OXIDATIVE STRESS AND PROTECTION AGAINST IT IN BACTERIA
DOI: http://dx.doi.org/10.30970/sbi.1702.716
Abstract
Microorganisms are exposed to reactive oxygen species (ROS) that are formed in various ways, in particular, as a result of respiration or other intracellular processes, during metal-catalyzed Fenton reactions, as a result of the action of UV- and X-radiation, under the influence of some antimicrobial drugs, or during the host immune oxidative-burst response against infection agents. In this review, we take a look at the mechanisms of microbial cell damage, including damage of lipids and proteins. Lipid peroxidation (LPO) is one of the main molecular mechanisms involved in oxidative damage to cellular structures. A variety of products are formed during LPO reactions: alkoxyl radicals, peroxyl radicals, hydroperoxides, diene conjugates, carbonyl compounds, aldehyde adducts with biopolymers, alcohols, esters, etc. These products include cytotoxic and highly reactive compounds. Free radical reactions of protein damage occur via hydrogen atom abstraction from α-carbon or SH-, NH2-groups of aminoacids and electron abstraction from nucleophile centers of proteins resulting in the fragmentation of proteins, their denaturation and the formation of amino acid radicals. Bacteria show a significant adaptive potential to the influence of stress agents, including ROS. We summarized the data on bacterial antioxidant protection, ROS redox sensors, and regulators of bacterial cell response to ROS exposure, focusing on the features of anaerobic microorganisms, as their responses to the oxidative damage are the least studied, and many problems remain unsolved. This review contains information about changes in fatty acid composition of lipids of the plasma membrane to maintain the necessary fluidity, and, thus, counteract the effects of various stressing agents, including ROS. The main modifications of the fatty acid composition of lipids important for the regulation of membrane fluidity are described, in particular, via changes in the degree of lipid saturation, cis/trans isomerization, and synthesis of cyclopropane fatty acids.
Keywords
bacteria, oxidative stress, reactive oxygen species, antioxidant protection, fatty acid composition of lipids, lipid damage, protein damage
Full Text:
PDFReferences
Aklujkar, M., Young, N. D., Holmes, D., Chavan, M., Risso, C., Kiss, H. E., Han, C. S., Land, M. L., & Lovley, D. R. (2010). The genome of Geobacter bemidjiensis, exemplar for the subsurface clade of Geobacter species that predominate in Fe(III)-reducing subsurface environments. BMC Genomics, 11(1), 490. doi:10.1186/1471-2164-11-490 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Allocati, N., Federici, L., Masulli, M., & Di Ilio, C. (2008). Glutathione transferases in bacteria. FEBS Journal, 276(1), 58-75. doi:10.1111/j.1742-4658.2008.06743.x Crossref ● PubMed ● Google Scholar | ||||
| ||||
Antelmann, H., & Helmann, J. D. (2011). Thiol-based redox switches and gene regulation. Antioxidants & Redox Signaling, 14(6), 1049-1063. doi:10.1089/ars.2010.3400 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Aussel, L., & Ezraty, B. (2021). Methionine redox homeostasis in protein quality control. Frontiers in Molecular Biosciences, 8, 665492. doi:10.3389/fmolb.2021.665492 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 2014, 1-31. doi:10.1155/2014/360438 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Battesti, A., Majdalani, N., & Gottesman, S. (2015). Stress sigma factor RpoS degradation and translation are sensitive to the state of central metabolism. Proceedings of the National Academy of Sciences, 112(16), 5159-5164. doi:10.1073/pnas.1504639112 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Bhattacharjee, S. (2014). Membrane lipid peroxidation and its conflict of interest: the two faces of oxidative stress. Current Science, 107(11), 1811-1823. Google Scholar | ||||
| ||||
