PHYTOHORMONES IN THE REGULATION OF GROWTH AND DEVELOPMENT OF WATER FERNS OF SALVINIACEAE FAMILY: A REVIEW

Iryna Kosakivska, Nina Vedenicheva, Mykola Shcherbatiuk, Lesya Voytenko, Valentyna Vasyuk


DOI: http://dx.doi.org/10.30970/sbi.1703.721

Abstract


Water ferns of the Salviniaceae family are successfully used for bioremediation and bioindication of contaminated waters. Due to intensive propagation they are able to produce a great volume of biomass enriched with natural plant growth regulators. Simultaneously, water ferns have become an impediment to the use of water resources through the fast spread. Their growth and development is under control of phytohormones, which are main chemical messengers regulating the responses to environmental changes. Today hormonal system of water ferns of the Salviniaceae family remains understudied. In this review, we analyzed and summarized the literature data and the results of our own research about the role of auxins, cytokinins, gibberellic, abscisic, salicylic and jasmonic acids in regulation of growth and development of water ferns from Salvinia and Azolla genera emphasizing the specific hallmarks of these phytohormones in ferns. We have submitted brief information about methodological approaches for endogenous phytohormones determination in water ferns of the Salviniaceae family. The effects of exogenous regulators on growth, development and tolerance of water macrophytes from Salvinia and Azolla genera were discussed, as well as the possibility of using water ferns to create ecological biofertilizers.


Keywords


Salvinia and Azolla genus, phytohormones, growth regulation, resistance

Full Text:

PDF

References


Anterola, A., Shanle, E., Mansouri, K., Schuette, S., & Renzaglia, K. (2009). Gibberellin precursor is involved in spore germination in the moss Physcomitrella patens. Planta, 229(4), 1003-1007. doi:10.1007/s00425-008-0875-1
CrossrefPubMedGoogle Scholar

Arthur, G. D., Stirk, W. A., Novák, O., Hekera, P., & van Staden, J. (2007). Occurrence of nutrients and plant hormones (cytokinins and IAA) in the water fern Salvinia molesta during growth and composting. Environmental and Experimental Botany, 61(2), 137-144. doi:10.1016/j.envexpbot.2007.05.002
CrossrefGoogle Scholar

Atteya, A. K. G., Albalawi, A. N., Bayomy, H. M., Alamri, E. S., & Genaidy, E. A. E. (2022). Response of growth, yield, and phytochemical behavior of jojoba genotypes to Azolla filiculoides plant extract. Plants, 11(10), 1314. doi:10.3390/plants11101314
CrossrefPubMedPMCGoogle Scholar

Babenko, L. M., Skaterna, T. D., & Kosakivska, I. V. (2016). Lypoxigenase activity of Salvinia natans (L.) All. in ontogenesis. Reports of the National Academy of Sciences of Ukraine, 8, 101-108. doi:10.15407/dopovidi2016.08.101 (In Ukrainian)
CrossrefGoogle Scholar

Babenko, L. М., Kosakivska, І. V., & Skaterna, T. D. (2015). Jasmonic acid: role in biotechnology and the regulation of plants biochemical processes. Biotechnologia Acta, 8(2), 36-51. doi:10.15407/biotech8.02.036
CrossrefGoogle Scholar

Babenko, L. М., Shcherbatiuk, M. M., Skaterna, T. D., & Kosakivska, I. V. (2017). Lipoxygenases and their metabolites in formation of plant stress tolerance. The Ukrainian Biochemical Journal, 89(1), 5-21. doi:10.15407/ubj89.01.005
CrossrefPubMedGoogle Scholar

Benková, E., & Hejátko, J. (2009). Hormone interactions at the root apical meristem. Plant Molecular Biology, 69(4), 383-396. doi:10.1007/s11103-008-9393-6
CrossrefPubMedGoogle Scholar

Blackman, G. E. (1961). Responses to environmental factors by plants in the vegetative phase. In: M. X. Zarrow (Ed.), Growth in living systems (pp. 525-556). New York: Basic Books Inc.
Google Scholar

