SULFATE-REDUCING BACTERIA OF HUMAN INTESTINE. I. DISSIMILATORY SULFATE REDUCTION
DOI: http://dx.doi.org/10.30970/sbi.0601.181
Abstract
Modern literature data concerning sulfate-reducing bacteria of human intestine are summarized. The characterictics and mechanisms of dissimilatory sulfate reduction by these bacteria are described. Special attention is paid to the redox potentials of some electron donors and intermediate products of the dissimilatory sulfate reduction. The detailed characteristics of substrates for sulfate-reducing bacteria obtained from the intestine of man is presented. There are presented the most widespread concepts about the trophic interactions of studied bacteria with other microorganisms. The phylogenetic diversity of sulfate-reducing bacteria is described.
Keywords
Full Text:
PDF (Українська)References
1. Асауленко Л.Г., Пуріш Л.М., Козлова І.П. Етапи формування біоплівки сульфатвідновлювальними бактеріями. Мікробіол. журнал, 2004; 66(3): 72-79. | |
| |
2. Галушка А., Перетятко Т., Гудзь С. Бактерії циклу сірки та їхня роль у природі. Вісн. Львів. ун-ту. Сер. біол, 2007; 43: 61-77. | |
| |
3. Кузнецов С.И. Микрофлора озер и ее биохимическая деятельность. М.: Мир, 1972. 362 с. | |
| |
4. Перетятко Т., Галушка А., Гнатуш С. та ін. Використання органічних сполук сульфатвідновлювальними бактеріями роду Desulfovibrio. Наук. вісн. Ужгород. ун-ту. Сер. Біол, 2006; 18: 157-160. | |
| |
5. Перетятко Т., Гнатуш С., Гудзь С. Сульфатвідновлювальні бактерії Яворівського сіркового родовища. Мікробіол. журнал, 2006; 68(5): 84-91. | |
| |
6. Перетятко Т., Гудзь С. АФС-редуктаза Desulfovibrio desulfuricans Ya-11. Біол. вісн. Харків. 2007; 11(1): 64-66. | |
| |
7. Перетятко Т.Б., Гудзь С.П. Здатність сульфатвідновлювальних бактерій Desulfovibrio desulfuricans Ya-11 i Desulfobacter sp. використовувати нітрат як акцептор електронів. Біол. студії, 2011; 5(2): 51-60. | |
| |
8. Розанова Е.П., Назина Т.Н. Сульфатвосстанавливающие бактерии (систематика и метаболизм). Успехи микробиологии, 1989; 23: 191-226. | |
| |
9. Сорокин Ю.И. Исследование конструктивного обмена сульфатредуцирующих бактерий с помощью С14. Микробиология, 1966; 35(4): 967-977. | |
| |
10. Сорокин Ю.И. Источник энергии и углерода для биосинтеза у сульфатредуцирующих бактерий. Микробиология, 1966; 35(5): 761-766. | |
| |
11. Франк Ю.А., Лушников С.В. Биотехнологический потенциал сульфатредуцирующих бактерий. Экология и промышленность, 2006; 1: 10-13. | |
| |
12. Barton L.L., Hamilton W.A. Sulphate-reducing Bacteria. Environmental and Engineered. Cambridge University Press, 2007. 553 р. | |
| |
13. Badziong W., Thauer R. Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulphate and hydrogen plus thiosulphate as the sole energy sources. Arch. Microbiol, 1978; 117: 209-214. | |
| |
14. Beijerinck M.W. Uber Spirillum desulfuricans als Ursache von Sulfatreduktion. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyd, Abt. II, 1895; 1: 49-59. | |
| |
15. Boopathy R., Robichaux M, LaFont D., Howell M. Activity of sulphate-reducing bacteria in human periodontal pocket. Can. J. Microbiol, 2002; 48: 1099-1103. | |
| |
16. Broco M., Rousset M., Oliveira S., Rodrigues-Pousada C. Deletion of flavoredoxin gene in Desulfovibrio gigas reveals its participation in thiosulphate reduction. FEBS Lett, 2005; 579: 4803-4807. | |
| |
17. Castro H.F., Williams N.H., Ogram A. Phylogeny of sulphate-reducing bacteria. FEMS Microbiol. Ecol, 2000; 31: 1-9. | |
| |
