ANTIOXIDANT DEFENSE SYSTEM OF RAT LIVER UNDER THE INFLUENCE OF THIOSULFONATE ESTERS

Nataliia Liubas, Ruslana Iskra, Vira Lubenets


DOI: http://dx.doi.org/10.30970/sbi.1702.709

Abstract


Background. The article presents a study of the antioxidant defense system of the liver of rats under the influence of thiosulfonate esters: S-ethyl-4-amino­benzenethiosulfonate (ETS), S-allyl-4-aminobenzenethiosulfonate (ATS) and S-allyl-4-acetyl-aminobenzenethiosulfonate (AATS) at concentrations of 50 and 100 mg per kg of body weight. Thiosulfonate esters, which are synthetic sulfur-containing analogs of allicin, exhibit antioxidant and anti-inflammatory properties. The liver is the main organ where metabolism of xenobiotics and endogenous molecules occur to maintain metabolic homeostasis of the body, and is constantly exposed to reactive oxygen species (ROS) and subsequently to oxidative stress.
Materials and Methods. The effectiveness of the antioxidant defense system in the rats’ liver was evaluated by measuring the level of oxidative stress markers (lipid peroxidation (LPO)) and the activity of the antioxidant enzymes – catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GP), glutathione reductase (GR), and the level of reduced glutathione (GSH).
Results. The potential antioxidant properties of thiosulfonate esters and their dose-dependent effect in the liver were determined. In particular, under the action of thiosulfonate esters at a dose of 100 mg/kg, the content of lipid peroxidation products in the liver did not change significantly. Catalase activity and the content of reduced glutathione increased under the action of ETS dose of 100 mg/kg. Under the action of ATS and AATS doses of 100 mg/kg, the activity of GP decreased. At the same time, the effect of ETS at a dose of 50 mg/kg significantly decreased the level of lipid hydroperoxides. The effect of ATS and AATS doses of 50 mg/kg decreased TBA-reactive products. Under the action of the studied compounds in a lower dose, the activity of SOD and GP increased, and the content of reduced glutathione increased. At the same time, the decrease in the activity of GR under the action of AATS combined with an increased content of reduced glutathione is probably due to the inhibitory effect of the test substance on energy processes in the body.
Conclusions. The studied thiosulfonate esters demonstrated a dose-dependent effect on the redox balance in the rats’ liver, proving to be more effective with lower doses of thiosulfonates.


Keywords


S-ethyl-4-aminobenzenethiosulfonate, S-allyl-4-aminobenzenethiosulfonate, S-allyl-4-acetylaminobenzenethiosulfonate, liver, rats, antioxidant system

Full Text:

PDF

References


Baranovych, D. B., & Lubenets, V. I. (2020). Syntez, vlastyvosti ta skryninh biolohichnoi aktyvnosti S-esteriv tiosulfokyslot iz 3,4-dyzamishchenymy arylnymy frahmentamy [Synthesis, properties, and screening of the biological activity of S-esters of thiosulfonic acids with 3,4-aryl-disubstituted fragments]. In Actual problems of natural sciences: modern scientific discussions (pp. 18-42). Riga: Baltija Publishing. doi:10.30525/978-9934-588-45-7.2 (In Ukrainian)
CrossrefGoogle Scholar

Banya, A. R., Karpenko, O. Y., Lubenets, V. I., Baranov, V. I., Novikov, V. P., & Karpenko, O. V. (2015). Influence of surface-active rhamnolipid biocomplex and thylthiosulfanilate on growth and biochemical values of plants in the oil contaminated soil. Biotechnologia Acta, 8(5), 71-77. doi:10.15407/biotech8.05.071
CrossrefGoogle Scholar

Batcioglu, K., Yilmaz, Z., Satilmis, B., Uyumlu, A. B., Erkal, H. S., Yucel, N., Gunal, S., Serin, M., & Demirtas, H. (2012). Investigation of in vivo radioprotective and in vitro antioxidant and antimicrobial activity of garlic (Allium sativum). European Review for Medical and Pharmacological Sciencesi, 16(3), 47-57.
Google Scholar

Bolibrukh, K., Polovkovych, S., Khoumeri, O., Halenova, T., Nikolaeva, I., Savchuk, O., Terme, T., Vanelle, P., Lubenets, V., & Novikov, V. (2015). Synthesis and anti-platelet activity of thiosulfonate derivatives containing a quinone moiety. Scientia Pharmaceutica, 83(2), 221-231. doi:10.3797/scipharm.1411-14
CrossrefPubMedPMCGoogle Scholar