Boursiac, Y., Léran, S., Corratgé-Faillie, C., Gojon, A., Krouk, G., & Lacombe, B. (2013). ABA transport and transporters. Trends in Plant Science, 18(6), 325-333. doi:10.1016/j.tplants.2013.01.007
CrossrefPubMedGoogle Scholar

Bradford, K. J., & Trewavas, A. J. (1994). Sensitivity thresholds and variable time scales in plant hormone action. Plant Physiology, 105(4), 1029-1036. doi:10.1104/pp.105.4.1029
CrossrefPubMedPMCGoogle Scholar

Camloh, M., Vilhar, B., Žel, J., & Ravnikar, M. (1999). Jasmonic acid stimulates development of rhizoids and shoots in fern leaf culture. Journal of Plant Physiology, 155(6), 798-801. doi:10.1016/S0176-1617(99)80100-X
CrossrefGoogle Scholar

Carrapiço, F. (2010). Azolla as a superorganism. Its implication in symbiotic studies. In: J. Seckbach & M. Grube (Eds.), Symbioses and stress: joint ventures in biology, cellular origin, life in extreme habitats and astrobiology. (pp. 225-241). Dordrecht: Springer. doi:10.1007/978-90-481-9449-0_11
CrossrefGoogle Scholar

Chapman, E. J., & Estelle, M. (2009). Cytokinin and auxin intersection in root meristems. Genome Biology, 10(2), 210. doi:10.1186/gb-2009-10-2-210
CrossrefPubMedGoogle Scholar

Chen, K., Li, G., Bressan, R. A., Song, C., Zhu, J., & Zhao, Y. (2020). Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology, 62(1), 25-54. doi:10.1111/jipb.12899
CrossrefPubMedGoogle Scholar

Cheng, Y. T., Zhang, L., & He, S. Y. (2019). Plant-microbe interactions facing environmental challenge. Cell Host & Microbe, 26(2), 183-192. doi:10.1016/j.chom.2019.07.009
CrossrefPubMedPMCGoogle Scholar

Chiappetta, A., & Innocenti, A. M. (2006). Immunocytochemical localization of cytokinin in Azolla filiculoides. Plant Biosystems, 140(3), 229-233. doi:10.1080/11263500600756736
CrossrefGoogle Scholar

Chini, A., Gimenez-Ibanez, S., Goossens, A., & Solano, R. (2016). Redundancy and specificity in jasmonate signaling. Сurrent Opinion in Plant Biology, 33, 147−156. doi:10.1016/j.pbi.2016.07.005
CrossrefPubMedGoogle Scholar

Cortleven, A., Leuendorf, J. E., Frank, M., Pezzetta, D., Bolt, S., & Schmülling, T. (2019). Cytokinin action in response to abiotic and biotic stress in plants. Plant, Cell & Environment, 42(3), 998-1018. doi:10.1111/pce.13494
CrossrefPubMedGoogle Scholar

Davière, J. M., & Achard, P. (2013). Gibberellin signaling in plants. Development, 140(6), 1147−1151. doi:10.1242/dev.087650
CrossrefPubMedGoogle Scholar

de Vries, S., de Vries, J., Teschke, H., von Dahlen, J. K., Rose, L. E., & Gould, S. B. (2018). Jasmonic and salicylic acid response in the fern Azolla filiculoides and its cyanobiont. Plant, Cell & Environment, 41(11), 2530-2548. doi:10.1111/pce.13131
CrossrefPubMedGoogle Scholar

de Vries, S., Herrfurth, C., Li, F., Feussner, I., & de Vries, J. (2021). An ancient route towards salicylic acid and its implications for the perpetual Trichormus-Azolla symbiosis. bioRxiv, 435107. doi:10.1101/2021.03.12.435107
CrossrefGoogle Scholar

de Vries, J., Fischer, A. M., Roettger, M., Rommel, S., Schluepmann, H., Bräutigam, A., Carlsbecker, A., & Gould, S. B. (2016). Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots. The New Phytologist, 209(2), 705-720. doi:10.1111/nph.13630
CrossrefPubMedPMCGoogle Scholar

