MORPHOLOGICAL AND TAXONOMICAL TREATMENTS OF FRUITS IN THE SUBCLASS ROSIDAE TAKHT. OF THE FLORA OF UKRAINE

Anastasiya Odintsova


DOI: http://dx.doi.org/10.30970/sbi.1702.715

Abstract


Introduction. Rosids is the pivotal clade of eudicots, whose taxonomic composition was significantly changed based on molecular phylogeny. Molecular insight led to the re-evaluation of many phenotypic features, especially in reproductive morpho­logy. Although the floral structure and evolution within the current scope of rosids were actively investigated, the morphological structure of fruit was almost fully neglected. The present study aimed to survey the morphological diversity of fruits in rosids (subclass Rosidae) in the flora of Ukraine to reveal the most common fruit types, analyze the distribution of the basic fruit types among rosids, and survey some comparative-morphological features of gynoecium and fruit.
Materials and Methods. Fruit features have been surveyed based on many carpological sources. We also analyzed the gynoecium characteristics crucial for fruit deve­lop­ment, i.e., the type of ovary insertion, placentation, and ovule and locule number. For Rosidae, seven basic fruit types were recognized using the approach previously elaborated for the monocot plants of Ukraine: aggregate fruit, multi-seeded monocarp, capsule, berry, multi-seeded pyrenarium, schizocarp, and one-seeded fruit.
Results. As a result, the annotated list of morphological characteristics for each of the 54 families of Rosidae occurring in Ukraine was composed. In this list, the complementary and the most contrasting definitions of fruits from different sources were combined.
Discussion. According to our calculations, the subclass Rosidae in the flora of Ukraine is represented by 326 genera and at least 1617 species. Our results demon­strated that the most widespread fruit types at the family level seem to be capsular and one-seeded fruits, while at genus and species level the portion of multi-seeded monocarps and aggregate fruits is also significant. Nine families reveal more than one basic fruit type in the flora of Ukraine. Some fruits are ambiguously classified into one or another fruit type because of their intermediate features. Thus, fuzzy boundaries between most fruit types are evident.
Conclusions. The obtained results have been compared with our previously reported results for the monocot clade in the flora of Ukraine. In both cases, the predominance of capsular fruits at the family-level spectrum of basic fruit types was clearly demonstrated. The results of our analysis suggest that the model of basic fruit types has the potential to be applied to the formal treatment of fruit structure in other groups of angiosperms.


Keywords


fabids, malvids, gynoecium, capsular fruit, one-seeded fruit, schizocarp

Full Text:

PDF

References


Albert, C. H., Thuiller, W., Yoccoz, N. G., Douzet, R., Aubert, S., & Lavorel, S. (2010). A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Functional Ecology, 24(6), 1192-1201. doi:10.1111/j.1365-2435.2010.01727.x
CrossrefGoogle Scholar

Aldasoro, J. J., Aedo, C., & Navarro, C. (2005). Phylogenetic and phytogeographical relationships in Maloideae (Rosaceae) based on morphological and anatomical characters. Blumea - Biodiversity, Evolution and Biogeography of Plants, 50(1), 3-32. doi:10.3767/000651905x623256
CrossrefGoogle Scholar

Alves, G. G. N., Fonseca, L. H. M., Devecchi, M. F., El Ottra, J. H. L., Demarco, D., & Pirani, J. R. (2022). What reproductive traits tell us about the evolution and diversification of the tree-of-heaven family, Simaroubaceae. Brazilian Journal of Botany, 45(1), 367-397. doi:10.1007/s40415-021-00768-y
CrossrefGoogle Scholar

Anufrieva, S. V. (2013). Entsyklopediya roslyn. Sadovi ta kimnatni [Encyclopedia of plants. Garden and indoor]. Donetsk: Gloria. Retrieved from https://shron1.chtyvo.org.ua/Anufriieva_Svitlana/Entsyklopediia_roslyn_sadovykh_ta_kimnatnykh.pdf? (In Ukrainian)

APG I (The Angiosperm Phylogeny Group). (1998). An ordinal classification for the families of flowering plants. Annals of the Missouri Botanical Garden, 85(4), 531-553. doi:10.2307/2992015
CrossrefGoogle Scholar

