PHYTOHORMONES IN THE REGULATION OF GROWTH AND DEVELOPMENT OF WATER FERNS OF SALVINIACEAE FAMILY: A REVIEW
DOI: http://dx.doi.org/10.30970/sbi.1703.721
Abstract
Water ferns of the Salviniaceae family are successfully used for bioremediation and bioindication of contaminated waters. Due to intensive propagation they are able to produce a great volume of biomass enriched with natural plant growth regulators. Simultaneously, water ferns have become an impediment to the use of water resources through the fast spread. Their growth and development is under control of phytohormones, which are main chemical messengers regulating the responses to environmental changes. Today hormonal system of water ferns of the Salviniaceae family remains understudied. In this review, we analyzed and summarized the literature data and the results of our own research about the role of auxins, cytokinins, gibberellic, abscisic, salicylic and jasmonic acids in regulation of growth and development of water ferns from Salvinia and Azolla genera emphasizing the specific hallmarks of these phytohormones in ferns. We have submitted brief information about methodological approaches for endogenous phytohormones determination in water ferns of the Salviniaceae family. The effects of exogenous regulators on growth, development and tolerance of water macrophytes from Salvinia and Azolla genera were discussed, as well as the possibility of using water ferns to create ecological biofertilizers.
Keywords
Full Text:
PDFReferences
Anterola, A., Shanle, E., Mansouri, K., Schuette, S., & Renzaglia, K. (2009). Gibberellin precursor is involved in spore germination in the moss Physcomitrella patens. Planta, 229(4), 1003-1007. doi:10.1007/s00425-008-0875-1 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Arthur, G. D., Stirk, W. A., Novák, O., Hekera, P., & van Staden, J. (2007). Occurrence of nutrients and plant hormones (cytokinins and IAA) in the water fern Salvinia molesta during growth and composting. Environmental and Experimental Botany, 61(2), 137-144. doi:10.1016/j.envexpbot.2007.05.002 Crossref ● Google Scholar | ||||
| ||||
Atteya, A. K. G., Albalawi, A. N., Bayomy, H. M., Alamri, E. S., & Genaidy, E. A. E. (2022). Response of growth, yield, and phytochemical behavior of jojoba genotypes to Azolla filiculoides plant extract. Plants, 11(10), 1314. doi:10.3390/plants11101314 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Babenko, L. M., Skaterna, T. D., & Kosakivska, I. V. (2016). Lypoxigenase activity of Salvinia natans (L.) All. in ontogenesis. Reports of the National Academy of Sciences of Ukraine, 8, 101-108. doi:10.15407/dopovidi2016.08.101 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
Babenko, L. М., Kosakivska, І. V., & Skaterna, T. D. (2015). Jasmonic acid: role in biotechnology and the regulation of plants biochemical processes. Biotechnologia Acta, 8(2), 36-51. doi:10.15407/biotech8.02.036 Crossref ● Google Scholar | ||||
| ||||
Babenko, L. М., Shcherbatiuk, M. M., Skaterna, T. D., & Kosakivska, I. V. (2017). Lipoxygenases and their metabolites in formation of plant stress tolerance. The Ukrainian Biochemical Journal, 89(1), 5-21. doi:10.15407/ubj89.01.005 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Benková, E., & Hejátko, J. (2009). Hormone interactions at the root apical meristem. Plant Molecular Biology, 69(4), 383-396. doi:10.1007/s11103-008-9393-6 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Blackman, G. E. (1961). Responses to environmental factors by plants in the vegetative phase. In: M. X. Zarrow (Ed.), Growth in living systems (pp. 525-556). New York: Basic Books Inc. Google Scholar | ||||
| ||||
