BIOCHEMICAL RESPONSES OF THE DREISSENA POLYMORPHA FROM MUNICIPAL POND TO CAFFEINE, MICROPLASTICS, AND HEATING IN SINGLE AND COMBINED EXPOSURES

Tetyana Matskiv, Oksana Stoliar


DOI: http://dx.doi.org/10.30970/sbi.1702.717

Abstract


Background. Pharmaceuticals have become the aquatic pollutants of growing concern. Caffeine is one of the most widely distributed in the surface waters among them. However, the environmentally relevant models of its effect, which include combined exposures with probable confounding factors, are unknown. Microplastics are a suspected vector that influences caffeine bioavailability. The temperature dependence of response, considering the increase of temperature in surface waters, can also be anticipated. The aim of this study was to analyze the input of caffeine, microplastics and elevated temperature into their combined effect on the zebra mussel Dreissena polymorpha (Pallas, 1771).
Materials and Methods. Molluscs were exposed to caffeine (Caf, 20.0 μg·L−1), microplastics (MP, 1 mg·L−1, 2 μm in size), or elevated temperature (T, 25 °C) in the single and combined (Mix- and MixT-) exposures for 14 days. The concentrations of metallothioneins, metallothioneins-bound zinc, total Zn and Cu concentration in the tissue, total glutathione level, antioxidant (superoxide dismutase) and metabolic (citrate synthase) enzymes activities, acid phosphatase activity as the lysosomal functionality marker were determined.
Results and Discussion. The decrease in Zn/Cu concentrations ratio in the soft tissues shared the common response in all exposures, reflecting the metal imbalance as the most sensitive marker. The MP-group was distinguished by the decrease in the levels of total Zn and extra lysosomal acid phosphatase activity, proving injury of Zn transportation and Zn-related enzyme activities. All other exposures (T-, Mix-, MixT-) caused citrate synthase and superoxide dismutase activation. Caf-related groups demonstrated the elevation of the levels of phosphatase lysosomal membrane-linked latency, metallothionein total protein and its apo-form. However, glutathione level was stable in all exposures.
Conclusion. These data revealed the adverse effect of MP and shared beneficial effects in the exposures that involved caffeine, which can be explained by the antioxidant activity of this substance. Exposure to elevated temperature partially alleviated the effect of caffeine in the mixture. Thus, the results indicate the importance of multi-stress exposures modeling, which allows the evaluation of environmentally realistic responces of an organism to xenobiotics.


Keywords


zebra mussel, pharmaceuticals, zinc, copper, acid phosphatase, oxidative stress

Full Text:

PDF

References


Aguirre-Martínez, G. V., Del Valls, T. A., & Martín-Díaz, M. L. (2013). Identification of biomarkers responsive to chronic exposure to pharmaceuticals in target tissues of Carcinus maenas. Marine Environmental Research, 87-88, 1-11. doi:10.1016/j.marenvres.2013.02.011
CrossrefPubMedGoogle Scholar

Alfaro-Núñez, A., Astorga, D., Cáceres-Farías, L., Bastidas, L., Soto Villegas, C., Macay, K., & Christensen, J. H. (2021). Microplastic pollution in seawater and marine organisms across the Tropical Eastern Pacific and Galápagos. Scientific Reports, 11(1), 6424. doi:10.1038/s41598-021-85939-3
CrossrefPubMedPMCGoogle Scholar

Alomar, C., Sureda, A., Capó, X., Guijarro, B., Tejada, S., & Deudero, S. (2017). Microplastic ingestion by Mullus surmuletus Linnaeus, 1758 fish and its potential for causing oxidative stress. Environmental Research, 159, 135-142. doi:10.1016/j.envres.2017.07.043
CrossrefPubMedGoogle Scholar

Atrián-Blasco, E., Santoro, A., Pountney, D. L., Meloni, G., Hureau, C., & Faller, P. (2017). Chemistry of mammalian metallothioneins and their interaction with amyloidogenic peptides and proteins. Chemical Society Reviews, 46(24), 7683-7693. doi:10.1039/c7cs00448f
CrossrefPubMedPMCGoogle Scholar