APG IV. (2016). Chase, M. W., Christenhusz, M. J. M., Fay, M. F., Byng, J. W., Judd, W. S., Soltis, D. E., Mabberley, D. J., Sennikov, A. N., Soltis, P. S., & Stevens, P. F. The Angiosperm phylogeny group. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants APG IV. Botanical Journal of the Linnean Society, 181, 1-20. doi:10.1111/boj.12385
CrossrefGoogle Scholar

Appelhans, M. S., Bayly, M. J., Heslewood, M. M., Groppo, M., Verboom, G. A., Forster, P. I., Kallunki, J. A., & Duretto, M. F. (2021). A new subfamily classification of the Citrus family (Rutaceae) based on six nuclear and plastid markers. Taxon, 70(5), 1035-1061. doi:10.1002/tax.12543
CrossrefGoogle Scholar

Arab, R., Majd, A., Tajadod, G., Rezanejad, F., & Mirzaei, M. (2019). The morphological and anatomical studies of inflorescence, flower, embryo and fruit development in Maclura pomifera (Moraceae). Cogent Biology, 5(1), 1663698. doi:10.1080/23312025.2019.1663698
CrossrefGoogle Scholar

Arber, A. (1942). Studies in flower structure. VII. On the gynoecium of Reseda, with a consideration of paracarpy. Annals of Botany, New Series, 6(21), 43-48. doi:10.1093/oxfordjournals.aob.a088400
CrossrefGoogle Scholar

Areces-Berazain, F., & Ackerman, J. D. (2017). Diversification and fruit evolution in eumalvoids (Malvaceae). Botanical Journal of the Linnean Society, 184(4), 401-417. doi:10.1093/botlinnean/box035
CrossrefGoogle Scholar

Arrington, J. M., & Kubitzki, K. (2003). Cistaceae. In: K. Kubitzki, & C. Bayer (Eds.). The families and genera of vascular plants. Vol. V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales (pp. 62-70). Berlin, Heidelberg: Springer. doi:10.1007/978-3-662-07255-4_15
CrossrefGoogle Scholar

Artyushenko, Z. T., & Fedorov, A. A. (1986). Atlas po opisatel'noj morfologii vysshih rastenij. Plod [Atlas of comparative morphology of higher plants. The Fruit]. Leningrad: Nauka (In Russian)
Google Scholar

Bachelier, J. B., & Endress, P. K. (2009). Comparative floral morphology and anatomy of Anacardiaceae and Burseraceae (Sapindales), with a special focus on gynoecium structure and evolution. Botanical Journal of the Linnean Society, 159(4), 499-571. doi:10.1111/j.1095-8339.2009.00959.x
CrossrefGoogle Scholar

Bachelier, J. B., Endress, P. K., & Craene, L. P. R. D. (2011). Comparative floral structure and development of Nitrariaceae (Sapindales) and systematic implications. In L. Wanntorp, & L. Ronse De Craene (Eds.). Flowers on the tree of life (pp.181-217). Cambridge: Cambridge University Press. doi:10.1017/cbo9781139013321.008
CrossrefGoogle Scholar

Baillon, H. E. (1874). Histoire des plantes (Vol. 5). Paris: Librairie Hachette. doi:10.5962/bhl.title.40796
CrossrefGoogle Scholar

Basso-Alves, J. P., Ribeiro, C. C., & Teixeira, S. P. (2023). Floral development of Rhamnaceae and origin of its unique floral features. Plants, 12(2), 247. doi:10.3390/plants12020247
CrossrefPubMedPMCGoogle Scholar

Bayer, C., & Kubitzki, K. (2003). Malvaceae. In K. Kubitzki, & C. Bayer (Eds.). The families and genera of vascular plants. Vol. V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales (pp. 225-311). Berlin, Heidelberg: Springer. doi:10.1007/978-3-662-07255-4_28
CrossrefGoogle Scholar

Berg, C. C., Corner, E. J. H., & Jarrett, F. M. (2006). Moraceae (genera other than Ficus). Flora Malesiana, Series I, 17(1), 1-152.
Google Scholar

Bojňanský, V., & Fargašová, A. (2007). Atlas of seeds and fruits of Central and East-European flora the Carpathian Mountains Region. Dordrecht: Springer. doi:10.1007/978-1-4020-5362-7
CrossrefGoogle Scholar

Brongniart, A. T. (1826). Mémoire sur la famille des Rhamnées, ou, histoire naturelle et médicale des genres qui composent ce groupe de plantes. Paris: Didot Le Jeune. doi:10.5962/bhl.title.97298
CrossrefGoogle Scholar