18. Castro H., Reddy K.R., Ogram A. Composition and function of sulphate-reducing prokaryotes in eutrophic and pristine areas of the Florida Everglades. Appl. Environ. Microbiol, 2002; 68: 6129-6137. | |
| |
19. Cole J.A. Assimilatory and dissimilatory reduction of nitrate to ammonia // Cole J.A., Ferguson S.J. The Nitrogen and Sulphur Cycles, Cambridge: Cambridge University Press, 1988; 42: 281-329. | |
| |
20. Cypionka H. Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol, 2000; 54: 827-848. | |
| |
21. Deplancke B., Finster K., Graham W. et al. Gastrointestinal and microbial responses to sulphate-supplemented drinking water in mice. Exp. Biol. Med, 2003; 228: 424-433. | |
| |
22. Dimroth P., Cook G. Bacterial Na+ or H+-coupled ATP synthases operating at low electrochemical potential. Adv. Microb. Physiol, 2004; 49: 175-218. | |
| |
23. Dolla A., Pohorelic B., Voordouw J., Voordouw G. Deletion of the hmc operon of Desulfovibrio vulgaris subsp vulgaris Hildenborough hampers hydrogen metabolism and low-redox-potential niche establishment. Arch. Microbiol, 2000; 174: 143-151. | |
| |
24. Eccles H. Biotreatment of metals: site dependent // OESD Documents "Wider application and diffusion of bioremediation technologies". Amsterdam, 1995. P. 296-302. | |
| |
25. Ehrlich H.L. Microbes as geologic agents: their role in mineral formation. Geomicrobiol. J, 1999; 16: 135-153. | |
| |
26. Fareleira P., Santos B.S., Antonio C. et al. Response of a strict anaerobe to oxygen: survival strategies in Desulfovibrio gigas. Microbiolog-SGM, 2003; 149: 1513-1522. | |
| |
27. Farquhar J., Wing B.A. Multiple sulfur isotopes and the evolution of the atmosphere. Earth and Planetary Science Letters, 2003; 213: 1-13. | |
| |
28. Finster K., Liesack W., Thamdrup B. Elemental sulfur and thiosulphate disproportionation by Desulfocapsa sulfoexigens sp nov, a new anaerobic bacterium isolated from marine surface sediment. Appl. Environ. Microbiol, 1998; 64: 119-125. | |
| |
29. Fite A., Macfarlane G.T., Cummings J.H. et al. Identification and quantitation of mucosal and faecal desulfovibrios using real-time PCR. Gut, 2004; 53: 523-529. | |
| |
30. Forzi L., Koch J., Guss A.M. et al. Assignment of the 4Fe-4S clusters of ech hydrogenase from Methanosarcina barkeria to individual subunits via the characterization of site-directed mutants. FEBS J, 2005; 272: 4741-4753. | |
| |
31. Frederiksen T.M., Finster K. Sulfite-oxido-reductase is involved in the oxidation of sulfite in Desulfocapsa sulfoexigens during disproportionation of thiosulphate and elemental sulfur. Biodegradation, 2003; 14: 189-198. | |
| |
32. Fricke W.F., Seedorf H., Henne A. et al. The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis. J. Bacteriol, 2006; 188: 642-658. | |
| |
33. Friedrich C.G., Mitrenga G. Oxidation of thiosulphate by Paracoccus denitrificans and other hydrogen bacteria. FEMS Microbiol. Lett, 1981; 10: 209-212. | |
| |
34. Friedrich M.W. Phylogenetic analysis reveals multiple lateral transfers of adenosine-5′-phosphosulphate reductase genes among sulphate-reducing microorganisms. J. Bacteriol, 2002; 184: 278-289. | |
| |
35. Fritz G., Buchert T., Kroneck P.M.H. The Function of the [4Fe-4S] clusters and FAD in bacterial and archaeal adenylylsulfate reductases. J. Biol. Chem, 2002; 277: 26066-26073. | |
| |
36. Galouchko A.S., Rozanova E.P. Sulfidogenic oxidation of acetate by a syntrophic association of anaerobic mesophilic bacteria. Microbiology, 1996; 65: 134-139. | |
| |