Barcelos, R. P., Souza, M. A., Amaral, G. P., Stefanello, S. T., Bresciani, G., Fighera, M. R., Soares, F. A. A., & Barbosa, N. V. (2014). Caffeine supplementation modulates oxidative stress markers in the liver of trained rats. Life Sciences, 96(1-2), 40-45. doi:10.1016/j.lfs.2013.12.002
CrossrefPubMedGoogle Scholar

Baykan, U., Atli, G., & Canli, M. (2007). The effects of temperature and metal exposures on the profiles of metallothionein-like proteins in Oreochromis niloticus. Environmental Toxicology and Pharmacology, 23(1), 33-38. doi:10.1016/j.etap.2006.06.002
CrossrefPubMedGoogle Scholar

Buico, A., Cassino, C., Dondero, F., Vergani, L., & Osella, D. (2008). Radical scavenging abilities of fish MT-A and mussel MT-10 metallothionein isoforms: an ESR study. Journal of Inorganic Biochemistry, 102(4), 921-927. doi:10.1016/j.jinorgbio.2007.12.012
CrossrefPubMedGoogle Scholar

Cruz, D., Almeida, Â., Calisto, V., Esteves, V. I., Schneider, R. J., Wrona, F. J., Soares, A. M. V. M., Figueira, E., & Freitas, R. (2016). Caffeine impacts in the clam Ruditapes philippinarum: alterations on energy reserves, metabolic activity and oxidative stress biomarkers. Chemosphere, 160, 95-103. doi:10.1016/j.chemosphere.2016.06.068
CrossrefPubMedGoogle Scholar

De Marchi, L., Vieira, L. R., Intorre, L., Meucci, V., Battaglia, F., Pretti, C., Soares, A. M. V. M., & Freitas, R. (2022). Will extreme weather events influence the toxic impacts of caffeine in coastal systems? Comparison between two widely used bioindicator species. Chemosphere, 297, 134069. doi:10.1016/j.chemosphere.2022.134069
CrossrefPubMedGoogle Scholar

de Souza, D. M., Martins, Á. C., Jensen, L., Wasielesky, W., Monserrat, J. M., & Garcia, L. de O. (2013). Effect of temperature on antioxidant enzymatic activity in the Pacific white shrimp Litopenaeus vannameiin a BFT (Biofloc technology) system. Marine and Freshwater Behaviour and Physiology, 47(1), 1-10. doi:10.1080/10236244.2013.857476
CrossrefGoogle Scholar

Farkas, A., Ács, A., Vehovszky, Á., Falfusynska, H., Stoliar, O., Specziár, A., & Győri, J. (2017). Interspecies comparison of selected pollution biomarkers in dreissenid spp. inhabiting pristine and moderately polluted sites. Science of The Total Environment, 599-600, 760-770. doi:10.1016/j.scitotenv.2017.05.033
CrossrefPubMedGoogle Scholar

Flynn, E. E., Bjelde, B. E., Miller, N. A., & Todgham, A. E. (2015). Ocean acidification exerts negative effects during warming conditions in a developing Antarctic fish. Conservation Physiology, 3(1), cov033. doi:10.1093/conphys/cov033
CrossrefPubMedPMCGoogle Scholar

Fried, R. (1975). Enzymatic and non-enzymatic assay of superoxide dismutase. Biochimie, 57(5), 657-660. doi:10.1016/s0300-9084(75)80147-7
CrossrefPubMedGoogle Scholar

Gaikwad, Y. B., Gaikwad, S. M., & Bhawane, G. P. (2010). Effect of induced oxidative stress and herbal extracts on acid phosphatase activity in lysosomal and microsomal fractions of midgut tissue of the silkworm, Bombyx mori. Journal of Insect Science, 10(1), 113. doi:10.1673/031.010.11301
CrossrefPubMedPMCGoogle Scholar