Boursiac, Y., Léran, S., Corratgé-Faillie, C., Gojon, A., Krouk, G., & Lacombe, B. (2013). ABA transport and transporters. Trends in Plant Science, 18(6), 325-333. doi:10.1016/j.tplants.2013.01.007 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Bradford, K. J., & Trewavas, A. J. (1994). Sensitivity thresholds and variable time scales in plant hormone action. Plant Physiology, 105(4), 1029-1036. doi:10.1104/pp.105.4.1029 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Camloh, M., Vilhar, B., Žel, J., & Ravnikar, M. (1999). Jasmonic acid stimulates development of rhizoids and shoots in fern leaf culture. Journal of Plant Physiology, 155(6), 798-801. doi:10.1016/S0176-1617(99)80100-X Crossref ● Google Scholar | ||||
| ||||
Carrapiço, F. (2010). Azolla as a superorganism. Its implication in symbiotic studies. In: J. Seckbach & M. Grube (Eds.), Symbioses and stress: joint ventures in biology, cellular origin, life in extreme habitats and astrobiology. (pp. 225-241). Dordrecht: Springer. doi:10.1007/978-90-481-9449-0_11 Crossref ● Google Scholar | ||||
| ||||
Chapman, E. J., & Estelle, M. (2009). Cytokinin and auxin intersection in root meristems. Genome Biology, 10(2), 210. doi:10.1186/gb-2009-10-2-210 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Chen, K., Li, G., Bressan, R. A., Song, C., Zhu, J., & Zhao, Y. (2020). Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology, 62(1), 25-54. doi:10.1111/jipb.12899 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Cheng, Y. T., Zhang, L., & He, S. Y. (2019). Plant-microbe interactions facing environmental challenge. Cell Host & Microbe, 26(2), 183-192. doi:10.1016/j.chom.2019.07.009 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Chiappetta, A., & Innocenti, A. M. (2006). Immunocytochemical localization of cytokinin in Azolla filiculoides. Plant Biosystems, 140(3), 229-233. doi:10.1080/11263500600756736 Crossref ● Google Scholar | ||||
| ||||
Chini, A., Gimenez-Ibanez, S., Goossens, A., & Solano, R. (2016). Redundancy and specificity in jasmonate signaling. Сurrent Opinion in Plant Biology, 33, 147−156. doi:10.1016/j.pbi.2016.07.005 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Cortleven, A., Leuendorf, J. E., Frank, M., Pezzetta, D., Bolt, S., & Schmülling, T. (2019). Cytokinin action in response to abiotic and biotic stress in plants. Plant, Cell & Environment, 42(3), 998-1018. doi:10.1111/pce.13494 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Davière, J. M., & Achard, P. (2013). Gibberellin signaling in plants. Development, 140(6), 1147−1151. doi:10.1242/dev.087650 Crossref ● PubMed ● Google Scholar | ||||
| ||||
de Vries, S., de Vries, J., Teschke, H., von Dahlen, J. K., Rose, L. E., & Gould, S. B. (2018). Jasmonic and salicylic acid response in the fern Azolla filiculoides and its cyanobiont. Plant, Cell & Environment, 41(11), 2530-2548. doi:10.1111/pce.13131 Crossref ● PubMed ● Google Scholar | ||||
| ||||
de Vries, S., Herrfurth, C., Li, F., Feussner, I., & de Vries, J. (2021). An ancient route towards salicylic acid and its implications for the perpetual Trichormus-Azolla symbiosis. bioRxiv, 435107. doi:10.1101/2021.03.12.435107 Crossref ● Google Scholar | ||||
| ||||
de Vries, J., Fischer, A. M., Roettger, M., Rommel, S., Schluepmann, H., Bräutigam, A., Carlsbecker, A., & Gould, S. B. (2016). Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots. The New Phytologist, 209(2), 705-720. doi:10.1111/nph.13630 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Dejonghe, W., Okamoto, M., & Cutler, S. R. (2018). Small molecule probes of ABA biosynthesis and signaling. Plant and Cell Physiology, 59(8), 1490-1499. https://doi.org/10.1093/pcp/pcy126 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Dobrev, P. I., & Vankova, R. (2012). Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. In S. Shabala & T. Cuin (Eds.), Plant salt tolerance. Methods and protocols biology (pp. 251-261). Totowa, NJ: Humana Press. doi:10.1007/978-1-61779-986-0_17 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Dolui, D., Hasanuzzaman, M., Saha, I., Ghosh, A., & Adak, M. K. (2022). Amelioration of sodium and arsenic toxicity in Salvinia natans L. with 2,4-D priming through physiological responses. Environmental Science and Pollution Research, 29, 9232-9247. doi:10.1007/s11356-021-16246-7 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Dubyna, D. V., Shelyag-Sosonko, Y. R., Zhmud, O. I., Zhmud, M. E., Dvoretskyi, T. V., Dzyuba, T. P., & Tymoshenko, P. A. (2003). Dunaiskyi biosfernyi zapovidnyk. Roslynnyi svit [Danube Biosphere Reserve. The plant world]. Kyiv: Phytosociocentr. (In Ukrainian) Google Scholar | ||||
