PROOXIDANT-ANTIOXIDANT BALANCE IN SEMINAL AND BLOOD PLASMA OF MEN WITH IDIOPATHIC INFERTILITY AND INFERTILE MEN IN COMBINATION WITH RHEUMATOID ARTHRITIS
DOI: http://dx.doi.org/10.30970/sbi.1702.719
Abstract
Background. Male infertility is one of the most serious medical and social problems. Idiopathic infertility accounts for about 30 % of cases of infertile men. Rheumatoid arthritis is associated with a decreased fertility potential. The aim of the present work was to determine the lipid peroxidation level and the activity of antioxidant enzymes such as glutathione peroxidase and glutathione reductase in seminal plasma and blood plasma of infertile men with idiopathic infertility and concomitant autoimmune joint pathology (rheumatoid arthritis).
Materials and Methods. 45 infertile men aged 22–48 were examined. They were divided into 2 groups: first group – 23 somatically healthy patients with idiopathic infertility; second group – 22 infertile men with rheumatoid arthritis. The control group consisted of 27 males with normal semen profile according to the WHO criteria and confirmed parenthood. The concentration of thiobarbituric acid reactive substance and activity of antioxidant enzymes were measured in the blood and seminal plasma.
Results. When analyzing the seminal fluid, we found that the TBARS content was 4-fold greater in infertile men with autoimmune pathology compared to fertile men (p <0.001), whereas, in patients with idiopathic infertility its level was within the normal range. The activation of lipid peroxidation in infertile men with idiopathic infertility and in combination with rheumatoid arthritis was accompanied by a statistically significant decrease in the activity of enzymes of glutathione antioxidant system. It should be noted that more pronounced disorders of lipid peroxidation and antioxidant enzymes activity were found in seminal plasma compared to blood plasma.
Conclusions. (1) An increased lipid peroxidation was observed in seminal and blood plasma of infertile men in combination with rheumatoid arthritis compared to normospermic men, whereas no differences were observed between men with idiopathic infertility and fertile men; (2) An impaired antioxidant status was observed in seminal and blood plasma of both men with idiopathic infertility and infertile men in combination with rheumatoid arthritis compared to normospermic men; (3) infertile men in combination with rheumatoid arthritis showed a significantly higher lipid peroxidation levels compared to men with idiopathic infertility, whereas no differences were observed in GPx and GR activity between groups.
Keywords
Full Text:
PDFReferences
Adeoye, O., Olawumi, J., Opeyemi, A., & Christiania, O. (2018). Review on the role of glutathione on oxidative stress and infertility. JBRA Assisted Reproduction, 22(1), 61-66. doi:10.5935/1518-0557.20180003 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Agarwal, A., Henkel, R., Sharma, R., Tadros, N. N., & Sabanegh, E. (2018). Determination of seminal oxidation-reduction potential (ORP) as an easy and cost-effective clinical marker of male infertility. Andrologia, 50(3), e12914. doi:10.1111/and.12914 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Agarwal, A., Parekh, N., Panner Selvam, M. K., Henkel, R., Shah, R., Homa, S. T., … & Harlev, A. (2019). Male oxidative stress infertility (MOSI): proposed terminology and clinical practice guidelines for management of idiopathic male infertility. The World Journal of Men's Health, 37(3), 296-312. doi:10.5534/wjmh.190055 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Alahmar, A. (2019). Role of oxidative stress in male infertility: an updated review. Journal of Human Reproductive Sciences, 12(1), 4-18. doi:10.4103/jhrs.jhrs_150_18 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Anyfanti, P., Gavriilaki, E., Douma, S., & Gkaliagkousi, E. (2020). Endothelial dysfunction in patients with rheumatoid arthritis: the role of hypertension. Current Hypertension Reports, 22(8), 56. doi:10.1007/s11906-020-01064-y Crossref ● PubMed ● Google Scholar | ||||
| ||||
