5

70. Macfarlane G.T., McBain A.J. The human colonic microbiota. In G. R. Gibson, M. Roberfroid et al. Colonic microflora, nutrition and health. London: Chapman & Hall. 1999; 1-25.
https://doi.org/10.1007/978-94-017-1079-4_1
PMid:10373122 PMCid:PMC1717990

71. Macfarlane S., Furrie E., Cummings J.H., Macfarlane G.T. Chemotaxonomic analysis of bacterial populations colonizing the rectal mucosa in patients with ulcerative colitis. Clin. Infect. Dis, 2004; 38: 1690-1699.
https://doi.org/10.1086/420823
PMid:15227614

72. Malki S., DeLuca G., Fardeau M.L. et al. Physiological characteristics and growth behavior of single and double hydrogenase mutants of Desulfovibrio fructosovorans. Arch. Microbiol, 1997; 167: 38-45.
https://doi.org/10.1007/s002030050414
PMid:9000340

73. Mander G.J., Duin E.C., Linder D. et al. Purification and characterization of a membrane-bound enzyme complex from the sulphate-reducing archaeon Archaeoglobus fulgidus related to heterodisulfide reductase from methanogenic archaea. Eur. J. Biochem, 2002; 269: 1895-1904.
https://doi.org/10.1046/j.1432-1033.2002.02839.x
PMid:11952791

74. Matias P.M., Pereira I.A., Soares C.M., Carrondo M.A. Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. Prog. Biophys. Mol. Biol, 2005; 89: 292-329.
https://doi.org/10.1016/j.pbiomolbio.2004.11.003
PMid:15950057

75. McDougall R., Robson J., Paterson D., Tee W. Bacteremia caused by a recently described novel Desulfovibrio species. J. Clin. Microbiol, 1997; 35: 1805-1808.

76. Meuer J., Kuettner H.C., Zhang J.K. et al. Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc. Natl. Acad. Sci. USA, 2002; 99: 5632-5637.
https://doi.org/10.1073/pnas.072615499
PMid:11929975 PMCid:PMC122822

77. Molitor M., Dahl C., Molitor I. et al. A dissimilatory sirohaem-sulfite-reductase-type protein from the hyperthermophilic archaeon Pyrobaculum islandicum. Microbiology-SGM, 1998; 144: 529-541.
https://doi.org/10.1099/00221287-144-2-529
PMid:9493389

78. Montgomery S.M., Morris D.L., Thompson N.P. et al. Prevalence of inflammatory bowel disease in British 26 year olds: national longitudinal birth cohort. Brit. Med. J, 1998; 316: 1058-1059.
https://doi.org/10.1136/bmj.316.7137.1058
PMid:9552907 PMCid:PMC28509

79. Moore W.E., Johnson J.L., Holdeman L.V. Emendation of Bacteroidaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species of the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium and Ruminococcus. Int. J. Syst. Bact, 1976; 26: 238-252.
https://doi.org/10.1099/00207713-26-2-238

80. Mori K., Kim H., Kakegawa T., Hanada S. A novel lineage of sulphate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp nov., a new thermophilic isolate from a hot spring. Extremophiles, 2003; 7: 283-290.
https://doi.org/10.1007/s00792-003-0320-0
PMid:12910388

81. Newton D.F., Cummings J.H., Macfarlane S., Macfarlane G.T. Growth of a human intestinal Desulfovibrio desulfuricans in continuous cultures containing defined populations of saccharolytic and amino acid fermenting bacteria. J. Appl. Microbiol, 1998; 85: 372-380.
https://doi.org/10.1046/j.1365-2672.1998.00522.x
PMid:9750310

82. Odom J.M., Peck H.D. Hydrogenase, electron-transfer proteins, and energy coupling in the sulphate-reducing bacteria Desulfovibrio. Annu. Rev. Microbiol, 1984; 38: 551-592.
https://doi.org/10.1146/annurev.mi.38.100184.003003
PMid:6093686