| ||||
Eily, A. N., Pryer, K. M., & Li, F.-W. (2019). A first glimpse at genes important to the Azolla-Nostoc symbiosis. Symbiosis, 78(2), 149-162. doi:10.1007/s13199-019-00599-2 Crossref ● Google Scholar | ||||
| ||||
El-Araby, M.M.I., El-Shahate, R.M., Eweda, E.W., & El-Berashi, M.N. (2010). Enhancement of growth and endogenous phytohormones of Azolla pinnata in response to tryptophan. Australian Journal of Basic and Applied Sciences, 4(12), 6598−6604. Retrieved from http://www.ajbasweb.com/old/ajbas/2010/6598-6604.pdf Google Scholar | ||||
| ||||
Forni, C., Riov, J., Grilli Caiola, M., & Tel-Or, E. (1992). Indole-3-acetic acid (IAA) production by Arthrobacter species isolated from Azolla. Journal of General Microbiology, 138(2), 377−381. doi:10.1099/00221287-138-2-377 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Frébort, I., Kowalska, M., Hluska, T., Frébortová, J., & Galuszka, P. (2011). Evolution of cytokinin biosynthesis and degradation. Journal of Experimental Botany, 62(8), 2431-2452. doi:10.1093/jxb/err004 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Galka, A., & Szmeja, J. (2013). Phenology of the aquatic fern Salvinia natans (L.) All. in the Vistula Delta in the context of climate warming. Limnologica, 43, 100−105. doi:10.1016/j.limno.2012.07.001 Crossref ● Google Scholar | ||||
| ||||
Gallavotti, A. (2013). The role of auxin in shaping shoot architecture. Journal of Experimental Botany, 64(9), 2593−608. doi:10.1093/jxb/ert141 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Gantait, S., Sinniah, U., Ali, Md., & Sahu, N. (2015). Gibberellins - a multifaceted hormone in plant growth regulatory network. Current Protein & Peptide Science, 16(5), 406-412. doi:10.2174/1389203716666150330125439 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Gaudet, J. J., & Huang, S. D. (1967). Incorporation of kinetin into Salvinia. Plant and Cell Physiology, 8(3): 433-437. doi:10.1093/oxfordjournals.pcp.a079277 Crossref ● Google Scholar | ||||
| ||||
Gaudet, J. J., & Koh, D. V. (1968). Effect of various growth regulators on Salvinia rotundifolia in sterile culture. Bulletin of the Torrey Botanical Club, 95(1), 92-102. doi:10.2307/2483810 Crossref ● Google Scholar | ||||
| ||||
Gomes, G. L. B., & Scortecci, K. C. (2021). Auxin and its role in plant development: structure, signalling, regulation and response mechanisms. Plant Biology, 23(6), 894−904. doi:10.1111/plb.13303 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Gupta, R., & Chakrabarty, S. K. (2013). Gibberellic acid in plant: still a mystery unresolved. Plant Signal Behavior, 8(9), e25504. doi:10.4161/psb.25504 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Hashizume, T., Doi, J., & Sugiyama, T. (1986). Mass spectrometric determination of endogenous cytokinins of Azolla. Agricultural and Biological Chemistry, 50(4), 1035-1038. doi:10.1080/00021369.1986.10867485 Crossref ● Google Scholar | ||||
| ||||
Hönig, M., Plíhalová, L., Husičková, A., Nisler, J., & Doležal, K. (2018). Role of cytokinins in senescence, antioxidant defence and photosynthesis. International Journal of Molecular Science, 19, 4045. doi:10.3390/ijms19124045 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Hopkins, W. G. (Ed.). (1998). Introduction to plant physiology. New York, USA: John Wiley and Sons. | ||||
| ||||
Hur, J., & Wellburn, A. R. (1994). Effects of atmospheric O3 on Azolla-Anabaena symbiosis. Annals of Botany, 73(2), 205-209. doi:10.1006/anbo.1994.1024 Crossref ● Google Scholar | ||||
| ||||