Cabello-Gómez, J. F., Aguinaga-Casañas, M. A., Falcón-Piñeiro, A., González-Gragera, E., Márquez-Martín, R., Agraso, M. del M., Bermúdez, L., Baños, A., & Martínez-Bueno, M. (2022). Antibacterial and antiparasitic activity of propyl-propane-thiosulfinate (PTS) and propyl-propane-thiosulfonate (PTSO) from Allium cepa against gilthead sea bream pathogens in in vitro and in vivo studies. Molecules, 27(20), 6900. doi:10.3390/molecules27206900
CrossrefPubMedPMCGoogle Scholar

Casas-Grajales, S., & Muriel, P. (2015). Antioxidants in liver health. World Journal of Gastrointestinal Pharmacology and Therapeutics, 6(3), 59-72. doi:10.4292/wjgpt.v6.i3.59
CrossrefPubMedPMCGoogle Scholar

Cichoż-Lach, H., & Michalak, A. (2014). Oxidative stress as a crucial factor in liver diseases. World Journal of Gastroenterology, 20(25), 8082-8091. doi:10.3748/wjg.v20.i25.8082
CrossrefPubMedPMCGoogle Scholar

Dmitryjuk, M., Szczotko, M., Kubiak, K., Trojanowicz, R., Parashchyn, Z., Khomitska, H., & Lubenets, V. (2020). S-methyl-(2-methoxycarbonylamino-benzimidazole-5) thiosulfonate as a potential antiparasitic agent - its action on the development of Ascaris suum eggs in vitro. Pharmaceuticals, 13(11), 332. doi:10.3390/ph13110332
CrossrefPubMedPMCGoogle Scholar

Dos Santos, E.dosA., Gonçalves, F. M., Prado, P. C., Sasaki, D. Y., de Lima, D. P., & Macedo, M. L. Synthesis method for thiosulfonate and report of its insecticidal activity in Anagasta kuehniella (Lepidoptera: Pyralidae). International Journal of Molecular Sciences, 13(12), 15241-15251. doi:10.3390/ijms131115241
CrossrefPubMedPMCGoogle Scholar

Dovhan, N. Ya. (Ed.). (1998). Metodyky doslidzhen z fiziolohii i biokhimii silskohospodarskykh tvaryn [Research methods in physiology and biochemistry of agricultural animals]. Lviv: VKP "VMS". (In Ukrainian)
Google Scholar

Ighodaro, O. M., & Akinloye, O. A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287-293. doi:10.1016/j.ajme.2017.09.001
CrossrefGoogle Scholar

Iskra, R. Ya. (2013) The peculiarities of operation of glutathione component of antioxidant protection and lipid metabolism in pregnant rat females under the action of chromium citrate. Studia Biologica, 7(1); 71-80. doi:10.30970/sbi.0701.276 (In Ukrainian)
CrossrefGoogle Scholar

Klaassen, C. D., & Reisman, S. A. (2010). Nrf2 the rescue: effects of the antioxidative/electrophilic response on the liver. Toxicology and Applied Pharmacology, 244(1), 57-65. doi:10.1016/j.taap.2010.01.013
CrossrefPubMedPMCGoogle Scholar

Kotyk, B. I. (2023). Effect of ethylthiosulfаnylate in combination with vitamin E on certain biochemical blood parameters and hematological indicators of rats under the influence of Cr(VI). The Animal Biology, 25(1), 32-38. doi:10.15407/animbiol25.01.032
Crossref

Kotyk, B., Iskra, R., Sushko, O., Slivinska, O., Klymets, G., Buchko, O., Pylypets, A., & Pryimych, V. (2019). Effect of ethylthiosulfаnylate and Chrome(VI) on the pro/antioxidant system in rats blood. The Animal Biology, 21(4), 38-45. doi:10.15407/animbiol21.04.038
CrossrefGoogle Scholar

Li, S., Tan, H.-Y., Wang, N., Zhang, Z.-J., Lao, L., Wong, C.-W., & Feng, Y. (2015). The role of oxidative stress and antioxidants in liver diseases. International Journal of Molecular Sciences, 16(11), 26087-26124. doi:10.3390/ijms161125942
CrossrefPubMedPMCGoogle Scholar

Liubas, N., Iskra, R., Stadnytska, N., Monka, N., Havryliak, V., & Lubenets, V. Antioxidant activity of thiosulfonate compounds in experiments in vitro and in vivo. (2022). Biointerface Research in Applied Chemistry, 12(3), 3106-3116. doi:10.33263/briac123.31063116
CrossrefGoogle Scholar

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275. doi:10.1016/S0021-9258(19)52451-6
CrossrefPubMedGoogle Scholar