83. Oghe H., Furne J.K., Springfield J. et al. Association between fecal hydrogen sulfide production and poducitis. Dis. Col. Rect, 2005; 48: 469-475.
https://doi.org/10.1007/s10350-004-0820-8
PMid:15747080

84. Peck H.D. Bioenergetic strategies of the sulphate-reducing bacteria. In J. M. Odom, J. Rivers Singleton et al. The Sulphate-Reducing Bacteria: Contemporary Perspectives. New York, London: Springer-Verlag, 1993; 41-76.
https://doi.org/10.1007/978-1-4613-9263-7_3

85. Peck Jr.H.D., Lissolo T. Assimilatory and dissimilatory sulphate reduction: enzymology and bioenergetics // J.A. Cole, S.J. Ferguson The Nitrogen and Sulphur Cycles. Cambridge: Cambridge University Press, 1988; 42: 99-132.

86. Pereira I.C., Ramos A.R., Grein F. et all. A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Frontiers in Microbiol. Microbial Physiol. and Metabol, 2011; 2(69): 1- 22
https://doi.org/10.3389/fmicb.2011.00069

87. Pires R.H., Lourenco A.I., Morais F. et al. A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774. Biochim. Biophys. Acta-Bioenergetics, 2003; 1605: 67-82.
https://doi.org/10.1016/S0005-2728(03)00065-3

88. Pitcher M.C., Beatty E.R., Harris R.M. et al. Sulfur metabolism in ulcerative colitis. Investigation of detoxification enzymes in peripheral blood. Dig. Dis. Sci, 1998; 43: 2080-2085.
https://doi.org/10.1023/A:1018867516575
PMid:9753276

89. Pohorelic B.K., Voordouw J.K., Lojou E. et al. Effects of deletion of genes encoding Fe-only hydrogenase of Desulfovibrio vulgaris Hildenborough on hydrogen and lactate metabolism. J. Bacteriol, 2002; 184: 679-686.
https://doi.org/10.1128/JB.184.3.679-686.2002
PMid:11790737 PMCid:PMC139517

90. Postgate J.R. The sulfate-reducing bacteria. 2nd ed. Cambridge: Cambridge Univ. Press, 1984. 199 p.

91. Rabus R., Hansen T., Widdel F. Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes // Dworkin M. et al. The Prokaryotes. An Evolving Electronic Resource for the Microbiological Community, 3rd edition. New York: Springer-Verlag, 2000.

92. Rodrigues R., Valente F.M., Pereira I.A. et al. A novel membrane-bound Ech NiFe hydrogenase in Desulfovibrio gigas. Biochem. Biophys. Res. Commun, 2003; 306: 366-375.
https://doi.org/10.1016/S0006-291X(03)00975-6

93. Rose P., Moore P.K., Ming S.H. et al. Hydrogen sulphide protects colon cancer cells from chemopreventative agent β-phenylethyl isocyanate induced apotosis. World J. Gastroenterol, 2005; 11: 3990-3997.
https://doi.org/10.3748/wjg.v11.i26.3990
PMid:15996021 PMCid:PMC4502092

94. Sapra R., Bagramyan K., Adams M.W. A simple energy-conserving system: proton reduction coupled to proton translocation. Proc. Natl. Acad. Sci. USA, 2003; 100: 7545-7550.
https://doi.org/10.1073/pnas.1331436100
PMid:12792025 PMCid:PMC164623

95. Sato K., Nishina Y., Setoyama C. et al. Unusually high standard redox potential of acrylyl-CoA/propionyl-CoA couple among enoyl-CoA/acyl-CoA couples: a reason for the distinct metabolic pathway of propionyl-CoA from longer acyl-CoAs. J. Biochem (Tokyo), 1999; 126: 668-675.
https://doi.org/10.1093/oxfordjournals.jbchem.a022501
PMid:10502673

96. Schink B., Stams A. Syntrophism among Prokaryotes. // M. Dworkin The Prokaryotes (electronic version). New York: Springer Verlag, 2002; 309-335.
https://doi.org/10.1007/0-387-30742-7_11