Giráldez-Costas, V., Del Coso, J., Mañas, A., & Salinero, J. J. (2023). The long way to establish the ergogenic effect of caffeine on strength performance: an overview review. Nutrients, 15(5), 1178. doi:10.3390/nu15051178
CrossrefPubMedPMCGoogle Scholar

Griffith, O. W. (1980). Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry, 106, 207-212. doi:10.1016/0003-2697(80)90139-6
CrossrefPubMedGoogle Scholar

Hamm, T., & Lenz, M. (2021). Negative impacts of realistic doses of spherical and irregular microplastics emerged late during a 42 weeks-long exposure experiment with blue mussels. Science of The Total Environment, 778(15), 146088. doi:10.1016/j.scitotenv.2021.146088
CrossrefPubMedGoogle Scholar

Intergovernmental Panel for Global Climate Change (IPCC). (2013). Retrieved from http://www.ipcc.ch

Jonsson, C. M., Paraiba, L. C., & Aoyama, H. (2009). Metals and linear alkylbenzene sulphonate as inhibitors of the algae Pseudokirchneriella subcapitata acid phosphatase activity. Ecotoxicology, 18(5), 610-619. doi:10.1007/s10646-009-0319-0
CrossrefPubMedGoogle Scholar

Kazi Tani, L. S., Gourlan, A. T., Dennouni-Medjati, N., Telouk, P., Dali-Sahi, M., Harek, Y., Sun, Q., Hackler, J., Belhadj, M., Schomburg, L., & Charlet, L. (2021). Copper isotopes and copper to zinc ratio as possible biomarkers for thyroid cancer. Frontiers in Medicine, 8, 698167. doi:10.3389/fmed.2021.698167
CrossrefPubMedPMCGoogle Scholar

Khoma, V. V., Gnatyshyna, L. L., Martinyuk, V. V., Mackiv, T. R., Mishchuk, N. Y., & Stoliar, O. B. (2020). Metallothioneins contribution to the response of bivalve mollusk to xenobiotics. The Ukrainian Biochemical Journal, 92(5), 87-96. doi:10.15407/ubj92.05.087
CrossrefGoogle Scholar

Khoma, V., Gnatyshyna, L., Martyniuk, V., Mackiv, T., Mishchenko, L., Manusadzianas, L., & Stoliar, O. (2021). Common and particular biochemical responses of Unio tumidus to herbicide, pharmaceuticals and their combined exposure with heating. Ecotoxicology and Environmental Safety, 208(9), 111695. doi:10.1016/j.ecoenv.2020.111695
CrossrefPubMedGoogle Scholar

Kim, K. R., Park, S. E., Hong, J. Y., Koh, J. Y., Cho, D. H., Hwang, J. J., & Kim, Y. H. (2022). Zinc enhances autophagic flux and lysosomal function through transcription factor EB activation and V-ATPase assembly. Frontiers in cellular neuroscience, 16, 895750. doi:10.3389/fncel.2022.895750
CrossrefPubMedPMCGoogle Scholar

Lacoue-Labarthe, T., Le Bihan, E., Borg, D., Koueta, N., & Bustamante, P. (2010). Acid phosphatase and cathepsin activity in cuttlefish (Sepia officinalis) eggs: the effects of Ag, Cd, and Cu exposure. ICES Journal of Marine Science, 67, 1517-1523. doi:10.1093/icesjms/fsq044
CrossrefGoogle Scholar

Lasee, S., Mauricio, J., Thompson, W. A., Karnjanapiboonwong, A., Kasumba, J., Subbiah, S., Morse, A. N., & Anderson, T. A. (2017). Microplastics in a freshwater environment receiving treated wastewater effluent. Integrated Environmental Assessment and Management, 13, 528-532. doi:10.1002/ieam.1915
CrossrefPubMedGoogle Scholar

Lesser, M. P., & Kruse, V. A. (2004). Seasonal temperature compensation in the horse mussel, Modiolus modiolus: metabolic enzymes, oxidative stress and heat shock proteins. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 137(3), 495-504. doi:10.1016/j.cbpb.2003.10.022
CrossrefPubMedGoogle Scholar