Bisht, S., Faiq, M., Tolahunase, M., & Dada, R. (2017). Oxidative stress and male infertility. Nature Reviews Urology, 14(8), 470-485. doi:10.1038/nrurol.2017.69 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Campbell, M. J., Lotti, F., Baldi, E., Schlatt, S., Festin, M. P. R., Björndahl, L., Toskin, I., & Barratt, C. L. R. (2021). Distribution of semen examination results 2020 – a follow up of data collated for the WHO semen analysis manual 2010. Andrology, 9(3), 817-822. doi:10.1111/andr.12983 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Chyra-Jach, D., Kaletka, Z., Dobrakowski, M., Machoń-Grecka, A., Kasperczyk, S., Birkner, E., & Kasperczyk, A. (2018). The associations between infertility and antioxidants, proinflammatory cytokines, and chemokines. Oxidative Medicine and Cellular Longevity, 2018, 8354747. doi:10.1155/2018/8354747 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Dooley, M. A., & Nair, R. (2008). Therapy Insight: preserving fertility in cyclophosphamide-treated patients with rheumatic disease. Nature Clinical Practice Rheumatology, 4(5), 250-257. doi:10.1038/ncprheum0770 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Fafula, R. V., & Vorobets, Z. D. (2019). The relationships between changes in main biochemical parameters in sperm cells of infertile men. Studia Biologica, 13(1): 39-50. doi:10.30970/sbi.1301.587 Crossref ● Google Scholar | ||||
| ||||
García-González, A., Gaxiola-Robles, R., & Zenteno-Savín, T. (2015). Oxidative stress in patients with rheumatoid arthritis. Revista de Investigación Clínica, 67(1), 46-53. PubMed ● Google Scholar | ||||
| ||||
Ilacqua, A., Izzo, G., Emerenziani, G. P., Baldari, C., & Aversa, A. (2018). Lifestyle and fertility: the influence of stress and quality of life on male fertility. Reproductive Biology and Endocrinology, 16(1), 115. doi:10.1186/s12958-018-0436-9 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Jiang, L., Zheng, T., Huang, J., Mo, J., Zhou, H., Liu, M., Gao, X., & Yu, B. (2016). Association of semen cytokines with reactive oxygen species and histone transition abnormalities. Journal of Assisted Reproduction and Genetics, 33(9), 1239-1246. doi.:10.1007/s10815-016-0756-7 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Jing, W., Liu, C., Su, C., Liu, L., Chen, P., Li, X., Zhang, X., Yuan, B., Wang, H., & Du, X. (2023). Role of reactive oxygen species and mitochondrial damage in rheumatoid arthritis and targeted drugs. Frontiers in Immunology, 14, 1107670. doi:10.3389/fimmu.2023.1107670 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kaur, G., Sharma, A., & Bhatnagar, A. (2021). Role of oxidative stress in pathophysiology of rheumatoid arthritis: insights into NRF2-KEAP1 signalling. Autoimmunity, 54(7), 385-397. doi:10.1080/08916934.2021.1963959 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Kondo, N., Kuroda, T., & Kobayashi, D. (2021). Cytokine networks in the pathogenesis of rheumatoid arthritis. International Journal of Molecular Sciences, 22(20), 10922. doi:10.3390/ijms222010922 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kozopas, N. M., Boykiv, N. D., Dorofeyeva, U. S., Fafula, R. V., & Maksymyuk, H. V. (2021). Seminal plasma proinflammatory cytokines and semen quality in overweight and obese men. Rivista Italiana Della Medicina Di Laboratorio, 17(1), 24-30. doi:10.23736/S1825-859X.21.00086-4 Crossref ● Google Scholar | ||||
| ||||
Mayorga-Torres, B. J. M., Camargo, M., Cadavid, Á. P., du Plessis, S. S., & Cardona Maya, W. D. (2017). Are oxidative stress markers associated with unexplained male infertility? Andrologia, 49(5), e12659. doi:10.1111/and.12659 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Moin, V. M. (1986). Prostoĭ i spetsificheskiĭ metod opredeleniia aktivnosti glutationperoksidazy v eritrotsitakh [A simple and specific method for determining glutathione peroxidase activity in erythrocytes]. Laboratornoe Delo, (12), 724-727. (In Russian) PubMed ● Google Scholar | ||||
| ||||
Mumford, S. L., Johnstone, E., Kim, K., Ahmad, M., Salmon, S., Summers, K., Chaney, K., Ryan, G., Hotaling, J. M., Purdue-Smithe, A. C., Chen, Z., & Clemons, T. (2020). A prospective cohort study to evaluate the impact of diet, exercise, and lifestyle on fertility: design and baseline characteristics. American Journal of Epidemiology, 189(11), 1254-1265. doi:10.1093/aje/kwaa073 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Panner Selvam, M. K., Finelli, R., Agarwal, A., & Henkel, R. (2021). Evaluation of seminal oxidation-reduction potential in male infertility. Andrologia, 53(2), e13610. doi:10.1111/and.13610 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Sharma, R., Biedenharn, K. R., Fedor, J. M., & Agarwal, A. (2013). Lifestyle factors and reproductive health: taking control of your fertility. Reproductive Biology and Endocrinology, 11(1), 66. doi:10.1186/1477-7827-11-66 