Dejonghe, W., Okamoto, M., & Cutler, S. R. (2018). Small molecule probes of ABA biosynthesis and signaling. Plant and Cell Physiology, 59(8), 1490-1499. https://doi.org/10.1093/pcp/pcy126
CrossrefPubMedGoogle Scholar

Dobrev, P. I., & Vankova, R. (2012). Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. In S. Shabala & T. Cuin (Eds.), Plant salt tolerance. Methods and protocols biology (pp. 251-261). Totowa, NJ: Humana Press. doi:10.1007/978-1-61779-986-0_17
CrossrefPubMedGoogle Scholar

Dolui, D., Hasanuzzaman, M., Saha, I., Ghosh, A., & Adak, M. K. (2022). Amelioration of sodium and arsenic toxicity in Salvinia natans L. with 2,4-D priming through physiological responses. Environmental Science and Pollution Research, 29, 9232-9247. doi:10.1007/s11356-021-16246-7
CrossrefPubMedGoogle Scholar

Dubyna, D. V., Shelyag-Sosonko, Y. R., Zhmud, O. I., Zhmud, M. E., Dvoretskyi, T. V., Dzyuba, T. P., & Tymoshenko, P. A. (2003). Dunaiskyi biosfernyi zapovidnyk. Roslynnyi svit [Danube Biosphere Reserve. The plant world]. Kyiv: Phytosociocentr. (In Ukrainian)
Google Scholar

Eily, A. N., Pryer, K. M., & Li, F.-W. (2019). A first glimpse at genes important to the Azolla-Nostoc symbiosis. Symbiosis, 78(2), 149-162. doi:10.1007/s13199-019-00599-2
CrossrefGoogle Scholar

El-Araby, M.M.I., El-Shahate, R.M., Eweda, E.W., & El-Berashi, M.N. (2010). Enhancement of growth and endogenous phytohormones of Azolla pinnata in response to tryptophan. Australian Journal of Basic and Applied Sciences, 4(12), 6598−6604. Retrieved from http://www.ajbasweb.com/old/ajbas/2010/6598-6604.pdf
Google Scholar

Forni, C., Riov, J., Grilli Caiola, M., & Tel-Or, E. (1992). Indole-3-acetic acid (IAA) production by Arthrobacter species isolated from Azolla. Journal of General Microbiology, 138(2), 377−381. doi:10.1099/00221287-138-2-377
CrossrefPubMedGoogle Scholar

Frébort, I., Kowalska, M., Hluska, T., Frébortová, J., & Galuszka, P. (2011). Evolution of cytokinin biosynthesis and degradation. Journal of Experimental Botany, 62(8), 2431-2452. doi:10.1093/jxb/err004
CrossrefPubMedGoogle Scholar

Galka, A., & Szmeja, J. (2013). Phenology of the aquatic fern Salvinia natans (L.) All. in the Vistula Delta in the context of climate warming. Limnologica, 43, 100−105. doi:10.1016/j.limno.2012.07.001
CrossrefGoogle Scholar

Gallavotti, A. (2013). The role of auxin in shaping shoot architecture. Journal of Experimental Botany, 64(9), 2593−608. doi:10.1093/jxb/ert141
CrossrefPubMedGoogle Scholar

Gantait, S., Sinniah, U., Ali, Md., & Sahu, N. (2015). Gibberellins - a multifaceted hormone in plant growth regulatory network. Current Protein & Peptide Science, 16(5), 406-412. doi:10.2174/1389203716666150330125439
CrossrefPubMedGoogle Scholar

Gaudet, J. J., & Huang, S. D. (1967). Incorporation of kinetin into Salvinia. Plant and Cell Physiology, 8(3): 433-437. doi:10.1093/oxfordjournals.pcp.a079277
CrossrefGoogle Scholar