Lubenets, V. I., Havryliak, V. V., Pylypets, A. Z., & Nakonechna, A. V. (2018). Changes in the spectrum of proteins and phospholipids in tissues of rats exposed to thiosulfonates. Regulatory Mechanisms in Biosystems, 9(4), 495-500. doi:10.15421/021874
CrossrefGoogle Scholar

Lubenets, V., Stadnytska, N., Baranovych, D., Vasylyuk, S., Karpenko, O., Havryliak, V., & Novikov, V. (2019). Thiosulfonates: the prospective substances against fungal infections. In É. S. de Loreto, & J. S. M. Tondolo. (Eds.). Fungal infection, IntechOpen. doi:10.5772/intechopen.84436
CrossrefGoogle Scholar

Mampuys, P., McElroy, C. R., Clark, J. H., Orru, R. V. A., & Maes, B. U. W. (2019). Thiosulfonates as emerging reactants: synthesis and applications. Advanced Synthesis & Catalysis, 362(1), 3-64. doi:10.1002/adsc.201900864
CrossrefGoogle Scholar

Martirosyan, І. А., Pakholiuk, О. V., Semak, B. D., Komarovska-Porokhnyavets, O. Z., Lubenets, V. І., & Pambuk, S. А. (2019). New technologies of effective protection of textiles against microbiological damage. Nanosistemi, Nanomateriali, Nanotehnologii, 17 (4), 621-636. doi:10.15407/nnn.17.04.621 (In Ukrainian)
CrossrefGoogle Scholar

Melekh, B., Ilkiv, I., Lozynskyi, A., & Sklyarov, A. (2017). Antioxidant enzyme activity and lipid peroxidation in rat liver exposed to celecoxib and lansoprazole under epinephrine-induced stress. Journal of Applied Pharmaceutical Science, 7(10), 094-099. doi:10.7324/japs.2017.71013
CrossrefGoogle Scholar

Miller, C. G., & Schmidt, E. E. (2019). Disulfide reductase systems in liver. British Journal of Pharmacology, 176(4), 532-543. doi:10.1111/bph.14498
CrossrefPubMedPMCGoogle Scholar

Oliynyk, I. (2016). Limits of application of initiated chemiluminescence in monitoring of oncological process of mucous membrane of mouth and larynx. Luminescence, 31(6), 1213-1219. doi:10.1002/bio.3093
CrossrefPubMedGoogle Scholar

Peinado, M. J., Ruiz, R., Echávarri, A., & Rubio, L. A. (2012). Garlic derivative propyl propane thiosulfonate is effective against broiler enteropathogens in vivo. Poultry Science, 91(9), 2148-2157. doi:10.3382/ps.2012-02280
CrossrefPubMedGoogle Scholar

Rosalovsky, V. P., Grabovska, S. V., & Salyha, Y. T. (2015). Biochemical and haematological changes in peripheral blood of rats exposed to chlorpyrinos: protective effect of vitamins A and E combination. Studia Biologica, 9(3-4), 57-68. doi:10.30970/sbi.0903.448
CrossrefGoogle Scholar

Sanchez-Valle, V., C. Chavez-Tapia, N., Uribe, M., & Mendez-Sanchez, N. (2012). Role of oxidative stress and molecular changes in liver fibrosis: a review. Current Medicinal Chemistry, 19(28), 4850-4860. doi:10.2174/092986712803341520
CrossrefPubMedGoogle Scholar

Sushko, O. O., Iskra, R. Y., & Pryimych, V. I. (2018). Effect of chromium citrate on antioxidant defense in the liver of rats with experimentally induced diabetes. The Animal Biology, 20(4), 62-68. doi:10.15407/animbiol20.04.061 (In Ukrainian)
CrossrefGoogle Scholar

Tang, W., Jiang, Y. F., Ponnusamy, M., & Diallo, M. (2014). Role of Nrf2 in chronic liver disease. World Journal of Gastroenterology, 20(36), 13079-13087. doi:10.3748/wjg.v20.i36.13079
CrossrefPubMedPMCGoogle Scholar

Tyagi, S., Gupta, P., Saini, A. S., Kaushal, C., & Sharma, S. (2011). The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. Journal of Advanced Pharmaceutical Technology & Research, 2(4), 236-240. doi:10.4103/2231-4040.90879
CrossrefPubMedPMCGoogle Scholar

Zhang, Y.-K. J., Wu, K. C., & Klaassen, C. D. (2013). Genetic activation of Nrf2 protects against fasting-induced oxidative stress in livers of mice. PLoS One, 8(3), e59122. doi:10.1371/journal.pone.0059122
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Nataliia Liubas, Ruslana Iskra, Vira Lubenets

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.