Brückner, C. (2000). Clarification of the carpel number in Papaverales, Capparales, and Berberidaceae. The Botanical Review, 66(2), 155-307. doi:10.1007/bf02858151
CrossrefGoogle Scholar

Clayton, J. W. (2010). Simaroubaceae. In K. Kubitzki (Ed.). The families and genera of vascular plants. Volume X. Flowering plants. Eudicots. Sapindales, Cucurbitales, Myrtales (pp. 408-423). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-14397-7_18
CrossrefGoogle Scholar

Deniz, İ., Yildiz, K., & Çirpici, A. (2018). Taxonomical study of seeds and fruit micromorphology of the Geranium (Geraniaceae) species in the Thrace region of Turkey (Europe). Phytologia Balcanica, 24(1), 35-43.
Google Scholar

Dvirna, T., Futorna, O., Minarchenko, V., & Tymchenko, I. (2021). Morphological features of fruits and seeds of some species of the genus Crataegus L. of the flora of Ukraine. Acta Agrobotanica, 74. doi:10.5586/aa.7418
CrossrefGoogle Scholar

Eames, A. J. (1961). Morphology of the angiosperms. New-York, Toronto: McGraw-Hill. doi:10.5962/bhl.title.5986
CrossrefGoogle Scholar

Eckardt, Th. (1937). Untersuchungen über Morphologie, Entwicklungsgeschichte und systematische Bedeutung des pseudomonomeren Gynoeceums. Nova Acta Leopoldina (NF5), 26, 1-112.
Google Scholar

Decraene, L. P. R., & Smets, E. F. (1991). Morphological studies in Zygophyllaceae. I. The floral development and vascular anatomy of Nitraria retusa. American Journal of Botany, 78(10), 1438-1448. doi:10.1002/j.1537-2197.1991.tb12610.x
CrossrefGoogle Scholar

Decraene, L. P. R., & Smets, E. F. (1997). Evidence for carpel multiplications in the Capparaceae. Belgian Journal of Botany, 130(1), 59-67.
Google Scholar

Decraene, L. P. R., Laet, J. D., & Smets, E. F. (1996). Morphological studies in Zygophyllaceae. II. The floral development and vascular anatomy of Peganum harmala. American Journal of Botany, 83(2), 201-215. doi:0.1002/j.1537-2197.1996.tb12698.x
CrossrefGoogle Scholar

Decraene, L. P. R., Smets, E., & Clinckemaillie, D. (2000). Floral ontogeny and anatomy in Koelreuteria with special emphasis on monosymmetry and septal cavities. Plant Systematics and Evolution, 223(1-2), 91-107. doi:10.1007/bf00985329
CrossrefGoogle Scholar

Didukh, Ya. (Ed.), Burda, R., Ziman, S., Korotchenko, I., Fedoronchyk, M., & Fitsailo, T. (2004). Ekoflora Ukrainy [Ecoflora of Ukraine] (Vol. 2). Kyiv: Phytosociocentre. (In Ukrainian)
Google Scholar

Didukh, Ya. (Ed.), Korotchenko, I., Fitsailo, T., Burda, R., Moysiyenko, I., Pashkevich, N., Yakushenko, D., & Shevera, M. (2006). Ekoflora Ukrainy [Ecoflora of Ukraine] (Vol. 6). Kyiv: Phytosociocentre. (In Ukrainian)
Google Scholar

Eichler, A. W. (1878). Blüthendiagramme construirt und erlautert: enthaltend die apetalen und choripetalen Dicotylen (Vol. 2). Leipzig: Engelmann. doi:10.5962/bhl.title.12323
CrossrefGoogle Scholar

El Ottra, J. H. L., de Albuquerque Melo-de-Pinna, G. F., Demarco, D., Pirani, J. R., & Ronse De Craene, L. P. (2022). Gynoecium structure in Sapindales and a case study of Trichilia pallens (Meliaceae). Journal of Plant Research, 135(2), 157-190. doi:10.1007/s10265-022-01375-y
CrossrefPubMedGoogle Scholar

Endress, P. K. (2010). Flower structure and trends of evolution in eudicots and their major subclades. Annals of the Missouri Botanical Garden, 97(4), 541-583. doi:10.3417/2009139
CrossrefGoogle Scholar