Janda, T., Gondor, O. K., Yordanova, R., Szalai, G., & Pál, M. (2014). Salicylic acid and photosynthesis: signalling and effects. Acta Physiologiae Plantarum, 36(10), 2537-2546. doi:10.1007/s11738-014-1620-y Crossref ● Google Scholar | ||||
| ||||
Kar, P., Mishra, S., & Singh, D. (1999). Influence of gibberellic acid on the sporulation of Azolla caroliniana, Azolla microphylla and Azolla pinnata. Biology and Fertility of Soils, 29, 424−429. doi:10.1007/s003740050575 Crossref ● Google Scholar | ||||
| ||||
Kar, P., Mishra, S., & Singh, D. (2002). Azolla sporulation in response to application of some selected auxins and their combination with gibberellic acid. Biology and Fertility of Soils, 35(5), 314-319. doi:10.1007/s00374-002-0469-1 Crossref ● Google Scholar | ||||
| ||||
Kar, P. P., & Singh, D. P. (2002). Effect of some metabolic inhibitors and growth hormones on the sporulation and growth of Azolla microphylla. Experimental Agriculture, 38(4), 433-444. doi:10.1017/S0014479702000455 Crossref ● Google Scholar | ||||
| ||||
Kieber, J. J., & Schaller, G. E. (2018). Cytokinin signaling in plant development. Development, 145, dev149344. doi:10.1242/dev.149344 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Korasick, D. A., Enders, T. A., & Strader, L. C. (2013). Auxin biosynthesis and storage forms. Journal of Experimental Botany, 64(9), 2541-2555. doi:10.1093/jxb/ert080 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kosakivska, I. V., Babenko, L. M., Shcherbatiuk, M. M., Vedenicheva, N. P., Voytenko, L. V., & Vasyuk, V. A. (2016). Phytohormones during growth and development of Polypodiophyta. Advances in Biology & Earth Sciences, 1(1), 26-44. Google Scholar | ||||
Kosakivska, I. V., Shcherbatiuk, M. M., Babenko, L. M., & Polishchuk, O. V. (2018). Characteristics of photosynthetic apparatus of aquatic fern Salvinia natans floating and submerged fronds. Advances in Biology & Earth Sciences, 3(1), 13-26. Google Scholar | ||||
| ||||
Kosakivska, I. V., & Vasyuk, V. A. (2021). Gibberellins in regulation of plant growth and development under abiotic stresses. Biotechnologia Acta, 14(2), 5-18. doi:10.15407/biotech14.02.005 Crossref ● Google Scholar | ||||
| ||||
Kosakivska, I. V., Vedenicheva, N. P., Shcherbatiuk, M. M., Voytenko, L. V., & Vasyuk, V. A. (2022). Water ferns of Salviniaceae family in phytoremediation and phytoindication of contaminated water. Biotechnologia Acta, 15(5), 5−23. doi:10.15407/biotech15.05.005 Crossref ● Google Scholar | ||||
| ||||
Kosakivska, I. V. (Ed.), Vedenicheva, N. P., Vasheka, O. V., Voytenko, L. V., Vasyuk, V. A. Romanenko, K. J., Babenko, L. M., Polishchuk, O. V., & Shcherbatiuk, M. M. (2019). Fitohormonalna systema ta strukturno-funktsionalni osoblyvosti paporotepodibnykh (Polypodiaphyta) [Phytohormonal system and structural-functional features of Pteridophytes (Polypodiophyta)]. Kyiv: Nash Format. Retrieved from https://www.botany.kiev.ua/doc/kosakivska.pdf (In Ukrainian) | ||||
| ||||
Kosakivska, І. V., Shcherbatiuk, M. M., & Voytenko, L. V. (2020). Profiling of hormones in plant tissues: history, modern approaches, use in biotechnology. Biotechnologia Acta, 13(4), 14-25. doi:10.15407/biotech13.04.014 Crossref ● Google Scholar | ||||
| ||||
Kumar, U., Rout, S., Kaviraj, M. Swain, P., & Nayak, A. K. (2021). Uncovering morphological and physiological markers to distinguish Azolla strains. Brazilian Journal of Botany, 44, 697−713. doi:10.1007/s40415-021-00725-9 Crossref ● Google Scholar | ||||
| ||||
