FUNCTIONAL AND APPLIED SIGNIFICANCE OF BIOLOGICAL ACTIVITY OF SOIL

M. Z. Mekich, N. M. Dzhura, O. I. Terek


DOI: http://dx.doi.org/10.30970/sbi.0703.307

Abstract


This article provides an overview of scientific information on functional and applied value of soil biological activity and soil processes. Soil is a dynamic alive creation, plant productivity, environmental quality, balance and function of the biosphere dependand on it. Soil quality is determined by interactions of main components: structure, chemical composition, biota. Significance of biota as inherent component and sensor for all soil processes including soil-forming, respiration intensity, enzyme activity are considered. Soil-forming process and soil properties depend on abiotic and biotic interactions. Soil environment determines species variety, quantity, activity and productivity of soil biota. Ecological and phytosanitary soil state is determined by activity of soil microorganisms, which are highly sensitive indicators of soil biological activity, and bioremediation agents. The roots of plants transform soil structure, air mode, and they are involved in mineral decomposition, as a source of organic matter for microbiota. Root exudates specifically affect microorganisms development in rhizosphere and their biochemical activity. Evaluation and understanding of soil biological activity is fundamental for objective and integral representing of soil quality, using biological processes of monitoring and phytoremediation.


Keywords


soil biological processes, biological activity of soil

References


1. Буньо Л.В., Цвілинюк О.М., Микієвич І.М. та ін. Активність мікрофлори нафтозабрудненого ґрунту у ризосферній зоні рослин Сarex hirta L. Біологічні Студії, 2010; 4(3): 55-62.
https://doi.org/10.30970/sbi.0403.109

2. Вернадский В.І. Биосфера. Ленинград: Научное химико-технологическое издательство, 1926. 146 c.

3. Вильямс В.Р. Избранные сочинения. Т. 1. Работы по почвоведению (1898-1931) /ред. В.П. Бушинский. Москва; Ленинград: Изд-во АН СССР, 1950.

4. Горбань В. А. Cпіввідношення екологічних функцій ґрунтів та їх екологічних властивостей. Ґрунтознавство. 2008; 9(1-2): 124-127.

5. Добровольский Г.В., Никитин Е.Д. Экология почв. Москва: Изд-во Моск. ун-та; Наука, 2006. 364 с.

6. Звягинцев Д.І., Бабьева И.П., Зенова Г.М. Биология почв: учебник. Москва: Изд-во МГУ, 2005. 445 c.

7. Мекіч М., Карпин О., Цвілинюк О. та ін. Каталазна активність нафтозабруднених ґрунтів у процесі фіторекультивації. Молодь та поступ біології: збірник тез IX Міжнар. наук. конф. студентів і аспірантів. Львів, 2013: 214-215.

8. Роде А.А. Толковый словарь по почвоведению. Физика почв. Москва: Наука, 1972. 63 с.

9. Руденко Е.Ю. Влияние отработанного кизельгура на нефтезагрязненную черноземную почву. Известия Самарск. науч. центра РАН, 2012; 14(5): 257-260.

10. Симочко Л.Ю. Біологічна активність ґрунту природних та антропогенних екосистем в умовах низинної частини Закарпаття. Наук. Вісник Ужгород. ун-ту. (Сер. Біол.), 2008; 22: 152-154.

11. Трембіцька О.І. Біологічна активність ґрунту в залежності від систем добрив в короткоротаційній сівозміні. Вісник ЖНАЕУ. [Electronic resource] - Available from:
http://www.znau.edu.ua/visnik/2011_1_1/441.pdf

12. Anderson T.A., Guthrie E.A., Walton B.T. Bioremediation in the rhizosphere. Environmental Science and Technology, 1993; 27: 2630-2636.
https://doi.org/10.1021/es00049a001

13. Bahrampour T., Moghanlo V. Evaluation of soil biological activity after soil contaminating by crude oil. International Journal of Agriculture: Research and Review, 2012; 2(6): 671-679.