Endress, P. K. (2011). Evolutionary diversification of the flowers in angiosperms. American Journal of Botany, 98(3), 370-396. doi:10.3732/ajb.1000299
CrossrefPubMedGoogle Scholar

Endress, P. K. (2013). Multicarpellate gynoecia in angiosperms: occurrence, development, organization and architectural constraints. Botanical Journal of the Linnean Society, 174(1), 1-43. doi:10.1111/boj.12099
CrossrefGoogle Scholar

Endress, P. K., & Friis, E. M. (2006). Rosids - reproductive structures, fossil and extant, and their bearing on deep relationships: introduction. Plant Systematics and Evolution, 260(2-4), 83-85. doi:10.1007/s00606-006-0438-5
CrossrefGoogle Scholar

Endress, P. K., & Matthews, M. L. (2006). First steps towards a floral structural characterization of the major rosid subclades. Plant Systematics and Evolution, 260(2-4), 223-251. doi:10.1007/s00606-006-0444-7
CrossrefGoogle Scholar

Endress, P. K., & Matthews, M. L. (2012). Progress and problems in the assessment of flower morphology in higher-level systematics. Plant Systematics and Evolution, 298(2), 257-276. doi:10.1007/s00606-011-0576-2
CrossrefGoogle Scholar

Endress, P. K., Jenny, M., & Fallen, M. E. (1983). Convergent elaboration of apocarpous gynoecia in higher advanced dicotyledons (Sapindales, Malvales, Gentianales). Nordic Journal of Botany, 3(3), 293-300. doi:10.1111/j.1756-1051.1983.tb01941.x
CrossrefGoogle Scholar

Endress, P. K., Davis, C. C., & Matthews, M. L. (2013). Advances in the floral structural characterization of the major subclades of Malpighiales, one of the largest orders of flowering plants. Annals of Botany, 111(5), 969-985. doi:10.1093/aob/mct056
CrossrefPubMedPMCGoogle Scholar

Eriksen, B., & Persson, C. (2007). Polygalaceae. In K. Kubitzki (Ed.). The families and genera of vascular plants. Vol. IX. Flowering plants. Eudicots (pp. 345-363). Berlin, Heidelberg: Springer.
Google Scholar

Farinati, S., Rasori, A., Varotto, S., & Bonghi, C. (2017). Rosaceae fruit development, ripening and post-harvest: an epigenetic perspective. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01247
CrossrefPubMedPMCGoogle Scholar

Fedoronchuk, M. M. (2017). Taxa of Rosaceae of the Ukrainian flora: position in a new system of the family according to molecular phylogenetic data. Ukrainian Botanical Journal, 74(1), 3-15. doi:10.15407/ukrbotj74.01.003 (In Ukrainian)
CrossrefGoogle Scholar

Fedoronchuk, M. M. (2018). A synopsis of the family Fabaceae in the flora of Ukraine. I. Subfamilies Caesalpinoideae, Mimosoideae, Faboideae (tribes Sophoreae, Tephrosieae, Robinieae, Desmodieae, Phaseoleae, Psoraleae, Amorpheae, and Aeschynomeneae). Ukrainian Botanical Journal, 75(3), 238-247. doi:10.15407/ukrbotj75.03.238 (In Ukrainian)
CrossrefGoogle Scholar

Feuillet, C., & MacDougal, J. M. (2007). Passifloraceae. In K. Kubitzki (Ed.). The families and genera of vascular plants. Vol. IX. Flowering plants. Eudicots (pp. 270-281). Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-32219-1_35
CrossrefGoogle Scholar

Gaertner, J. (1788). De fructibus et seminibus plantarum (Vol. 1). (Table 43). Stutgardiae: Typis Academiae Carolinae. doi:10.5962/bhl.title.53838
CrossrefGoogle Scholar

Gagliardi, K. B., de Souza, L. A., & Albiero, A. L. M. (2013). Comparative fruit development in some Euphorbiaceae and Phyllanthaceae. Plant Systematics and Evolution, 300(5), 775-782. doi:10.1007/s00606-013-0918-3
CrossrefGoogle Scholar

Graham, S. A., & Graham, A. (2014). Ovary, fruit, and seed morphology of the Lythraceae. International Journal of Plant Sciences, 175(2), 202-240. doi:10.1086/674316
CrossrefGoogle Scholar