Kurepa, J., Shull, T. E., & Smalle, J. A. (2019). Antagonistic activity of auxin and cytokinin in shoot and root organs. Plant Direct, 3(2), e00121. doi:10.1002/pld3.121 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Liu, J., Moore S., Chen, C., & Lindsey, K. (2017). Crosstalk complexities between auxin, cytokinin and ethylene in Arabidopsis root development: from experiments to systems modeling and back again. Molecular Plant, 10(12): 1480-1496. doi:10.1016/j.molp.2017.11.002 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Mandal, S., Ghorai, M., Anand, U., Samanta, D., Kant, N., Mishra, T., Rahman, M. H., Jha, S. K., Lal, M. K., Tiwari, R. K., Kumar, M., Prasanth, D. A., Mane, A. B., Gopalakrishnan, A. V., Biswas, P., Proćków, J., & Dey, A. (2022). Cytokinin and abiotic stress tolerance - what has been accomplished and the way forward? Frontiers in Genetics, 13, 943025. doi:10.3389/fgene.2022.943025 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Mazzoni-Putman, S. M., Brumos, J., Zhao, C., Alonso, J. M., & Stepanova, A. N. (2021). Auxin interactions with other hormones in plant development. Cold Spring Harbor Perspectives in Biology, 13(10), a039990. doi:10.1101/cshperspect.a039990 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Mohanta, T. K., Bashir, T., Hashem, A., Abd_Allah, E. F., Khan, A. L., & Al-Harrasi, A. S. (2018). Molecular players of auxin transport systems: advances in genomic and molecular events. Journal of Plant Interactions, 13(1), 483-495. doi:10.1080/17429145.2018.1523476 Crossref ● Google Scholar | ||||
| ||||
Mok, D. W., & Mok, M. C. (2001). Cytokinin metabolism and action. Annual Review of Plant Physiology and Plant Molecular Biology, 52(1), 89-118. doi:10.1146/annurev.arplant.52.1.89 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Munné-Bosch, S., & Müller, M. (2013). Hormonal cross-talk in plant development and stress responses. Frontiers in Plant Science, 4, 529-531. doi:10.3389/fpls.2013.00529 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Mur, L. A. J., Simpson, C., Kumari, A., Gupta, A. K., & Gupta, K. J. (2017). Moving nitrogen to the centre of plant defence against pathogens. Annals of Botany, 119(5), 703-709. doi:10.1093/aob/mcw179 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Nguyen, H. N., Nguyen, T. Q., Kisiala, A. B., & Emery, R. J. N. (2021). Beyond transport: cytokinin ribosides are translocated and active in regulating the development and environmental responses of plants. Planta, 254(3), 45. doi:10.1007/s00425-021-03693-2 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Olatunji, D., Geelen, D., & Verstraeten, I. (2017). Control of endogenous auxin levels in plant root development. International Journal of Molecular Sciences, 18(12), 2587. doi:10.3390/ijms18122587 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Parthier, B. (1990). Jasmonates: hormonal regulators or stress factors in leaf senescence? Journal of Plant Growth Regulation, 9(1-4), 57-63. doi:10.1007/bf02041942 Crossref ● Google Scholar | ||||
| ||||
Pati, C. K., & Bhattacharjee, A. (2013). Influence of IAA on the retention of detached leaf senescence of three aquatic plant species. International Journal of Science and Knowledge, 2(1), 42-46. Google Scholar | ||||
| ||||
Pavlů, J., Novák, J., Koukalová, V., Luklová, M., Brzobohatý, B., & Černý, M. (2018). Cytokinin at the crossroads of abiotic stress signalling pathways. International Journal of Molecular Science, 19(8), 2450. doi:10.3390/ijms19082450 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Pieterse, C. M. J., Van der Does, D., Zamioudis, C., Leon-Reyes, A., & Van Wees, S. C. M. (2012). Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 28(1), 489-521. doi:10.1146/annurev-cellbio-092910-154055 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Pils, B, & Hogyyl, A. (2009). Unraveling the evolution of cytokinin signaling. Plant Physiology, 151(2), 782-791. doi:10.1104/pp.109.139188 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Piotrowska, A., & Bajguz, A. (2011). Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins and jasmonates. Phytochemistry, 72(17), 2097-2112. doi:10.1016/j.phytochem.2011.08.012 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Radwan, E. S. E. D., Mohamed, Z. K. & Massena-Reis, V. (2002) Production of Indole-3-acetic acid by different strains of Azospirillum and Heraspirillum spp. Symbiosis, 32, 39-54. Google Scholar | ||||