14. Baldwin I.T., Olson R.K., Reiners W.A. Protein binding phenolics and the inhibition of nitrification in subalpine balsam fir soils. Soil Biology and Biochemistry, 1983; 15: 419-423.
https://doi.org/10.1016/0038-0717(83)90006-8

15. Baran S., Bielińska J., Oleszczuk P. Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons. Geoderma, 2004; 118: 221-232.
https://doi.org/10.1016/S0016-7061(03)00205-2

16. Bardgett R. D. The biology of soil. A community and ecosystem approach. Oxford University Press, 2005. 242 p.

17. Beyer L., Wachendorf C., Elsner D., Knabe R. Suitability of dehydrogenase activity assay an index of soil biological activity. Biol. Fertil. Soils, 1993; 16: 52-56.
https://doi.org/10.1007/BF00336515

18. Boddy L. Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous environments. Mycologia, 1991; 91: 13-32.
https://doi.org/10.1080/00275514.1999.12060990

19. Bongers T., Bongers M. Functional diversity of nematodes. Applied Soil Ecology, 1998; 10: 239-251.
https://doi.org/10.1016/S0929-1393(98)00123-1

20. Diab E. Phytoremediation of oil contaminated desert soil using the rhizosphere effects. Global Journal of Environmental Research, 2008; 2(2): 66-73.

21. Doran J.W., Sarrantonio M., Liebig M. Soil health and sustainability. Advances in Agronomy, 1996, 56: 1-54.
https://doi.org/10.1016/S0065-2113(08)60178-9

22. Dorana J.W., Zeiss M.R. Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology, 2000; 15: 3-11.
https://doi.org/10.1016/S0929-1393(00)00067-6

23. Dupret J.M., Dairou J., Busi F. et al. Pesticide-Derived Aromatic Amines and Their Biotransformation. In: Stoytcheva M. (Ed.) Pesticides in the Modern World - Pests Control and Pesticides Exposure and Toxicity Assessment, 2011: 601-614.
https://doi.org/10.5772/18279
PMCid:PMC3102721

24. Eiland F. Determination of adenosine triphosphate (ATP) and adenylate energy charge (AEC) in soil and use of adenine nucleotides as measures of soil microbial biomass and activity, Danish J. Pl. Soil Sci. 1985; 1777: 1-193.

25. Ettema C., Wardle D. Spatial soil ecology. Trends in Ecology & Evolution, 2002; 17(4): 177-183
https://doi.org/10.1016/S0169-5347(02)02496-5

26. Fontanetti C., Nogarol L., Bastao de Souza R. et al. Bioindicators and biomarkers in the assessment of soil toxicity, soil contamination, 2011. [Electronic resource] - Available from:
http://www.intechopen.com/books/soil-contamination/bioindicators-and-biomarkers-in-the-assessment-of-soil-toxicity

27. Gerhardt K., Huang X., Glick B., Greenberg B. Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Science, 2009; 176(1): 20-30.
https://doi.org/10.1016/j.plantsci.2008.09.014

28. Gianfreda L., Raoa M., Piotrowska A. et al. Soil enzyme activities as affected by anthropogenic alterations: intensive agricultural practices and organic pollution. Science of the Total Environment, 2005; 341: 265-279.
https://doi.org/10.1016/j.scitotenv.2004.10.005
PMid:15833257

29. Glick B.R. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnology Advances, 2003, 21: 239-244.
https://doi.org/10.1016/S0734-9750(03)00055-7

30. Gräff S., Berkus M., Alberti G. et al. Metal accumulation strategies in saprophagous and phytophagous soil invertebrates: a quantitative comparison. BioMetals, 1997; 10: 45-53.
https://doi.org/10.1023/A:1018366703974

31. Gray T.R., Williams S.T. Soil microorganisms. London, 1987. 550 p.

32. Greenberg B.M. Development and field tests of a multi-process phytoremediation system for decontamination of soils. Canadian Reclamation, 2006; 1: 27-29.

33. Gülser F,, Erdoğan E. The effects of heavy metal pollution on enzyme activities and basal soil respiration of roadside soils. Environ Monit Assess, 2008; 145(1-3): 127-133.
https://doi.org/10.1007/s10661-007-0022-7
PMid:18027096

34. Harwood C.S., Greenberg E.P. Mega roles of microorganisms. Science, 1999. 286(5442): 1096.
https://doi.org/10.1126/science.286.5442.1096

35. Hassinen V., Vallinkoski V.M., Issakainen S. et al. Correlation of foliar MT2b expression with Cd and Zn concentrations in hybrid aspen (Populus tremula x tremuloides) grown in contaminated soil. Environmental Pollution, 2009; 157: 922-930.
https://doi.org/10.1016/j.envpol.2008.10.023
PMid:19062143

36. Hopkin S.P., Ecophysiology of metals in terrestrial invertebrates. Applied Science, London: Elsevier, 1989: 366 p.

37. Huang X.D, El-Alawi Y.S, Penrose D. et al. A multiprocess phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environmental Pollution, 2004; 130: 465-476.
https://doi.org/10.1016/j.envpol.2003.09.031
PMid:15182977

38. Jenkinson D.S. Determination of microbial biomass carbon and nitrogen in soil. In: Wilson JR (ed) Advances in nitrogen cycling in agricultural ecosystems. CAB, Wallingford, 1988. 368-386.