37. Gibson G.R., Cummings J.H., Macfarlane G.T. Growth and activities of sulphate-reducing bacteria in gut contents from healthysubjects and patients with ulcerative colitis. FEMS Microbiol. Ecol, 1991; 86: 103-112. | |
| |
38. Gibson G.R., Macfarlane S., Macfarlane G.T. Metabolic interactions involving sulphate-reducing and methanogenic bacteria in the human large intestine. FEMS Microbiol. Ecol, 1993; 12: 117-125. | |
| |
39. Goenka A., Voordouw J.K., Lubitz W. et al. Construction of a NiFe-hydrogenase deletion mutant of Desulfovibrio vulgaris Hildenborough. Biochem. Soc. Trans, 2005; 33: 59-60. | |
| |
40. Goldstein E.J.C., Citron D.M., Peraino V.A., Cross S.A. Desulfovibrio desulfuricans bacteremia and review of human Desulfovibrio infections. J. Clin. Microbiol, 2003; 41: 2752-2754. | |
| |
41. Gottschalk G. Bacterial metabolism, 2nd ed. New York-Berlin-Heidelberg-Tokyo: Springer, 1986. 359 p. | |
| |
42. Hamilton W.A. Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling, 2003; 19: 65-76. | |
| |
43. Harmsen H.J.M., Raangs G.C., He T. et al. Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. Appl. Environ. Microbiol, 2002; 68: 2982-2990. | |
| |
44. Haveman S.A., Brunelle V., Voordouw J.K. et al. Gene expression analysis of energy metabolism mutants of Desulfovibrio vulgaris Hildenborough indicates an important role for alcohol dehydrogenase. J. Bacteriol, 2003; 185: 4345-4353. | |
| |
45. Head K.A., Jurenka J.S. Inflammatory bowel disease part 1: Ulcerative colitis. А pathophysiology and coventional and alternative treatment options. Alt. Med. Rev, 2003; 8: 247-283. | |
| |
46. Hedderich R. Energy-converting NiFe hydrogenases from archaea and extremophiles: ancestors of complex I. J. Bioenerg. Biomembr, 2004; 36: 65-75. | |
| |
47. Heidelberg J.F., Seshadri R., Haveman S.A. et al. The genome sequence of the anaerobic, sulphate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat. Biotechnol, 2004; 22: 554-559. | |
| |
48. Hemme C.L., Wall J.D. Genomic insights into gene regulation of Desulfovibrio vulgaris Hildenborough. Omics, 2004; 8: 43-55. | |
| |
49. Hines M.E., Evans R.S., Sharak Genthner B. R. et al. Molecular phylogenetic and biogeochemical studies of sulphate-reducing bacteria in the rhizosphere of Spartina alterniflora. Appl. Environ. Microbiol, 1999;. 65: 2209-2216. | |
| |
50. Hopkins M.J., Macfarlane G.T., Furrie E. et al. Characterisation of intestinal bacteria in infant stools using real-time PCR and northern hybridisation analyses. FEMS Microbiol. Ecol, 2005; 54: 77-85. | |
| |
51. Huycke M.M., Gaskins H.R. Commensal bacteria, redox stress, and colorectal cancer: mechanisms and models. Exp. Biol. Med, 2004; 229: 586-597. | |
| |
52. Jonkers H.M., Maarel M.J., Gemerden H., Hansen T.A. Dimethylsulfoxide reduction by marine sulphate-reducing bacteria. FEMS Microbiol. Lett, 1996; 136: 283-287. | |
| |
53. Keon R.G., Voordouw G. Identification of the HmcF and topology of the HmcB subunit of the Hmc complex of Desulfovibrio vulgaris. Anaerobe, 1996; 2: 231-238. | |
| |
54. Klenk H.P., Clayton R.A., Tomb J.F. et al. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature, 1997; 390: 364-370. | |
| |
55. Koizumi Y., Kelly J.J., Nakagawa T. et al. Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology. Appl. Environ. Microbiol, 2002; 68: 3215-3225. | |
| |
56. Konig H., Stetter K. O. Archaebacteria. Bergey's manual of systematic bacteriology, Baltimore: Williams and Wilkins, 1989; 3: 2171-2173. | |
| |
57. Kuster E., Dorusch F., Altenburger R. Effects of hydrogen sulfide to Vibrio fischeri, Scenedesmus vacuolatus and Daphnia magna. Environ. Toxicol. Chem, 2005; 24 (10): 2621-2629. | |