Borysiuk, K., Ostaszewska-Bugajska, M., Kryzheuskaya, K., Gardeström, P., & Szal, B. (2022). Glyoxalase I activity affects Arabidopsis sensitivity to ammonium nutrition. Plant Cell Reports, 41(12), 2393-2413. doi:10.1007/s00299-022-02931-5 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Broxton, C. N., & Culotta, V. C. (2016). SOD enzymes and microbial pathogens: surviving the oxidative storm of infection. PLoS Pathogens, 12(1), e1005295. doi:10.1371/journal.ppat.1005295 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Chen, Y. Y., & Gänzle, M. G. (2016). Influence of cyclopropane fatty acids on heat, high pressure, acid and oxidative resistance in Escherichia coli. International Journal of Food Microbiology, 222, 16-22. doi:10.1016/j.ijfoodmicro.2016.01.017 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Chiang, S. M., & Schellhorn, H. E. (2012). Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Archives of Biochemistry and Biophysics, 525(2), 161-169. doi:10.1016/j.abb.2012.02.007 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Chrisnasari, R., Hennebelle, M., Vincken, J.-P., van Berkel, W. J. H., & Ewing, T. A. (2022). Bacterial lipoxygenases: biochemical characteristics, molecular structure and potential applications. Biotechnology Advances, 61, 108046. doi:10.1016/j.biotechadv.2022.108046 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Chwastek, G., Surma, M. A., Rizk, S., Grosser, D., Lavrynenko, O., Rucińska, M., Jambor, H., & Sáenz, J. (2020). Principles of membrane adaptation revealed through environmentally induced bacterial lipidome remodeling. Cell Reports, 32(12), 108165. doi:10.1016/j.celrep.2020.108165 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Coulter, E. D., & Kurtz, D. M. (2001). A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase. Archives of Biochemistry and Biophysics, 394(1), 76-86. doi:10.1006/abbi.2001.2531 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Dalle-Donne, I., Rossi, R., Giustarini, D., Milzani, A., & Colombo, R. (2003). Protein carbonyl groups as biomarkers of oxidative stress. Clinica Chimica Acta, 329(1-2), 23-38. doi:10.1016/s0009-8981(03)00003-2 Crossref ● PubMed ● Google Scholar | ||||
| ||||
DiDonato, L. N., Sullivan, S. A., Methé, B. A., Nevin, K. P., England, R., & Lovley, D. R. (2006). Role of RelGsu in stress response and Fe(III) reduction in Geobacter sulfurreducens. Journal of Bacteriology, 188(24), 8469-8478. doi:10.1128/jb.01278-06 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Dos Santos, W. G., Pacheco, I., Liu, M.-Y., Teixeira, M., Xavier, A. V., & LeGall, J. (2000). Purification and characterization of an iron superoxide dismutase and a catalase from the sulfate-reducing bacterium Desulfovibrio gigas. Journal of Bacteriology, 182(3), 796-804. doi:10.1128/jb.182.3.796-804.2000 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Dubbs, J. M., & Mongkolsuk, S. (2012). Peroxide-sensing transcriptional regulators in bacteria. Journal of Bacteriology, 194(20), 5495-5503. doi:10.1128/jb.00304-12 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Duldhardt, I., Gaebel, J., Chrzanowski, L., Nijenhuis, I., Härtig, C., Schauer, F., & Heipieper, H. J. (2009). Adaptation of anaerobically grown Thauera aromatica, Geobacter sulfurreducens and Desulfococcus multivoransto organic solvents on the level of membrane fatty acid composition. Microbial Biotechnology, 3(2), 201-209. doi:10.1111/j.1751-7915.2009.00124.x Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Eberlein, C., Baumgarten, T., Starke, S., & Heipieper, H. J. (2018). Immediate response mechanisms of Gram-negative solvent-tolerant bacteria to cope with environmental stress: cis-trans isomerization of unsaturated fatty acids and outer membrane vesicle secretion. Applied Microbiology and Biotechnology, 102(6), 2583-2593. doi:10.1007/s00253-018-8832-9 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Ezraty, B., Gennaris, A., Barras, F., & Collet, J.