Gaudet, J. J., & Koh, D. V. (1968). Effect of various growth regulators on Salvinia rotundifolia in sterile culture. Bulletin of the Torrey Botanical Club, 95(1), 92-102. doi:10.2307/2483810
CrossrefGoogle Scholar

Gomes, G. L. B., & Scortecci, K. C. (2021). Auxin and its role in plant development: structure, signalling, regulation and response mechanisms. Plant Biology, 23(6), 894−904. doi:10.1111/plb.13303
CrossrefPubMedGoogle Scholar

Gupta, R., & Chakrabarty, S. K. (2013). Gibberellic acid in plant: still a mystery unresolved. Plant Signal Behavior, 8(9), e25504. doi:10.4161/psb.25504
CrossrefPubMedPMCGoogle Scholar

Hashizume, T., Doi, J., & Sugiyama, T. (1986). Mass spectrometric determination of endogenous cytokinins of Azolla. Agricultural and Biological Chemistry, 50(4), 1035-1038. doi:10.1080/00021369.1986.10867485
CrossrefGoogle Scholar

Hönig, M., Plíhalová, L., Husičková, A., Nisler, J., & Doležal, K. (2018). Role of cytokinins in senescence, antioxidant defence and photosynthesis. International Journal of Molecular Science, 19, 4045. doi:10.3390/ijms19124045
CrossrefPubMedPMCGoogle Scholar

Hopkins, W. G. (Ed.). (1998). Introduction to plant physiology. New York, USA: John Wiley and Sons.

Hur, J., & Wellburn, A. R. (1994). Effects of atmospheric O3 on Azolla-Anabaena symbiosis. Annals of Botany, 73(2), 205-209. doi:10.1006/anbo.1994.1024
CrossrefGoogle Scholar

Janda, T., Gondor, O. K., Yordanova, R., Szalai, G., & Pál, M. (2014). Salicylic acid and photosynthesis: signalling and effects. Acta Physiologiae Plantarum, 36(10), 2537-2546. doi:10.1007/s11738-014-1620-y
CrossrefGoogle Scholar

Kar, P., Mishra, S., & Singh, D. (1999). Influence of gibberellic acid on the sporulation of Azolla caroliniana, Azolla microphylla and Azolla pinnata. Biology and Fertility of Soils, 29, 424−429. doi:10.1007/s003740050575
CrossrefGoogle Scholar

Kar, P., Mishra, S., & Singh, D. (2002). Azolla sporulation in response to application of some selected auxins and their combination with gibberellic acid. Biology and Fertility of Soils, 35(5), 314-319. doi:10.1007/s00374-002-0469-1
CrossrefGoogle Scholar

Kar, P. P., & Singh, D. P. (2002). Effect of some metabolic inhibitors and growth hormones on the sporulation and growth of Azolla microphylla. Experimental Agriculture, 38(4), 433-444. doi:10.1017/S0014479702000455
CrossrefGoogle Scholar

Kieber, J. J., & Schaller, G. E. (2018). Cytokinin signaling in plant development. Development, 145, dev149344. doi:10.1242/dev.149344
CrossrefPubMedGoogle Scholar

Korasick, D. A., Enders, T. A., & Strader, L. C. (2013). Auxin biosynthesis and storage forms. Journal of Experimental Botany, 64(9), 2541-2555. doi:10.1093/jxb/ert080
CrossrefPubMedPMCGoogle Scholar

Kosakivska, I. V., Babenko, L. M., Shcherbatiuk, M. M., Vedenicheva, N. P., Voytenko, L. V., & Vasyuk, V. A. (2016). Phytohormones during growth and development of Polypodiophyta. Advances in Biology & Earth Sciences, 1(1), 26-44.
Google Scholar
Kosakivska, I. V., Shcherbatiuk, M. M., Babenko, L. M., & Polishchuk, O. V. (2018). Characteristics of photosynthetic apparatus of aquatic fern Salvinia natans floating and submerged fronds. Advances in Biology & Earth Sciences, 3(1), 13-26.
Google Scholar