| |
58. Larsen O., Lien T., Birkeland N.K. Dissimilatory sulfite reductase from Archaeoglobus profundus and Desulfotomaculum thermocisternum: phylogenetic and structural implications from gene sequences. Extremophiles, 1999; 3: 63-70. | |
| |
59. Leaphart A.B., Friez M.J., Lovell C.R. Formyltetrahydrofolate synthetase sequences from salt marsh plant roots reveal a diversity of acetogenic bacteria and other bacterial functional groups. Appl. Environ. Microbiol, 2003; 69: 693-696. | |
| |
60. Leclerc H., Oger C., Beerens H., Mossel D.A. Occurrence of sulphate-reducing bacteria in the human intestinal flora and in the water environment. Water Res, 1979; 14: 253-256. | |
| |
61. Lemos R.S., Gomes C.M., Santana M. et al. The "strict'' anaerobe Desulfovibrio gigas contains a membrane-bound oxygen respiratory chain. J. Inorg. Biochem, 2001; 86: 314. | |
| |
62. Levitt M.D., Gibson G.R., Christl S.U. Gas metabolism in the large intestine. In G. R. Gibson, G.T. Macfarlane et al. Human colonic bacteria: role in nutrition, physiology and health. Boca Raton, FL: CRC Press., 1995; 131-154. | |
| |
63. Lopez-Cortes A., Bursakov S., Figueiredo A. et al. Purification and preliminary characterization of tetraheme cytochrome c(3) and adenylylsulphate reductase from the peptidolytic sulphate-reducing bacterium Desulfovibrio aminophilus DSM 12254. Bioinorg. Chem. Appl, 2005; 3: 81-91. | |
| |
64. Loubinoux J., Bisson-Boutelliez C., Miller N., Le Faou A.E. Isolation of the provisionally named Desulfovibrio fairfieldensis from human periodontal pockets. Oral Microbiol. Immunol, 2002; 17: 321-323. | |
| |
65. Loubinoux J., Bronowicji J.-P., Pereira I.A. et. al. Sulphate-reducing bacteria in human feces and their association with inflammatory diseases. FEMS Microbiol. Ecol, 2002; 40: 107-112. | |
| |
66. Loubinoux J., Jaulhac B., Piemont Y. et al. Isolation of sulphate-reducing bacteria from human thoracoabdominal pus. J. Clin. Microbiol, 2003; 41: 1304-1306. | |
| |
67. Loubinoux J., Mory F., Pereira I.A., Le Faou A.E. Bacteremia caused by a strain of Desulfovibrio related to the provisionally named Desulfovibrio fairfieldensis. J. Clin. Microbiol, 2000; 38: 931-934. | |
| |
68. Loubinoux J., Valente F.M., Pereira A.C. et al. Reclassification of the only species of the genus Desulfomonas, Desulfomonas pigra, as Desulfovibrio piger comb. nov. Int. J. Syst. Evol. Microbiol, 2002; 52: 1305-1308. | |
| |
69. Lovley D.R., Holmes D.E., Nevin K.P. Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol, 2004; 49: 221-286. | |
| |
70. Macfarlane G.T., McBain A.J. The human colonic microbiota. In G. R. Gibson, M. Roberfroid et al. Colonic microflora, nutrition and health. London: Chapman & Hall. 1999; 1-25. | |
| |
71. Macfarlane S., Furrie E., Cummings J.H., Macfarlane G.T. Chemotaxonomic analysis of bacterial populations colonizing the rectal mucosa in patients with ulcerative colitis. Clin. Infect. Dis, 2004; 38: 1690-1699. | |
| |
72. Malki S., DeLuca G., Fardeau M.L. et al. Physiological characteristics and growth behavior of single and double hydrogenase mutants of Desulfovibrio fructosovorans. Arch. Microbiol, 1997; 167: 38-45. | |
| |
73. Mander G.J., Duin E.C., Linder D. et al. Purification and characterization of a membrane-bound enzyme complex from the sulphate-reducing archaeon Archaeoglobus fulgidus related to heterodisulfide reductase from methanogenic archaea. Eur. J. Biochem, 2002; 269: 1895-1904. | |
| |