Harthman, V. de C., de Souza, L. A., & Lucas, E. J. (2018). Characters of the inferior ovary of Myrteae (Myrtaceae) and their implication in the evolutionary history of the tribe. Australian Systematic Botany, 31(3), 252-261. doi:10.1071/sb17059
CrossrefGoogle Scholar

He, D., Biswas, S. R., Xu, M., Yang, T., You, W., & Yan, E. (2020). The importance of intraspecific trait variability in promoting functional niche dimensionality. Ecography, 44(3), 380-390. doi:10.1111/ecog.05254
CrossrefGoogle Scholar

Hilu, K. W., Black, C. M., & Oza, D. (2014). Impact of gene molecular evolution on phylogenetic reconstruction: a case study in the rosids (Superorder Rosanae, Angiosperms). PLoS One, 9(6), e99725. doi:10.1371/journal.pone.0099725
CrossrefPubMedPMCGoogle Scholar

Hussein, S. R., Kawashty, S. A., Tantawy, M. E., & Saleh, N. A. M. (2009). Chemosystematic studies of Nitraria retusa and selected taxa of Zygophyllaceae in Egypt. Plant Systematics and Evolution, 277(3-4), 251-264. doi:10.1007/s00606-008-0108-x
CrossrefGoogle Scholar

IIckert-Bond, S. M., Gerrath, J., & Wen, J. (2014). Gynoecial structure of Vitales and implications for the evolution of placentation in the rosids. International Journal of Plant Sciences, 175(9), 998-1032. doi:10.1086/678086
CrossrefGoogle Scholar

Iljinska, A., Didukh, Ya. (Ed.), Burda, R., & Korotchenko, I. (2007). Ekoflora Ukrainy [Ecoflora of Ukraine] (Vol. 5). Kyiv: Phytosociocentre. (In Ukrainian)
Google Scholar

Iljinska, A. P. (2013а). The structural diversity of fruits of species of Brassicaceae in the flora of Ukraine. Ukrainian Botanical Journal, 70(2), 168-177. (In Ukrainian)
Google Scholar

Iljinska, A. P. (2013b). Modern approaches to classificationof fruits of Brassicaceae: a case study of taxa occurring in Ukraine. Ukrainian Botanical Journal, 70(4), 467-478. (In Ukrainian)
Google Scholar

Iljinska, A. P. (2014). The family Cleomaceae in the flora of Ukraine. Ukrainian Botanical Journal, 71(1), 29-35. doi:10.15407/ukrbotj71.01.029 (In Ukrainian)
CrossrefGoogle Scholar

Iljinska, A. P. (2016). The range of morphological characters of Brassicaceae s. l.: fruit and seeds. Ukrainian Botanical Journal, 73(3), 219-233. (In Ukrainian)
Google Scholar

Kaden, N. N. (1962). Tipy prodolnogo vskryvaniya plodov [The types of longitudinal dehiscense of fruits]. Botanicheskii Zhurnal, 47(4), 495-505. (In Russian)
Google Scholar

Kaden, N. N. (1964a). K voprosu o drobnykh plodakh [On the question of schizocarp fruits]. Botanicheskii Zhurnal, 49(7), 966-973. (In Russian)
Google Scholar

Kaden, N. N. (1964b). Morfologiya plodov geranievykh [Morphology of fruits in Geraniaceae]. Nauchnye doklady vysshej shkoly. Biologicheskie nauki, 2, 97-102. (In Russian)
Google Scholar

Kaden, N. N. (1965). Tipy plodov rasteniy sredney polosy evropeyskoy chasti SSSR [The fruit types of plants inhabiting the middle zone of the European part of the USSR]. Botanicheskii Zhurnal, 50(6), 775-787. (In Russian)
Google Scholar

Kaden, N. N. (1968). Evolyutsiya plodov rozotsvetnykh [Evolution of the fruits of Rosales]. Bulletin of Moscow Society of Naturalists. Biological series, 73(2), 127-135. (In Russian)
Google Scholar

Kaden, N. N., & Kondorskaja, V. R. (1967). Morfologiya tsvetka i ploda lokhovykh [Morphology of flower and fruit in oleaster family]. In A. N. Sladkov (Ed.). Morfologiya rasteniy: sbornik statey posvyaschennyiy pamyati professora K. I. Meyera [Morphology of plants: collection of articles dedicated to the memory of professor K. I. Meyer] (pp.102-118). Мoskow: Nauka. (In Russian)
Google Scholar