39. Karaca A., Cetin S., Turgay O., Kizilkaya R. Soil enzymes as indication of soil quality. Soil Enzymology, Springer 2011; 22: 119-148.
https://doi.org/10.1007/978-3-642-14225-3_7

40. Karlen D.L., Mausbach M.J., Doran J.W., Cline R.G. et al. Soil quality: a concept, definition, and framework for evaluation. Soil Sci. Soc. Am. J, 1997; 61: 4-10.
https://doi.org/10.2136/sssaj1997.03615995006100010001x

41. Keddy C.J., Greene J.C., Bonnell M.A. Review of whole organism bioassays: Soil, freshwater sediment and freshwater assessment in Canada. Ecotoxicol. Environ. Saf, 1995; 30: 251.
https://doi.org/10.1006/eesa.1995.1027
PMid:7541337

42. Kennedy A.C., Gewin V.L. Soil microbial diversity: Present and future considerations. Soil Sci, 1997; 162:(9): 607-617.
https://doi.org/10.1097/00010694-199709000-00002

43. Kiss S., Pasca D., Dragan-Bularda M. Enzymology of disturbed soils. Amsterdam: Elsevier, 1998. 351 р.

44. Linderman R. Working with Soil Microbiology. Plant Health; [Electronic resource] - Available from:
http://www.pnva.org/files/files/WorkingwithSoilMicrobiology.pdf

45. Lloyd J.R., Anderson R.T, Macaskie L.E. Bioremediation of metals and radionuclides. In: Bioremediation: Applied microbial solutions for real world environmental cleanup. Atlas, R.M and Philp, J.C (eds). ASM Press, Washington, D.C. 2005. 294 р.

46. Maila M.P., Cloete T.E. The use of biological activities to monitor the removal of fuel contaminants - perspective for monitoring hydrocarbon contamination: a review. International Biodeterioration & Biodegradation, 2005; 55: 1-8.
https://doi.org/10.1016/j.ibiod.2004.10.003

47. Margesin R., Zimmerbauer A., Schinner F. Monitoring of bioremediation by soil biological activities. Chemosphere, 2000; 40: 339-346.
https://doi.org/10.1016/S0045-6535(99)00218-0

48. Meharga A.A., Cairney J.W.G. Ectomycorrhizas - extending the capabilities of rhizosphere remediation. Soil Biology & Biochemistry, 2000; 32: 1475-1484.
https://doi.org/10.1016/S0038-0717(00)00076-6

49. Microbiological methods for assessing soil quality. In: Bloem J., Hopkins D.W., Benedetti A. (Ed.) Wallingford: CABI Publishing, 2005: 307 p.

50. Nannipieri P., Grego S., Ceccanti B. Ecological significance of the biological activity in soil. In: Soil Biochemistry, 1990; 6: 293-355.
https://doi.org/10.1201/9780203739389-6

51. Pankhurst C., Doube B., Gupta V. Biological indicatiors of soil health. New York: CAB International, 1997. 28 p.

52. Parkin T.B., Doran J.W., Franco-Vizcaíno E. Field and laboratory tests of soil respiration. Methods for assessing soil quality. Madison, WI., 1996: 231-245.

53. Pattison T. What is a healthy soil? Industries and Fisheries, South Johnstone Resear Station, 2006; [Electronic resource] - Available from:
http://www.daff.qld.gov.au/26_12819.htm

54. Piterson A., Greman D. Biological activity of soil. International Symposium "Structure and Function of Soil Microbiota", 2005: 235-236.