Li, J., Lusher, A. L., Rotchell, J. M., Deudero, S., Turra, A., Bråte, I. L. N., Sun, C., Shahadat Hossain, M., Li, Q., Kolandhasamy, P., & Shi, H. (2019). Using mussel as a global bioindicator of coastal microplastic pollution. Environmental Pollution, 244, 522-533. doi:10.1016/j.envpol.2018.10.032
CrossrefPubMedGoogle Scholar

Li, S., Wen, J., He, B., Wang, J., Hu, X., & Liu, J. (2020). Occurrence of caffeine in the freshwater environment: implications for ecopharmacovigilance. Environmental Pollution, 263, 114371. doi:10.1016/j.envpol.2020.114371
CrossrefPubMedGoogle Scholar

Lia, S., Heb, B., Liua, J. W. J., & Hu, X. (2020). Risks of caffeine residues in the environment: necessity for a targeted ecopharmacovigilance program. Chemosphere, 243, 125343. doi:10.1016/j.chemosphere.2019.125343
CrossrefPubMedGoogle Scholar

Lin, S., & Steichen Jr, D. J. (1994). A method for determining the stability of lysosomal membranes in the digestive cells of Mytilus edulis. Marine Ecology Progress Series, 115, 237-241. doi:10.3354/meps115237
CrossrefGoogle Scholar

Lowry, O. H., Rosebroungh, H. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265-275. doi:10.1016/S0021-9258(19)52451-6
CrossrefPubMedGoogle Scholar

Magni, S., Gagné, F., André, C., Della Torre, C., Auclair, J., Hanana, H., Parenti, C. C., Bonasoro, F., & Binelli, A. (2018). Evaluation of uptake and chronic toxicity of virgin polystyrene microbeads in freshwater zebra mussel Dreissena polymorpha (Mollusca: Bivalvia). Science of The Total Environment, 631-632, 778-788. doi:10.1016/j.scitotenv.2018.03.075
CrossrefPubMedGoogle Scholar

Marczenko, Z., & Balcerzak, M. (2000). Copper. In E. Kloczko (Ed.). Separation, preconcentration and spectrophotometry in inorganic analysis (pp. 182-183). Elsevier. doi:10.1016/s0926-4345(00)80083-8
CrossrefGoogle Scholar

Martinho, S. D., Fernandes, V. C., Figueiredo, S. A., & Delerue-Matos, C. (2022). Microplastic pollution focused on sources, distribution, contaminant interactions, analytical methods, and wastewater removal strategies: a review. International Journal of Environmental Research and Public Health, 19(9), 5610. doi:10.3390/ijerph19095610
CrossrefPubMedPMCGoogle Scholar

Martyniuk, V. V. (2022). Accumulation of microplastics in the bivalve mollusc Unio tumidus under experimental and field exposures. Studia Biologica, 16(4), 33-44. doi:10.30970/sbi.1604.694
CrossrefGoogle Scholar

Martyniuk, V., Khoma, V., Matskiv, T., Baranovsky, V., Orlova-Hudim, K., Gylytė, B., Symchak, R., Matciuk, O., Gnatyshyna, L., Manusadžianas, L., & Stoliar, O. (2022a). Indication of the impact of environmental stress on the responses of the bivalve mollusk Unio tumidus to ibuprofen and microplastics based on biomarkers of reductive stress and apoptosis. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 261, 109425. doi:10.1016/j.cbpc.2022.109425
CrossrefPubMedGoogle Scholar

Martyniuk, V., Gylytė, B., Matskiv, T., Khoma, V., Tulaidan, H., Gnatyshyna, L., Orlova-Hudim, K., Manusadžianas, L., & Stoliar, O. (2022b). Stress responses of bivalve mollusc Unio tumidus from two areas to ibuprofen, microplastic and their mixture. Ecotoxicology, 31(9), 1369-1381. doi:10.1007/s10646-022-02594-8
CrossrefPubMedGoogle Scholar