Kosakivska, I. V., & Vasyuk, V. A. (2021). Gibberellins in regulation of plant growth and development under abiotic stresses. Biotechnologia Acta, 14(2), 5-18. doi:10.15407/biotech14.02.005
CrossrefGoogle Scholar

Kosakivska, I. V., Vedenicheva, N. P., Shcherbatiuk, M. M., Voytenko, L. V., & Vasyuk, V. A. (2022). Water ferns of Salviniaceae family in phytoremediation and phytoindication of contaminated water. Biotechnologia Acta, 15(5), 5−23. doi:10.15407/biotech15.05.005
CrossrefGoogle Scholar

Kosakivska, I. V. (Ed.), Vedenicheva, N. P., Vasheka, O. V., Voytenko, L. V., Vasyuk, V. A. Romanenko, K. J., Babenko, L. M., Polishchuk, O. V., & Shcherbatiuk, M. M. (2019). Fitohormonalna systema ta strukturno-funktsionalni osoblyvosti paporotepodibnykh (Polypodiaphyta) [Phytohormonal system and structural-functional features of Pteridophytes (Polypodiophyta)]. Kyiv: Nash Format. Retrieved from https://www.botany.kiev.ua/doc/kosakivska.pdf (In Ukrainian)

Kosakivska, І. V., Shcherbatiuk, M. M., & Voytenko, L. V. (2020). Profiling of hormones in plant tissues: history, modern approaches, use in biotechnology. Biotechnologia Acta, 13(4), 14-25. doi:10.15407/biotech13.04.014
CrossrefGoogle Scholar

Kumar, U., Rout, S., Kaviraj, M. Swain, P., & Nayak, A. K. (2021). Uncovering morphological and physiological markers to distinguish Azolla strains. Brazilian Journal of Botany, 44, 697−713. doi:10.1007/s40415-021-00725-9
CrossrefGoogle Scholar

Kurepa, J., Shull, T. E., & Smalle, J. A. (2019). Antagonistic activity of auxin and cytokinin in shoot and root organs. Plant Direct, 3(2), e00121. doi:10.1002/pld3.121
CrossrefPubMedPMCGoogle Scholar

Liu, J., Moore S., Chen, C., & Lindsey, K. (2017). Crosstalk complexities between auxin, cytokinin and ethylene in Arabidopsis root development: from experiments to systems modeling and back again. Molecular Plant, 10(12): 1480-1496. doi:10.1016/j.molp.2017.11.002
CrossrefPubMedGoogle Scholar

Mandal, S., Ghorai, M., Anand, U., Samanta, D., Kant, N., Mishra, T., Rahman, M. H., Jha, S. K., Lal, M. K., Tiwari, R. K., Kumar, M., Prasanth, D. A., Mane, A. B., Gopalakrishnan, A. V., Biswas, P., Proćków, J., & Dey, A. (2022). Cytokinin and abiotic stress tolerance - what has been accomplished and the way forward? Frontiers in Genetics, 13, 943025. doi:10.3389/fgene.2022.943025
CrossrefPubMedPMCGoogle Scholar

Mazzoni-Putman, S. M., Brumos, J., Zhao, C., Alonso, J. M., & Stepanova, A. N. (2021). Auxin interactions with other hormones in plant development. Cold Spring Harbor Perspectives in Biology, 13(10), a039990. doi:10.1101/cshperspect.a039990
CrossrefPubMedGoogle Scholar

Mohanta, T. K., Bashir, T., Hashem, A., Abd_Allah, E. F., Khan, A. L., & Al-Harrasi, A. S. (2018). Molecular players of auxin transport systems: advances in genomic and molecular events. Journal of Plant Interactions, 13(1), 483-495. doi:10.1080/17429145.2018.1523476
CrossrefGoogle Scholar

Mok, D. W., & Mok, M. C. (2001). Cytokinin metabolism and action. Annual Review of Plant Physiology and Plant Molecular Biology, 52(1), 89-118. doi:10.1146/annurev.arplant.52.1.89
CrossrefPubMedGoogle Scholar