Kubitzki, K. (1993). Betulaceae. In K. Kubitzki, J. G. Rohwer, & V. Bittrich (Eds.). The families and genera of vascular plants. Vol. II. Flowering plants. Dicotyledons: Magnoliid, Hamamelid and Caryophyllid families (pp. 152-157). Berlin, Heidelberg: Springer. doi:10.1007/978-3-662-02899-5_15
CrossrefGoogle Scholar

Kubitzki K., Kallunki, J. A., Duretto, M., & Wilson, P. G. (2010). Rutaceae. In K. Kubitzki (Ed.). The families and genera of vascular plants. Vol. X. Flowering plants. Eudicots: Sapindales, Cucurbitales, Myrtaceae (pp. 276-356). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-14397-7_16
CrossrefGoogle Scholar

Leinfellner, W. (1950). Der Bauplan des synkarpen Gynözeums. Österreichische Botanische Zeitschrift, 97(3-5), 403-436. doi:10.1007/bf01763317
CrossrefGoogle Scholar

Leinfellner, W. (1972). Zur Morphologie des Gynözeums der Polygalaceen. Österreichische Botanische Zeitschrift, 120(1-2), 51-76. doi:10.1007/bf01373258
Crossref ● Google Scholar

Leroy, J. F. (1955). Étude sur les Juglandacea: à la recherche d'une conception morphologique de la fleur femelle et du fruit (Vol. 6). Paris: Muséum national d'Histoire naturelle.
Google Scholar

Leins, P., & Erbar, C. (2010). Flower and fruit: morphology, ontogeny, phylogeny, function and ecology. Stuttgart: Schweizerbart.
Google Scholar

Levina, R. E. (1987). Morfologiya i ekologiya plodov [Morphology and ecology of fruit]. Nauka, Leningrad. (In Russian)
Google Scholar

Lorts, C. M., Briggeman, T., & Sang, T. (2008). Evolution of fruit types and seed dispersal: a phylogenetic and ecological snapshot. Journal of Systematics and Evolution, 46(3), 396-404.
Google Scholar

Mabberley, D. J. (2010). Meliaceae. In K. Kubitzki (Ed.). The families and genera of vascular plants. Vol. X. Flowering plants. Eudicots: Sapindales, Cucurbitales, Myrtaceae (pp. 185-211). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-14397-7_13
CrossrefGoogle Scholar

Macdonald, A. D., & Sattler, R. (1973). Floral development of Myrica gale and the controversy over floral concepts. Canadian Journal of Botany, 51(10), 1965-1975. doi:10.1139/b73-251
CrossrefGoogle Scholar

Mangla, Y., Tandon, R., Goel, S., & Raina, S. N. (2013). Structural organization of the gynoecium and pollen tube path in Himalayan sea buckthorn, Hippophae rhamnoides (Elaeagnaceae). AoB Plants, 5, plt015. doi:10.1093/aobpla/plt015
CrossrefPubMedGoogle Scholar

Manning, W. E. (1978). The classification within the Juglandaceae. Annals of the Missouri Botanical Garden, 65(4), 1058-1087. doi:10.2307/2398782
CrossrefGoogle Scholar

Marcussen, T., & Meseguer, A. S. (2017). Species-level phylogeny, fruit evolution and diversification history of Geranium (Geraniaceae). Molecular Phylogenetics and Evolution, 110, 134-149. doi:10.1016/j.ympev.2017.03.012
CrossrefPubMedGoogle Scholar

Masullo, F. de A., Siqueira, S. F. H., Barros, C. F., Bovini, M. G., & Toni, K. L. G. D. (2020). Fruits of neotropical species of the tribe Malveae (Malvoideae-Malvaceae): macro- and micromorphology. Acta Botanica Brasilica, 34(2), 301-311. doi:10.1590/0102-33062019abb0293
CrossrefGoogle Scholar

Matthews, M. L., & Endress, P. K. (2005). Comparative floral structure and systematics in Celastrales (Celastraceae, Parnassiaceae, Lepidobotryaceae). Botanical Journal of the Linnean Society, 149(2), 129-194. doi:10.1111/j.1095-8339.2005.00445.x
CrossrefGoogle Scholar

Medan, D. & Schirarend C. (2004). Rhamnaceae. In K. Kubitzki (Ed.). The families and genera of vascular plants. Vol. VI. Flowering plants. Dicotyledons: Celastrales, Oxalidales, Rosales, Cornales, Ericales (pp. 320-338). Berlin, Heidelberg: Springer. doi:10.1007/978-3-662-07257-8_37
CrossrefGoogle Scholar