| ||||
Raja, W. (2014). Azolla: amazing aquatic fern. Saarbrucken: Lambert Academic Publishing. Google Scholar | ||||
| ||||
Raut, V., Shaikh, I., Naphade, B., Prashar, K., & Adhapure, N. (2017). Plant growth promotion using microbial IAA producers in conjunction with azolla: a novel approach. Chemical and Biology Technologies in Agriculture, 4(1), 1−11. doi:10.1186/s40538-016-0083-3 Crossref ● Google Scholar | ||||
| ||||
Rekhter, D., Lüdke, D., Ding, Y., Feussner, K., Zienkiewicz, K., Lipka, V., Wiermer, M., Zhang, Y., & Feussner, I. (2019). Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science, 365(6452), 498-502. doi:10.1126/science.aaw1720 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Robert-Seilaniantz, A., Grant, M., & Jones, J.D.G. (2011). Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annual Review of Phytopathology, 49(1), 317-343. doi:10.1146/annurev-phyto-073009-114447 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Ross, J. J., & Reid, J. B. (2010). Evolution of growth-promoting plant hormones. Functional Plant Biology, 37(9), 795-805. doi:10.1071/fp10063 Crossref ● Google Scholar | ||||
| ||||
Roychoudhury, A., Ghosh, S., Paul, S., Mazumdar, S., Das, G. & Das, S. (2016). Pre-treatment of seeds with salicylic acid attenuates cadmium chloride-induced oxidative damages in the seedlings of mungbean (Vigna radiata L. Wilczek). Acta Physiologiae Plantarum, 38(1), 11. doi:10.1007/s11738-015-2027-0 Crossref ● Google Scholar | ||||
| ||||
Sakata, Y., Komatsu, K., & Takezawa, D. (2014). ABA as a universal plant hormone. In U. Lüttge, F. M. Cánovas, M-C. Risueño & C. Leuschner (Eds.), Progress in botany (pp. 57-96). Berlin, Heidelberg: Springer-Verlag. doi:10.1007/978-3-642-38797-5_2 Crossref ● Google Scholar | ||||
| ||||
Schaller, G. E., Street, I. H., & Kieber, J. J. (2014). Cytokinin and the cell cycle. Current Opinion in Plant Biology, 21, 7-15. doi:10.1016/j.pbi.2014.05.015 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Seo, M. (2014). ABA transmembrane transport and transporters. In D. P. Zhang (Ed.), Abscisic acid: metabolism, transport and signaling (pp. 47-59). Dordrecht: Springer. doi:10.1007/978-94-017-9424-4_3 Crossref ● Google Scholar | ||||
| ||||
Simon, S., Skůpa, P., Viaene, T., Zwiewka, M., Tejos, R., Klíma, P., Čarná, M., Rolčík, J., De Rycke, R., Moreno, I., Dobrev, P. I., Orellana, A., Zažímalová, E., & Friml, J. (2016). PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis. New Phytologist, 211(1), 65-74. doi:10.1111/nph.14019 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Singh, P. K., Bisoyi, R. N., & Singh, R. P. (1990). Collection and germination of sporocarps of Azolla caroliniana. Annals of Botany, 66(1), 51-56. doi:10.1093/oxfordjournals.aob.a087999 Crossref ● Google Scholar | ||||
| ||||
Sini, S., Smitha, R. B., & Madhusoodanan, P. V. (2015). Induction of sporocarp development in vitro in the mosquito fern, Azolla rubra R. Br. Annals of Plant Sciences, 4(02), 994-1002. Google Scholar | ||||
| ||||
Smith, A. R., Pryer, K. M., Schuettpelz, E., Korall, P., Schneider, H., & Wolf, P. G. (2006). A classification for extant ferns. Taxon, 55(3), 705-731. doi:10.2307/25065646 Crossref ● Google Scholar | ||||
| ||||
Spíchal, L. (2012). Cytokinins - recent news and views of evolutionally old molecules. Functional Plant Biology, 39(4), 267-284. doi:10.1071/fp11276 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Stirk, W. A., & van Staden, J. (2003). Occurrence of cytokinin-like compounds in two aquatic ferns and their exudates. Environmental and Experimental Botany, 49(1), 77-85. doi:10.1016/S0098-8472(02)00061-8 Crossref ● Google Scholar | ||||
| ||||
Taiz, L., & Zeiger, E. (2002). Plant physiology, 3rd Ed. Sunderland, MA: Sinauer Associates, Inc. Retrieved from https://exa.unne.edu.ar/biologia/fisiologia.vegetal/PlantPhysiologyTaiz2002.pdf Google Scholar | ||||
| ||||