Munné-Bosch, S., & Müller, M. (2013). Hormonal cross-talk in plant development and stress responses. Frontiers in Plant Science, 4, 529-531. doi:10.3389/fpls.2013.00529
CrossrefPubMedPMCGoogle Scholar

Mur, L. A. J., Simpson, C., Kumari, A., Gupta, A. K., & Gupta, K. J. (2017). Moving nitrogen to the centre of plant defence against pathogens. Annals of Botany, 119(5), 703-709. doi:10.1093/aob/mcw179
CrossrefPubMedPMCGoogle Scholar

Nguyen, H. N., Nguyen, T. Q., Kisiala, A. B., & Emery, R. J. N. (2021). Beyond transport: cytokinin ribosides are translocated and active in regulating the development and environmental responses of plants. Planta, 254(3), 45. doi:10.1007/s00425-021-03693-2
CrossrefPubMedGoogle Scholar

Olatunji, D., Geelen, D., & Verstraeten, I. (2017). Control of endogenous auxin levels in plant root development. International Journal of Molecular Sciences, 18(12), 2587. doi:10.3390/ijms18122587
CrossrefPubMedPMCGoogle Scholar

Parthier, B. (1990). Jasmonates: hormonal regulators or stress factors in leaf senescence? Journal of Plant Growth Regulation, 9(1-4), 57-63. doi:10.1007/bf02041942
CrossrefGoogle Scholar

Pati, C. K., & Bhattacharjee, A. (2013). Influence of IAA on the retention of detached leaf senescence of three aquatic plant species. International Journal of Science and Knowledge, 2(1), 42-46.
Google Scholar

Pavlů, J., Novák, J., Koukalová, V., Luklová, M., Brzobohatý, B., & Černý, M. (2018). Cytokinin at the crossroads of abiotic stress signalling pathways. International Journal of Molecular Science, 19(8), 2450. doi:10.3390/ijms19082450
CrossrefPubMedPMCGoogle Scholar

Pieterse, C. M. J., Van der Does, D., Zamioudis, C., Leon-Reyes, A., & Van Wees, S. C. M. (2012). Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 28(1), 489-521. doi:10.1146/annurev-cellbio-092910-154055
CrossrefPubMedGoogle Scholar

Pils, B, & Hogyyl, A. (2009). Unraveling the evolution of cytokinin signaling. Plant Physiology, 151(2), 782-791. doi:10.1104/pp.109.139188
CrossrefPubMedPMCGoogle Scholar

Piotrowska, A., & Bajguz, A. (2011). Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins and jasmonates. Phytochemistry, 72(17), 2097-2112. doi:10.1016/j.phytochem.2011.08.012
CrossrefPubMedGoogle Scholar

Radwan, E. S. E. D., Mohamed, Z. K. & Massena-Reis, V. (2002) Production of Indole-3-acetic acid by different strains of Azospirillum and Heraspirillum spp. Symbiosis, 32, 39-54.
Google Scholar

Raja, W. (2014). Azolla: amazing aquatic fern. Saarbrucken: Lambert Academic Publishing.
Google Scholar

Raut, V., Shaikh, I., Naphade, B., Prashar, K., & Adhapure, N. (2017). Plant growth promotion using microbial IAA producers in conjunction with azolla: a novel approach. Chemical and Biology Technologies in Agriculture, 4(1), 1−11. doi:10.1186/s40538-016-0083-3
CrossrefGoogle Scholar

Rekhter, D., Lüdke, D., Ding, Y., Feussner, K., Zienkiewicz, K., Lipka, V., Wiermer, M., Zhang, Y., & Feussner, I. (2019). Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science, 365(6452), 498-502. doi:10.1126/science.aaw1720
CrossrefPubMedGoogle Scholar

Robert-Seilaniantz, A., Grant, M., & Jones, J.D.G. (2011). Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annual Review of Phytopathology, 49(1), 317-343. doi:10.1146/annurev-phyto-073009-114447
CrossrefPubMedGoogle Scholar

Ross, J. J., & Reid, J. B. (2010). Evolution of growth-promoting plant hormones. Functional Plant Biology, 37(9), 795-805. doi:10.1071/fp10063
CrossrefGoogle Scholar