Mosyakin, S. L., & Fedoronchuk, M. M. (1999). Vascular plants of Ukraine: a nomenclatorial checklist. Kiev: National Academy of Sciences of Ukraine, M. G. Kholodny Institute of Botany.
Google Scholar

Mosyakin, S. L. (2013). Families and orders of angiosperms of the flora of Ukraine: a pragmatic classification and placement in the phylogenetic system. Ukrainian Botanical Journal, 70(3), 289-307. doi:10.15407/ukrbotj70.03.289 (In Ukrainian)
CrossrefGoogle Scholar

Odintsova, A. V. (2008). Porivnyalnyi analiz morfolohii ta vaskulyarnoi anatomii hinetseya v rodyni Lythraceae [Comparative analysis of gynoecium morphology and vascular anatomy in the family Lythraceae]. Ukrainian Botanical Journal, 65(5), 687-695. (In Ukrainian)
Google Scholar

Odintsova, A. (2016). Loculicidal dehiscence of superior and inferior capsular fruits in Myrtales. Studia Biologica, 10(3-4), 129-140. doi:10.30970/sbi.1003.504 (In Ukrainian)
CrossrefGoogle Scholar

Odintsova, A. V. (2022). Morphogenesis of fruit as a subject matter for the carpological studies. Ukrainian Botanical Journal, 79(3), 169-183. doi:10.15407/ukrbotj79.03.169 (In Ukrainian)
CrossrefGoogle Scholar

Odintsova, A., & Klimovych, N. (2017). Anatomical and morphological fruit structure in Epilobium hirsutum and E. angustifolium (Onagraceae). Ukrainian Botanical Journal, 74(6), 582-593. doi:10.15407/ukrbotj74.06.582 (In Ukrainian)
CrossrefGoogle Scholar

Odintsova, A. V., Fishchuk, O. S., Scrypec, K. I., & Danylyk, I. M. (2021). Systematic treatment of morphological fruit types in plants of the class Liliopsida of the flora of Ukraine. Regulatory Mechanisms in Biosystems, 12(3), 375-382. doi:10.15421/022151
CrossrefGoogle Scholar

Paschoalini, G. de O., Pirani, J. R., Demarco, D., & El Ottra, J. H. L. (2022). Revisiting pericarp structure, dehiscence and seed dispersal in Galipeeae (Zanthoxyloideae, Rutaceae). Brazilian Journal of Botany, 45(1), 415-429. doi:10.1007/s40415-021-00779-9
CrossrefGoogle Scholar

Pell, S. K., Mitchell, J. D., Lobova, T., & Miller A. J. (2010). Anacardiaceae. In K. Kubitzki (Ed.). The families and genera of vascular plants. Vol. X. Flowering plants. Eudicots: Sapindales, Cucurbitales, Myrtaceae (pp. 7-50). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-14397-7_3
CrossrefGoogle Scholar

POWO (2022). Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Retrieved from http://www.plantsoftheworldonline.org (https://powo.science.kew.org). Accessed 21 March, 2023.

Rosado, A., de Souza, M. R., Milaneze, M. A., & de Souza, L. A. (2022). Sapindaceae: biologia reprodutiva e sua importância para os insetos na região norte do Paraná, Brasil. São Paulo: Presidente Prudente. Retrieved from https://www.researchgate.net/publication/366237839_Sapindaceae_-_Biologia_reprodutiva_e_sua_importancia_para_os_insetos_na_regiao_norte_do_Parana_Brasil

Roth, I. (1977). Fruits of angiosperms. Encyclopedia of plant anatomy (Vol. 10, Part 1). Berlin, Stuttgart: Gebrüder Borntraeger.
Crossref

Sattler, R., & Rutishauser, R. (2022). Fundamentals of plant morphology and plant evo-devo (evolutionary developmental morphology). Plants, 12(1), 118. doi:10.3390/plants12010118
CrossrefPubMedPMCGoogle Scholar

Schönenberger, J., & Balthazar, M. von. (2006). Reproductive structures and phylogenetic framework of the rosids-progress and prospects. Plant Systematics and Evolution, 260(2-4), 87-106. doi:10.1007/s00606-006-0439-4
CrossrefGoogle Scholar