Martyniuk, V., Khoma, V., Matskiv, T., Yunko, K., Gnatyshyna, L., Stoliar, O., & Faggio, C. (2023). Combined effect of microplastic, salinomycin and heating on Unio tumidus. Environmental Toxicology and Pharmacology, 98, 104068. doi:10.1016/j.etap.2023.104068
CrossrefPubMedGoogle Scholar

Matskiv, T. R., Lytkin, D. V., Shebeko, S. K., Khoma, V. V., Martyniuk, V. V., Gnatyshyna, L. L., & Stoliar, O. B. (2021). Metallothioneins involment in the pathogenesis of synovial tissue inflammation in rats with acute gonarthritis. The Ukrainian Biochemical Journal, 93(5), 63-71. doi:10.15407/ubj93.05.063
Crossref

McConell, G. K., Ng, G. P. Y., Phillips, M., Ruan, Z., Macaulay, S. L., & Wadley, G. D. (2010). Central role of nitric oxide synthase in AICAR and caffeine-induced mitochondrial biogenesis in L6 myocytes. Journal of Applied Physiology, 108(3), 589-595. doi:10.1152/japplphysiol.00377.2009
CrossrefPubMedGoogle Scholar

Patel, S., & Patel, B. (1985). Effect of environmental parameters on lysosomal marker enzymes in the tropical blood clam Anadara granosa. Marine Biology, 85, 245-252. doi:10.1007/bf00393244
CrossrefGoogle Scholar

Peterson, R. E., & Bollier, M. E. (1955). Spectrophotometric determination of serum copper with biscyclohexanoneoxalyldihydrazone. Analytical Chemistry, 27(7), 1195-1197. doi:10.1021/ac60103a054
CrossrefGoogle Scholar

Prinz, N., & Korez, Š. (2020). Understanding how microplastics affect marine biota on the cellular level is important for assessing ecosystem function: a review. In S. Jungblut, V. Liebich, & M. Bode-Dalby (Eds.), YOUMARES 9 - the oceans: our research, our future: proceedings of the 2018 conference for YOUng MArine RESearcher in Oldenburg, Germany (pp. 101-120). Springer International Publishing. doi:10.1007/978-3-030-20389-4_6
CrossrefGoogle Scholar

Rahman, M. S., & Rahman, M. S. (2021). Effects of elevated temperature on prooxidant-antioxidant homeostasis and redox status in the American oyster: signaling pathways of cellular apoptosis during heat stress. Environmental Research, 196, 110428. doi:10.1016/j.envres.2020.110428
CrossrefPubMedGoogle Scholar

Revel, M., Yakovenko, N., Caley, T., Guillet, C., Châtel, A., & Mouneyrac, C. (2018). Accumulation and immunotoxicity of microplastics in the estuarine worm Hediste diversicolor in environmentally relevant conditions of exposure. Environmental Science and Pollution Research, 27(4), 3574-3583. doi:10.1007/s11356-018-3497-6
CrossrefPubMedGoogle Scholar

Saad, A. A., El-Sikaily, A., & Kassem, H. (2016). Metallothionein and glutathione content as biomarkers of metal pollution in mussels and local fishermen in Abu Qir Bay, Egypt. Journal of Health and Pollution, 6(12), 50-60. doi:10.5696/2156-9614-6-12.50
CrossrefPubMedPMCGoogle Scholar

Scherer, C., Weber, A., Stock, F., Vurusic, S., Egerci, H., Kochleus, C., Arendt, N., Foeldi, C., Dierkes, G., Wagner, M., Brennholt, N., & Reifferscheid, G. (2020). Comparative assessment of microplastics in water and sediment of a large European river. Science of The Total Environment, 738, 139866. doi:10.1016/j.scitotenv.2020.139866
CrossrefPubMedGoogle Scholar