Roychoudhury, A., Ghosh, S., Paul, S., Mazumdar, S., Das, G. & Das, S. (2016). Pre-treatment of seeds with salicylic acid attenuates cadmium chloride-induced oxidative damages in the seedlings of mungbean (Vigna radiata L. Wilczek). Acta Physiologiae Plantarum, 38(1), 11. doi:10.1007/s11738-015-2027-0
CrossrefGoogle Scholar

Sakata, Y., Komatsu, K., & Takezawa, D. (2014). ABA as a universal plant hormone. In U. Lüttge, F. M. Cánovas, M-C. Risueño & C. Leuschner (Eds.), Progress in botany (pp. 57-96). Berlin, Heidelberg: Springer-Verlag. doi:10.1007/978-3-642-38797-5_2
CrossrefGoogle Scholar

Schaller, G. E., Street, I. H., & Kieber, J. J. (2014). Cytokinin and the cell cycle. Current Opinion in Plant Biology, 21, 7-15. doi:10.1016/j.pbi.2014.05.015
CrossrefPubMedGoogle Scholar

Seo, M. (2014). ABA transmembrane transport and transporters. In D. P. Zhang (Ed.), Abscisic acid: metabolism, transport and signaling (pp. 47-59). Dordrecht: Springer. doi:10.1007/978-94-017-9424-4_3
CrossrefGoogle Scholar

Simon, S., Skůpa, P., Viaene, T., Zwiewka, M., Tejos, R., Klíma, P., Čarná, M., Rolčík, J., De Rycke, R., Moreno, I., Dobrev, P. I., Orellana, A., Zažímalová, E., & Friml, J. (2016). PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis. New Phytologist, 211(1), 65-74. doi:10.1111/nph.14019
CrossrefPubMedGoogle Scholar

Singh, P. K., Bisoyi, R. N., & Singh, R. P. (1990). Collection and germination of sporocarps of Azolla caroliniana. Annals of Botany, 66(1), 51-56. doi:10.1093/oxfordjournals.aob.a087999
CrossrefGoogle Scholar

Sini, S., Smitha, R. B., & Madhusoodanan, P. V. (2015). Induction of sporocarp development in vitro in the mosquito fern, Azolla rubra R. Br. Annals of Plant Sciences, 4(02), 994-1002.
Google Scholar

Smith, A. R., Pryer, K. M., Schuettpelz, E., Korall, P., Schneider, H., & Wolf, P. G. (2006). A classification for extant ferns. Taxon, 55(3), 705-731. doi:10.2307/25065646
CrossrefGoogle Scholar

Spíchal, L. (2012). Cytokinins - recent news and views of evolutionally old molecules. Functional Plant Biology, 39(4), 267-284. doi:10.1071/fp11276
CrossrefPubMedGoogle Scholar

Stirk, W. A., & van Staden, J. (2003). Occurrence of cytokinin-like compounds in two aquatic ferns and their exudates. Environmental and Experimental Botany, 49(1), 77-85. doi:10.1016/S0098-8472(02)00061-8
CrossrefGoogle Scholar

Taiz, L., & Zeiger, E. (2002). Plant physiology, 3rd Ed. Sunderland, MA: Sinauer Associates, Inc. Retrieved from https://exa.unne.edu.ar/biologia/fisiologia.vegetal/PlantPhysiologyTaiz2002.pdf
Google Scholar

Terceros, G. C., Resentini, F., Cucinotta, M., Manrique, S., Colombo, L., & Mendes, M. A. (2020). The Importance of cytokinins during reproductive development in Arabidopsis and beyond. International Journal of Molecular Science, 21(21), 8161. doi:10.3390/ijms21218161
CrossrefPubMedPMCGoogle Scholar

Tuan, P. A., Kumar, R., Rehal, P. K., Toora, P. K., & Ayele, B. T. (2018). Molecular mechanisms underlying abscisic acid/gibberellin balance in the control of seed dormancy and germination in cereals. Frontiers in Plant Science, 9, 668. doi:10.3389/fpls.2018.00668
CrossrefPubMedPMCGoogle Scholar