Sheahan, M. C. (2007). Zygophyllaceae. In K. Kubitzki (Ed.). The families and genera of vascular plants. Vol. IX. Flowering plants. Eudicots (pp. 488-500). Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-32219-1_56
CrossrefGoogle Scholar

Shivaprakash, K. N., & Bawa, K. S. (2022). The evolution of placentation in flowering plants: a possible role for kin selection. Frontiers in Ecology and Evolution, 10, 784077. doi:10.3389/fevo.2022.784077
CrossrefGoogle Scholar

Simmons, S. L. (2007). Staphyleaceae. In K. Kubitzki (Ed.). The families and genera of vascular plants. Vol. IX. Flowering plants. Eudicots (pp. 440-445). Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-32219-1_49
CrossrefGoogle Scholar

Spjut, R. W. (1994). A systematic treatment of fruit types. New York: New York Botanical Garden. Retrieved from http://www.worldbotanical.com/fruit_types.htm#Classification
Google Scholar

Sramkó, G., Molnár V., A., Tóth, J. P., Laczkó, L., Kalinka, A., Horváth, O., Skuza, L., Lukács, B. A., & Popiela, A. (2016). Molecular phylogenetics, seed morphometrics, chromosome number evolution and systematics of European Elatine L. (Elatinaceae) species. PeerJ, 4, e2800. doi:10.7717/peerj.2800
CrossrefPubMedPMCGoogle Scholar

Sun, M., Naeem, R., Su, J.-X., Cao, Z.-Y., Burleigh, J. G., Soltis, P. S., Soltis, D. E., & Chen, Z.-D. (2016). Phylogeny of the Rosidae: a dense taxon sampling analysis. Journal of Systematics and Evolution, 54(4), 363-391. doi:10.1111/jse.12211
CrossrefGoogle Scholar

Takhtajan, A. (Ed.). (2009). Flowering plants. Springer Dordrecht. doi:10.1007/978-1-4020-9609-9
CrossrefGoogle Scholar

Van der Pijl, L. (1982). Principles of dispersal in higher plants. Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-87925-8
CrossrefGoogle Scholar

Voytenko, V. F. (1989). Geterokarpiya (geterodiasporiya) u pokrytosemennykh rasteniy: analiz ponyatiya, klassifikatsiya, terminologiya [Heterocarpy (heterodiaspory) in angiosperms: concept analysis, classification and terminology]. Botanicheskii Zhurnal, 74(3), 281-297. (In Russian)
Google Scholar

Wang, H., Moore, M. J., Soltis, P. S., Bell, C. D., Brockington, S. F., Alexandre, R., Davis, C. C., Latvis, M., Manchester, S. R., & Soltis, D. E. (2009). Rosid radiation and the rapid rise of angiosperm-dominated forests. Proceedings of the National Academy of Sciences, 106(10), 3853-3858. doi:10.1073/pnas.0813376106
CrossrefPubMedPMCGoogle Scholar

Webster, G. L. (2014). Euphorbiaceae. In K. Kubitzki (Ed.). The families and genera of vascular plants. Vol. XI. Flowering plants. Eudicots: Malpighiales (pp. 51-216). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-39417-1_10
CrossrefGoogle Scholar

Xiang, Y., Huang, C.-H., Hu, Y., Wen, J., Li, S., Yi, T., Chen, H., Xiang, J., & Ma, H. (2017). Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. Molecular Biology and Evolution, 34(2), 262-281. doi:10.1093/molbev/msw242
CrossrefPubMedPMCGoogle Scholar

Yeo, P. F. (1984). Fruit-discharge-type in Geranium (Geraniaceae): its use in classification and its evolutionary implications. Botanical Journal of the Linnean Society, 89(1), 1-36. doi:10.1111/j.1095-8339.1984.tb00998.x
Crossref ● Google Scholar

Zerov, D. K. (Ed.). (1965). Vyznachnyk roslyn Ukrainy [Determiner of plants of Ukraine]. Kyiv: Urozhaj. (In Ukrainian)
Google Scholar

Zhu, X.-Y., Chase, M. W., Qiu, Y.-L., Kong, H.-Z., Dilcher, D. L., Li, J.-H., & Chen, Z.-D. (2007). Mitochondrial matR sequences help to resolve deep phylogenetic relationships in rosids. BMC Evolutionary Biology, 7(1), 217. doi:10.1186/1471-2148-7-217
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Anastasiya Odintsova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.