55. Rai M.K., Varma A. Diversity and biotechnology of ectomycorrhizae. Springer, 2011. 459 p.
https://doi.org/10.1007/978-3-642-15196-5
PMCid:PMC3005425

56. Reddy K.R., Technical challengesto in-situ remediation of polluted sites. Geotechnical and Geological Engineering Journal, 2010; 28(3): 211-221.
https://doi.org/10.1007/s10706-008-9235-y

57. Riffaldi R., Levi-minzi R., Cardelli R. et al. Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil. Water, Air, and Soil Pollution, 2006; 170: 3-15.
https://doi.org/10.1007/s11270-006-6328-1

58. Roper M. M. Field measurements of nitrogenase activity in soils amended with wheat straw. Aust. J. Agric. Res, 1983; 34: 725-739.
https://doi.org/10.1071/AR9830725

59. Rossel D., Tarradellas J., Bitton G., Morel J. Use of enzymes in soil ecotoxycology: a case for dehydrogenase and hydrolytic enzymes. In: Tarradellas J., Bitton G., Rossel D. editors. Soil Ecotoxycology. Boca Raton, Fl: Lewis Publ., CRC Press; 1997: 179-206.

60. Salt D.A., Smith R.D., Raskin I. Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 1998; 49: 643-668.
https://doi.org/10.1146/annurev.arplant.49.1.643
PMid:15012249

61. Scheu S., Schultz E. Secondary succession, soil formation and development of a diverse community of oribatids and saprophagous soil macro-invertebrates. Biological Conservation 1996; 5: 235-250.
https://doi.org/10.1007/BF00055833

62. Schinner F., Ohliger R., Kandeler E., Margesin R. Methods in Soil Biology. London, Springer 1996. 426 p.
https://doi.org/10.1007/978-3-642-60966-4
PMid:9986082

63. Shukla G., Varma A. Soil Enzymology. Springer, 2011. 384 p.
https://doi.org/10.1007/978-3-642-14225-3

64. Soil Microbiology, Ecology, and Biochemistry / ed. by E.A. Paul. USA: Academic Press, 2007. 514 p.

65. Stephens R.D., Petreas M.X., Hayward D.G. Biotransfer and bioaccumulation of dioxins and furans from soil: chickens as a model for foraging animals. The Science of the Total Environment, 1995 175: 253-273.
https://doi.org/10.1016/0048-9697(95)04925-8

66. Torstensson M., Pell M., Stenberg B. Need of strategy for evaluation of soil quality data: arable soil. Ambio, 1998; 27; 4-8.

67. Torsvik V., Sorheim R., Goksoyr J. Total bacterial diversity in soil and sediment communities - a review. Journal of Industrial Microbiology, 1996; 17: 170-178.
https://doi.org/10.1007/BF01574690

68. van Beelen P.V., Doelman P. Signicance and appplication of microbial toxicity tests in assessing ecotoxicological risks of contaminants in soil and sediment. Chemosphere, 1997; 34: 455-499.
https://doi.org/10.1016/S0045-6535(96)00388-8

69. Walworth J.L., Reynolds C.M., Bioremediation of a petroleum contaminated soil: effects of phosphorus, nitrogen and temperature. Journal of Soil Contamination, 1995; 4(3): 299-310.
https://doi.org/10.1080/15320389509383499

70. Wardle D. A., Bardgett R. D., Klironomos J. N. et al. Ecological Linkages Between Aboveground and Belowground Biota. Science, 2004; 304: 1629-1633.
https://doi.org/10.1126/science.1094875
PMid:15192218

71. Wyszkowska J., Kucharski J., Wałdowska E. The influence of diesel oil contamination on soil enzymes activity. Rostlinná Výroba, 2002; 48: 58-62.
https://doi.org/10.17221/4360-PSE

72. Xin Lin, Xiao Jun, Sun Peiju T. et al. Changes in Microbial Populations and Enzyme Activities During the Bioremediation of Oil-Contaminated Soil . Bull. Environ. Contam. Toxicol, 2009; 83: 542-547.
https://doi.org/10.1007/s00128-009-9838-x
PMid:19633978

73. Ying T., Yongming L., Mingming S. et al. Effect of bioaugmentation by Paracoccus sp. strain HPD-2 on the soil microbial community and removal of polycyclic aromatic hydrocarbon from aged contaminated soil. Bioresource Technology, 2010; 101: 3437-3443.
https://doi.org/10.1016/j.biortech.2009.12.088
PMid:20093016


Refbacks

  • There are currently no refbacks.


Copyright (c) 2013 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.