97. Shen Y.N., Buick R. The antiquity of microbial sulphate reduction. Earth-Science Reviews, 2004; 64: 243-272.
https://doi.org/10.1016/S0012-8252(03)00054-0

98. Shigematsu T., Tang Y., Kobayashi T. et al. Effect of dilution rate on metabolic pathway shift between aceticlastic and nonaceticlastic methanogenesis in chemostat cultivation. Appl. Environ. Microbiol, 2004; 70: 4048-4052.
https://doi.org/10.1128/AEM.70.7.4048-4052.2004
PMid:15240282 PMCid:PMC444765

99. Shima S., Thauer R. Methyl-coenzyme M reductase (MCR) and the anaerobic oxidation of methane (AOM) in methanotrophic archaea. Curr. Opin. Microbiol, 2005; 8: 643-648.
https://doi.org/10.1016/j.mib.2005.10.002
PMid:16242993

100. Sperling D., Kappler U., Wynen A. et al. Dissimilatory ATP sulfurylase from the hyperthermophilic sulphate reducer Archaeoglobus fulgidus belongs to the group of homo-oligomeric ATP sulfurylases. FEMS Microbiol. Lett, 1998; 162: 257-264.
https://doi.org/10.1016/S0378-1097(98)00120-7

101. Stebbings S., Munro K., Simon M. et al. Comparison of the faecal microflora of patients with ankylosing spondylitis and controls using molecular methods of analysis. Rheumatology, 2002; 41: 1395-1401.
https://doi.org/10.1093/rheumatology/41.12.1395
PMid:12468819

102. Steger J.L., Vincent C., Ballard J.D., Krumholz L.R. Desulfovibrio sp. genes involved in the respiration of sulphate during metabolism of hydrogen and lactate. Appl .Environ. Microbiol, 2002; 68: 1932-1937.
https://doi.org/10.1128/AEM.68.4.1932-1937.2002
PMid:11916715 PMCid:PMC123884

103. Stetter K.O. The genus Archaeoglobus // A. Balows, H.G. Truper, M. Dworkin et al. The Prokaryotes, 2nd ed. New York: Springer-Verlag, 1992; 1: 707-711.

104. Stetter K.O., Huber R., Blochl E. et al. Hyperthermophilic archaea are thriving in deep north sea and alaskan oil reservoirs. Nature, 1993; 365: 743-745.
https://doi.org/10.1038/365743a0

105. Voordouw G. Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough. J. Bacteriol, 2002; 184: 5903-5911.
https://doi.org/10.1128/JB.184.21.5903-5911.2002
PMid:12374824 PMCid:PMC135394

106. Widdel F., Bak F. Gram-negative mesophilic sulphate-reducing bacteria. In A. Balows H.G. Truper M. Dworkin, W. et al. The Prokaryotes. New York: Springer-Verlag, 1992; 3352-3378.
https://doi.org/10.1007/978-1-4757-2191-1_21

107. Yagi T., Ogata M. Catalytic properties of adenylylsulphate reductase from Desulfovibrio vulgaris Miyazaki. Biochimie, 1996; 78: 838-846.
https://doi.org/10.1016/S0300-9084(97)84336-2

108. Zinkevich V., Beech I.B. Screening of sulphate-reducing bacteria in colonoscopy samples from healthy and colitic gut mucosa. FEMS Microbiol. Ecol, 2000; 34: 147-155.
https://doi.org/10.1016/S0168-6496(00)00086-6

109. Zverlov V., Klein M., Lucker S. et al. Lateral gene transfer of dissimilatory bisulfite reductase revisited. J. Bacteriol, 2005; 187: 2203-2208.
https://doi.org/10.1128/JB.187.6.2203-2208.2005
PMid:15743970 PMCid:PMC1064038


Refbacks

  • There are currently no refbacks.


Copyright (c) 2012 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.