74. Matias P.M., Pereira I.A., Soares C.M., Carrondo M.A. Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. Prog. Biophys. Mol. Biol, 2005; 89: 292-329. | |
| |
75. McDougall R., Robson J., Paterson D., Tee W. Bacteremia caused by a recently described novel Desulfovibrio species. J. Clin. Microbiol, 1997; 35: 1805-1808. | |
| |
76. Meuer J., Kuettner H.C., Zhang J.K. et al. Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc. Natl. Acad. Sci. USA, 2002; 99: 5632-5637. | |
| |
77. Molitor M., Dahl C., Molitor I. et al. A dissimilatory sirohaem-sulfite-reductase-type protein from the hyperthermophilic archaeon Pyrobaculum islandicum. Microbiology-SGM, 1998; 144: 529-541. | |
| |
78. Montgomery S.M., Morris D.L., Thompson N.P. et al. Prevalence of inflammatory bowel disease in British 26 year olds: national longitudinal birth cohort. Brit. Med. J, 1998; 316: 1058-1059. | |
| |
79. Moore W.E., Johnson J.L., Holdeman L.V. Emendation of Bacteroidaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species of the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium and Ruminococcus. Int. J. Syst. Bact, 1976; 26: 238-252. | |
| |
80. Mori K., Kim H., Kakegawa T., Hanada S. A novel lineage of sulphate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp nov., a new thermophilic isolate from a hot spring. Extremophiles, 2003; 7: 283-290. | |
| |
81. Newton D.F., Cummings J.H., Macfarlane S., Macfarlane G.T. Growth of a human intestinal Desulfovibrio desulfuricans in continuous cultures containing defined populations of saccharolytic and amino acid fermenting bacteria. J. Appl. Microbiol, 1998; 85: 372-380. | |
| |
82. Odom J.M., Peck H.D. Hydrogenase, electron-transfer proteins, and energy coupling in the sulphate-reducing bacteria Desulfovibrio. Annu. Rev. Microbiol, 1984; 38: 551-592. | |
| |
83. Oghe H., Furne J.K., Springfield J. et al. Association between fecal hydrogen sulfide production and poducitis. Dis. Col. Rect, 2005; 48: 469-475. | |
| |
84. Peck H.D. Bioenergetic strategies of the sulphate-reducing bacteria. In J. M. Odom, J. Rivers Singleton et al. The Sulphate-Reducing Bacteria: Contemporary Perspectives. New York, London: Springer-Verlag, 1993; 41-76. | |
| |
85. Peck Jr.H.D., Lissolo T. Assimilatory and dissimilatory sulphate reduction: enzymology and bioenergetics // J.A. Cole, S.J. Ferguson The Nitrogen and Sulphur Cycles. Cambridge: Cambridge University Press, 1988; 42: 99-132. | |
| |
86. Pereira I.C., Ramos A.R., Grein F. et all. A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Frontiers in Microbiol. Microbial Physiol. and Metabol, 2011; 2(69): 1- 22 | |
| |
87. Pires R.H., Lourenco A.I., Morais F. et al. A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774. Biochim. Biophys. Acta-Bioenergetics, 2003; 1605: 67-82. | |
| |
88. Pitcher M.C., Beatty E.R., Harris R.M. et al. Sulfur metabolism in ulcerative colitis. Investigation of detoxification enzymes in peripheral blood. Dig. Dis. Sci, 1998; 43: 2080-2085. | |
| |
89. Pohorelic B.K., Voordouw J.K., Lojou E. et al. Effects of deletion of genes encoding Fe-only hydrogenase of Desulfovibrio vulgaris Hildenborough on hydrogen and lactate metabolism. J. Bacteriol, 2002; 184: 679-686. | |
| |
90. Postgate J.R. The sulfate-reducing bacteria. 2nd ed. Cambridge: Cambridge Univ. Press, 1984. 199 p. | |
| |
91. Rabus R., Hansen T., Widdel F. Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes // Dworkin M. et al. The Prokaryotes. An Evolving Electronic Resource for the Microbiological Community, 3rd edition. New York: Springer-Verlag, 2000. | |