Schlater, A., Jowlowsly, S., Zupetz, J., Mayola, N., & Butterfield, K. (2022). The impact of varying caffeine-induced contractile activity on metabolic enzyme activity. The FASEB Journal, 36(S1). doi:10.1096/fasebj.2022.36.S1.R4554
CrossrefGoogle Scholar

Schneider, T., Caviezel, D., Ayata, C. K., Kiss, C., Niess, J. H., & Hruz, P. (2020). The copper/zinc ratio correlates with markers of disease activity in patients with inflammatory bowel disease. Crohn's & Colitis 360, 2(1), otaa001. doi:10.1093/crocol/otaa001
CrossrefPubMedPMCGoogle Scholar

Serafim, M. A., Company, R. M., Bebianno, M. J., & Langston, W. J. (2002). Effect of temperature and size on metallothionein synthesis in the gill of Mytilus galloprovincialis exposed to cadmium. Marine Environmental Research, 54, 361-365. doi:10.1016/s0141-1136(02)00121-6
CrossrefPubMedGoogle Scholar

Serra, R., Isani, G., Tramontano, G., & Carpene, E. (1999). Seasonal dependence of cadmium accumulation and Cd-binding proteins in Mytilus galloprovincialis exposed to cadmium. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 123, 165-174. doi:10.1016/s0742-8413(99)00024-9
CrossrefPubMedGoogle Scholar

Sewwandi, M., Wijesekara, H., Rajapaksha, A. U., Soysa, H. S. M., & Vithanage, M. (2022). Adsorption of caffeine to microplastics in organic matter-rich aqueous media. International Symposium on Sustainable Urban Environments (ISSUE). University of Petroleum and Energy Studies. Retrieved from https://www.researchgate.net/publication/365231691_Adsorption_of_caffeine_to_microplastics_in_organic_matter-rich_aqueous_media

Vaughan, R. A., Garcia-Smith, R., Bisoffi, M., Trujillo, K. A., & Conn, C. A. (2012). Effects of caffeine on metabolism and mitochondria biogenesis in rhabdomyosarcoma cells compared with 2,4-dinitrophenol. Nutrition and Metabolic Insights, 5, 59-70. doi:10.4137/nmi.s10233
CrossrefPubMedPMCGoogle Scholar

Viarengo, A., Ponzano, E., Dondero, F., & Fabbri, R. (1997). A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Marine Environmental Research, 44(1), 69-84. doi:10.1016/s0141-1136(96)00103-1
CrossrefGoogle Scholar

Wang, J., Niu, Y., Zhang, C., & Chen, Y. (2018). A micro-plate colorimetric assay for rapid determination of trace zinc in animal feed, pet food and drinking water by ion masking and statistical partitioning correction. Food Chemistry, 245, 337-345. doi:10.1016/j.foodchem.2017.10.054
CrossrefPubMedGoogle Scholar

Wang, W., Zhang, J., Qiu, Z., Cui, Z., Li, N., Li, X., Wang, Y., Zhang, H., & Zhao, C. (2022). Effects of polyethylene microplastics on cell membranes: a combined study of experiments and molecular dynamics simulations. Journal of Hazardous Materials, 429(5), 128323. doi:10.1016/j.jhazmat.2022.128323
CrossrefPubMedGoogle Scholar

Wilkinson, J. L., Boxall, A. B. A., Kolpin, D. W., Leung, K. M. Y., Lai, R. W. S., Galbán-Malagón, C., … Teta, C. (2022). Pharmaceutical pollution of the world's rivers. Proceedings of the National Academy of Sciences, 119(8). doi:10.1073/pnas.2113947119
CrossrefPubMedPMCGoogle Scholar

Zhang, Z. Y., Clemens, J. C., Schubert, H. L., Stuckey, J. A., Fischer, M. W., Hume, D. M., Saper, M. A., & Dixon, J. E. (1992). Expression, purification, and physicochemical characterization of a recombinant Yersinia protein tyrosine phosphatase. Journal of Biological Chemistry, 267(33), 23759-23766. doi:10.1016/s0021-9258(18)35903-9
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Tetyana Matskiv, Oksana Stoliar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.