Vasyuk, V. A., & Kosakivska, I. V. (2015). Gibberellins in ferns: participation in regulation of physiological processes. Ukrainian Botanical Journal, 72(1), 65-72. doi:10.15407/ukrbotj72.01.065 (In Ukrainian)
CrossrefGoogle Scholar

Vasyuk, V. A., Lichnevskiy, R. V., & Kosakivska, I. V. (2016). Gibberellin-like substances in ontogenesis of the water fern Salvinia natans (Salviniaceae). Ukrainian Botanical Journal, 73(5), 503-509. doi:10.15407/ukrbotj73.05.503 (In Ukrainian)
CrossrefGoogle Scholar

Vedenicheva, N. P., & Kosakivska, I. V. (2016). Endogenous cytokinins of the water fern Salvinia natans (Salviniaceae). Ukrainian Botanical Journal, 73(3), 277-282. doi:10.15407/ukrbotj73.03.277 (In Ukrainian)
CrossrefGoogle Scholar

Velasquez, S. M., Barbez, E., Kleine-Vehn, J., & Estevez, J. M. (2016). Auxin and cellular elongation. Plant Physiology, 170(3), 1206-1215. doi:10.1104/pp.15.01863
CrossrefPubMedPMCGoogle Scholar

Voytenko, L. V., Likhnyovskiy, R. V., & Kosakivska, I. V. (2016). Peculiarities of accumulation and localization of indole-3-acetic acid in organs of Salvinia natans (L.) All. sporophyte at the different phenological development phases. Studia Biologica, 10(3-4), 91-106. doi:10.30970/sbi.1003.492 (In Ukrainian)
CrossrefGoogle Scholar

Voуtenko, L. V., & Kosakovskaya, I. V. (2017). Abscisic acid in sporophyte organs of higher vascular cryptogamic plants. Advances in Biology & Earth Sciences, 2(3), 271-283. (In Russian)
Google Scholar

Wang, B., Chu, J., Yu, T., Xu, Q., Sun, X., Yuan, J., Xiong, G., Wang, G., Wang, Y., & Li, J. (2015). Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proceedings of the National Academy of Sciences, 112(15), 4821-4826. doi:10.1073/pnas.1503998112
CrossrefPubMedPMCGoogle Scholar

Wani, A. B., Chadar, H., Wani, A. H., Singh, S., & Upadhyay, N. (2017). Salicylic acid to decrease plant stress. Environmental Chemistry Letters, 15(1), 101-123. doi:10.1007/s10311-016-0584-0
CrossrefGoogle Scholar

Wasternack, C., & Strnad, M. (2016). Jasmonate signaling in plant stress responses and development - active and inactive compounds. New Biotechnology, 33(5), 604-613. doi:10.1016/j.nbt.2015.11.001
CrossrefPubMedGoogle Scholar

Xu, G., Zheng, X., Wang, J., Deng, S., Yang, Y., & Ying, Z. (2021). Auxin IAA-induced Azolla sporulation. Fujian Journal of Agricultural Science, 36(6), 713-718. doi:10.19303/j.issn.1008-0384.2021.06.014
CrossrefGoogle Scholar

Zhang, Z., & Dai, S. (2010). Effect of environmental factors on fern spore germination. Acta Ecologica Sinica, 30(7), 1882-1893.
Google Scholar

Zhao, Y. (2014). Auxin biosynthesis. Arabidopsis Book, 12, e0173. doi:10.1199/tab.0173
CrossrefPubMedPMCGoogle Scholar

Zürcher, E., & Müller, B. (2016). Cytokinin synthesis, signaling and function - advances and new insights. International Review of Cell and Molecular Biology, 324, 1-38. doi:10.1016/bs.ircmb.2016.01.00
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Iryna Kosakivska, Nina Vedenicheva, Mykola Shcherbatiuk, Lesya Voytenko, Valentyna Vasyuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.