| |
92. Rodrigues R., Valente F.M., Pereira I.A. et al. A novel membrane-bound Ech NiFe hydrogenase in Desulfovibrio gigas. Biochem. Biophys. Res. Commun, 2003; 306: 366-375. | |
| |
93. Rose P., Moore P.K., Ming S.H. et al. Hydrogen sulphide protects colon cancer cells from chemopreventative agent β-phenylethyl isocyanate induced apotosis. World J. Gastroenterol, 2005; 11: 3990-3997. | |
| |
94. Sapra R., Bagramyan K., Adams M.W. A simple energy-conserving system: proton reduction coupled to proton translocation. Proc. Natl. Acad. Sci. USA, 2003; 100: 7545-7550. | |
| |
95. Sato K., Nishina Y., Setoyama C. et al. Unusually high standard redox potential of acrylyl-CoA/propionyl-CoA couple among enoyl-CoA/acyl-CoA couples: a reason for the distinct metabolic pathway of propionyl-CoA from longer acyl-CoAs. J. Biochem (Tokyo), 1999; 126: 668-675. | |
| |
96. Schink B., Stams A. Syntrophism among Prokaryotes. // M. Dworkin The Prokaryotes (electronic version). New York: Springer Verlag, 2002; 309-335. | |
| |
97. Shen Y.N., Buick R. The antiquity of microbial sulphate reduction. Earth-Science Reviews, 2004; 64: 243-272. | |
| |
98. Shigematsu T., Tang Y., Kobayashi T. et al. Effect of dilution rate on metabolic pathway shift between aceticlastic and nonaceticlastic methanogenesis in chemostat cultivation. Appl. Environ. Microbiol, 2004; 70: 4048-4052. | |
| |
99. Shima S., Thauer R. Methyl-coenzyme M reductase (MCR) and the anaerobic oxidation of methane (AOM) in methanotrophic archaea. Curr. Opin. Microbiol, 2005; 8: 643-648. | |
| |
100. Sperling D., Kappler U., Wynen A. et al. Dissimilatory ATP sulfurylase from the hyperthermophilic sulphate reducer Archaeoglobus fulgidus belongs to the group of homo-oligomeric ATP sulfurylases. FEMS Microbiol. Lett, 1998; 162: 257-264. | |
| |
101. Stebbings S., Munro K., Simon M. et al. Comparison of the faecal microflora of patients with ankylosing spondylitis and controls using molecular methods of analysis. Rheumatology, 2002; 41: 1395-1401. | |
| |
102. Steger J.L., Vincent C., Ballard J.D., Krumholz L.R. Desulfovibrio sp. genes involved in the respiration of sulphate during metabolism of hydrogen and lactate. Appl .Environ. Microbiol, 2002; 68: 1932-1937. | |
| |
103. Stetter K.O. The genus Archaeoglobus // A. Balows, H.G. Truper, M. Dworkin et al. The Prokaryotes, 2nd ed. New York: Springer-Verlag, 1992; 1: 707-711. | |
| |
104. Stetter K.O., Huber R., Blochl E. et al. Hyperthermophilic archaea are thriving in deep north sea and alaskan oil reservoirs. Nature, 1993; 365: 743-745. | |
| |
105. Voordouw G. Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough. J. Bacteriol, 2002; 184: 5903-5911. | |
| |
106. Widdel F., Bak F. Gram-negative mesophilic sulphate-reducing bacteria. In A. Balows H.G. Truper M. Dworkin, W. et al. The Prokaryotes. New York: Springer-Verlag, 1992; 3352-3378. | |
| |
107. Yagi T., Ogata M. Catalytic properties of adenylylsulphate reductase from Desulfovibrio vulgaris Miyazaki. Biochimie, 1996; 78: 838-846. | |
| |
108. Zinkevich V., Beech I.B. Screening of sulphate-reducing bacteria in colonoscopy samples from healthy and colitic gut mucosa. FEMS Microbiol. Ecol, 2000; 34: 147-155. | |
| |
109. Zverlov V., Klein M., Lucker S. et al. Lateral gene transfer of dissimilatory bisulfite reductase revisited. J. Bacteriol, 2005; 187: 2203-2208. |
Refbacks
- There are currently no refbacks.
Copyright (c) 2012 Studia biologica
This work is licensed under a Creative Commons Attribution 4.0 International License.