Terceros, G. C., Resentini, F., Cucinotta, M., Manrique, S., Colombo, L., & Mendes, M. A. (2020). The Importance of cytokinins during reproductive development in Arabidopsis and beyond. International Journal of Molecular Science, 21(21), 8161. doi:10.3390/ijms21218161 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Tuan, P. A., Kumar, R., Rehal, P. K., Toora, P. K., & Ayele, B. T. (2018). Molecular mechanisms underlying abscisic acid/gibberellin balance in the control of seed dormancy and germination in cereals. Frontiers in Plant Science, 9, 668. doi:10.3389/fpls.2018.00668 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Vasyuk, V. A., & Kosakivska, I. V. (2015). Gibberellins in ferns: participation in regulation of physiological processes. Ukrainian Botanical Journal, 72(1), 65-72. doi:10.15407/ukrbotj72.01.065 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
Vasyuk, V. A., Lichnevskiy, R. V., & Kosakivska, I. V. (2016). Gibberellin-like substances in ontogenesis of the water fern Salvinia natans (Salviniaceae). Ukrainian Botanical Journal, 73(5), 503-509. doi:10.15407/ukrbotj73.05.503 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
Vedenicheva, N. P., & Kosakivska, I. V. (2016). Endogenous cytokinins of the water fern Salvinia natans (Salviniaceae). Ukrainian Botanical Journal, 73(3), 277-282. doi:10.15407/ukrbotj73.03.277 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
Velasquez, S. M., Barbez, E., Kleine-Vehn, J., & Estevez, J. M. (2016). Auxin and cellular elongation. Plant Physiology, 170(3), 1206-1215. doi:10.1104/pp.15.01863 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Voytenko, L. V., Likhnyovskiy, R. V., & Kosakivska, I. V. (2016). Peculiarities of accumulation and localization of indole-3-acetic acid in organs of Salvinia natans (L.) All. sporophyte at the different phenological development phases. Studia Biologica, 10(3-4), 91-106. doi:10.30970/sbi.1003.492 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
Voуtenko, L. V., & Kosakovskaya, I. V. (2017). Abscisic acid in sporophyte organs of higher vascular cryptogamic plants. Advances in Biology & Earth Sciences, 2(3), 271-283. (In Russian) Google Scholar | ||||
| ||||
Wang, B., Chu, J., Yu, T., Xu, Q., Sun, X., Yuan, J., Xiong, G., Wang, G., Wang, Y., & Li, J. (2015). Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proceedings of the National Academy of Sciences, 112(15), 4821-4826. doi:10.1073/pnas.1503998112 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Wani, A. B., Chadar, H., Wani, A. H., Singh, S., & Upadhyay, N. (2017). Salicylic acid to decrease plant stress. Environmental Chemistry Letters, 15(1), 101-123. doi:10.1007/s10311-016-0584-0 Crossref ● Google Scholar | ||||
| ||||
Wasternack, C., & Strnad, M. (2016). Jasmonate signaling in plant stress responses and development - active and inactive compounds. New Biotechnology, 33(5), 604-613. doi:10.1016/j.nbt.2015.11.001 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Xu, G., Zheng, X., Wang, J., Deng, S., Yang, Y., & Ying, Z. (2021). Auxin IAA-induced Azolla sporulation. Fujian Journal of Agricultural Science, 36(6), 713-718. doi:10.19303/j.issn.1008-0384.2021.06.014 Crossref ● Google Scholar | ||||
| ||||
Zhang, Z., & Dai, S. (2010). Effect of environmental factors on fern spore germination. Acta Ecologica Sinica, 30(7), 1882-1893. Google Scholar | ||||
| ||||
Zhao, Y. (2014). Auxin biosynthesis. Arabidopsis Book, 12, e0173. doi:10.1199/tab.0173 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zürcher, E., & Müller, B. (2016). Cytokinin synthesis, signaling and function - advances and new insights. International Review of Cell and Molecular Biology, 324, 1-38. doi:10.1016/bs.ircmb.2016.01.00 Crossref ● PubMed ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Iryna Kosakivska, Nina Vedenicheva, Mykola Shcherbatiuk, Lesya Voytenko, Valentyna Vasyuk
This work is licensed under a Creative Commons Attribution 4.0 International License.