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Skeoch, S., & Bruce, I. N. (2015). Atherosclerosis in rheumatoid arthritis: is it all about inflammation? Nature Reviews Rheumatology, 11(7), 390-400. doi:10.1038/nrrheum.2015.40 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Tan, J., Taskin, O., Albert, A., & Bedaiwy, M. A. (2019). Association between sperm DNA fragmentation and idiopathic recurrent pregnancy loss: a systematic review and meta-analysis. Reproductive BioMedicine Online, 38(6), 951-960. doi:10.1016/j.rbmo.2018.12.029 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Timirbulatov, R. A., & Seleznev, E. I. (1981). Metod povysheniia intensivnosti svobonoradikal'nogo okisleniia lipidsoderzhashchikh komponentov krovi i ego diagnosticheskoe znachenie [Method for increasing the intensity of free radical oxidation of lipid-containing components of the blood and its diagnostic significance]. Laboratornoe Delo, (4), 209-211. (In Russian) PubMed ● Google Scholar | ||||
| ||||
Tiseo, B. C., Cocuzza, M., Bonfá, E., Srougi, M., & Clovis, A. (2016). Male fertility potential alteration in rheumatic diseases: a systematic review. International Brazilian Journal of Urology, 42(1), 11-21. doi:10.1590/s1677-5538.ibju.2014.0595 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Tramer, F., Caponecchia, L., Sgrò, P., Martinelli, M., Sandri, G., Panfili, E., Lenzi, A., & Gandini, L. (2004). Native specific activity of glutathione peroxidase (GPx-1), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and glutathione reductase (GR) does not differ between normo- and hypomotile human sperm samples. International Journal of Andrology, 27(2), 88-93. doi:10.1046/j.1365-2605.2003.00452.x Crossref ● PubMed ● Google Scholar | ||||
| ||||
Ursini, F., & Maiorino, M. (2005). Native specific activity of glutathione peroxidase (GPx-1), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and glutathione reductase (GR) does not differ between normo- and hypomotile human sperm samples. International Journal of Andrology, 28(1), 61-64. doi:10.1111/j.1365-2605.2005.00493.x Crossref ● PubMed ● Google Scholar | ||||
| ||||
van der Woude, D., & van der Helm-van Mil, A. H. M. (2018). Update on the epidemiology, risk factors, and disease outcomes of rheumatoid arthritis. Best Practice & Research Clinical Rheumatology, 32(2), 174-187. doi:10.1016/j.berh.2018.10.005 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Vaughan, D. A., Tirado, E., Garcia, D., Datta, V., & Sakkas, D. (2020). DNA fragmentation of sperm: a radical examination of the contribution of oxidative stress and age in 16 945 semen samples. Human Reproduction, 35(10), 2188-2196. doi:10.1093/humrep/deaa159 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Vlasova, S. N., Shabunina, E. I., & Pereslegina, I. A. (1990). Aktivnost' glutationzavisimykh fermentov éritrotsitov pri khronicheskikh zabolevaniiakh pecheni u deteĭ [The activity of the glutathione-dependent enzymes of erythrocytes in chronic liver diseases in children]. Laboratornoe Delo, (8), 19-22. (In Russian) PubMed ● Google Scholar | ||||
| ||||
Vorobets, M. Z., Melnyk, O. V., Kovalenko, I. V., Fafula, R. V., Borzhievsky, A. T., & Vorobets, Z. D. (2021). Сondition of urogenital tract microbiotes and pro- and antioxidant system in male azoospermia. Regulatory Mechanisms in Biosystems, 12(4), 696-701. doi:10.15421/022196 Crossref ● Google Scholar | ||||
| ||||
Walczak-Jedrzejowska, R., Wolski, J. K., & Slowikowska-Hilczer, J. (2013). The role of oxidative stress and antioxidants in male fertility. Central European Journal of Urology, 65, 60-67. doi:10.5173/ceju.2013.01.art19 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Widdifield, J., Paterson, J. M., Bernatsky, S., Tu, K., Tomlinson, G., Kuriya, B., Thorne, J. C., & Bombardier, C. (2014). The epidemiology of rheumatoid arthritis in Ontario, Canada. Arthritis & Rheumatology, 66(4), 786-793. doi:10.1002/art.38306 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Zhang, W. D., Zhang, Z., Jia, L. T., Zhang, L. L., Fu, T., Li, Y. S., Wang, P., Sun, L., Shi, Y., & Zhang, H. Z. (2014). Oxygen free radicals and mitochondrial signaling in oligospermia and asthenospermia. Molecular Medicine Reports, 10(4), 1875-1880. doi:10.3892/mmr.2014.2428 Crossref ● PubMed ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Roman Fafula, Оksana Melnyk, Natalia Gromnatska, Dmytro Vorobets, Zoryana Fedorovych, Anna Besedina, Zinoviy Vorobets
This work is licensed under a Creative Commons Attribution 4.0 International License.