-F. (2017). Oxidative stress, protein damage and repair in bacteria. Nature Reviews Microbiology, 15(7), 385-396. doi:10.1038/nrmicro.2017.26 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Fasnacht, M., & Polacek, N. (2021). Oxidative stress in bacteria and the central dogma of molecular biology. Frontiers in Molecular Biosciences, 8, 671037. doi:10.3389/fmolb.2021.671037 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Fichtel, K., Logemann, J., Fichtel, J., Rullkötter, J., Cypionka, H., & Engelen, B. (2015). Temperature and pressure adaptation of a sulfate reducer from the deep subsurface. Frontiers in Microbiology, 6, 1078. doi:10.3389/fmicb.2015.01078 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Fredriksson, A., Ballesteros, M., Dukan, S., & Nyström, T. (2005). Defense against protein carbonylation by DnaK/DnaJ and proteases of the heat shock regulon. Journal of Bacteriology, 187(12), 4207-4213. doi:10.1128/JB.187.12.4207-4213.2005 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Fu, H., Yuan, J., & Gao, H. (2015). Microbial oxidative stress response: novel insights from environmental facultative anaerobic bacteria. Archives of Biochemistry and Biophysics, 584, 28-35. doi:10.1016/j.abb.2015.08.012 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Fu, R. Y., Chen, J., & Li, Y. (2007). The function of the glutathione/glutathione peroxidase system in the oxidative stress resistance systems of microbial cells. Chinese Journal of Biotechnology, 23(5), 770-775. doi:10.1016/s1872-2075(07)60048-x Crossref ● PubMed ● Google Scholar | ||||
| ||||
Garrido Ruiz, D., Sandoval-Perez, A., Rangarajan, A. V., Gunderson, E. L., & Jacobson, M. P. (2022). Cysteine oxidation in proteins: structure, biophysics, and simulation. Biochemistry, 61(20), 2165-2176. doi:10.1021/acs.biochem.2c00349 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Guéraud, F., Atalay, M., Bresgen, N., Cipak, A., Eckl, P. M., Huc, L., Jouanin, I., Siems, W., & Uchida, K. (2010). Chemistry and biochemistry of lipid peroxidation products. Free Radical Research, 44(10), 1098-1124. doi:10.3109/10715762.2010.498477 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Hansen, J., Garreta, A., Benincasa, M., Fusté, M. C., Busquets, M., & Manresa, A. (2013). Bacterial lipoxygenases, a new subfamily of enzymes? A phylogenetic approach. Applied Microbiology and Biotechnology, 97, 4737-4747. doi:10.1007/s00253-013-4887-9 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Hawkins, C. L., & Davies, M. J. (2019). Detection, identification, and quantification of oxidative protein modifications. Journal of Biological Chemistry, 294(51), 19683-19708. doi:10.1074/jbc.rev119.006217 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Hillion, M., & Antelmann, H. (2015). Thiol-based redox switches in prokaryotes. Biological Chemistry, 396(5), 415-444. doi:10.1515/hsz-2015-0102 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Hnatush, S. O., Maslovska, O. D., Komplikevych, S. Y., & Kovbasa, I. V. (2022a). Influence of cobalt chloride and ferric citrate on purple non-sulfur bacteria Rhodopseudomonas yavorovii. Biosystems Diversity, 30(1), 31-38. doi:10.15421/012204 Crossref ● Google Scholar | ||||
| ||||
Hnatush, S. O., Maslovska, O. D., Komplikevych, S. Y., Segin, T. B., & Diakiv, S. V. (2022b). Relationships between prooxidant and antioxidant parameters of bacteria of sulfur cycle under the influence of heavy metal compounds. The Current State of Fundamental and Applied Natural Sciences Research, 100-125. doi:10.30525/978-9934-26-212-8-5 Crossref ● Google Scholar | ||||
| ||||
Нnatush, S., Maslovska, O., Sehin, T., Vasyliv, O., Kovalchuk, M., & Malovanyy, M. (2020). Waste water treatment by exoelectrogenic bacteria isolated from technogenically transformed lands. Ecological Questions, 31(1), 35-44. doi:10.12775/EQ.2020.005 Crossref ● PubMed ● PMC ● Google Scholar https://doi.org/10.12775/EQ.2020.005 | ||||
| ||||
Holmes, D. E., O'Neil, R. A., Chavan, M. A., N'Guessan, L. A., Vrionis, H. A., Perpetua, L. A., Larrahondo, M. J., DiDonato, R., Liu, A., & Lovley, D. R. (2009). Transcriptome of Geobacter uraniireducens growing in uranium-contaminated subsurface sediments. The ISME Journal, 3(2), 216-230. doi:10.1038/ismej.2008.89 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Hong, Y., Zeng, J., Wang, X., Drlica, K., & Zhao, X. (2019). Post-stress bacterial cell death mediated by reactive oxygen species. Proceedings of the National Academy of Sciences, 116(20), 10064-10071. doi:10.1073/pnas.1901730116 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Hosoya-Matsuda, N., Inoue, K., & Hisabori, T. (2009). Roles of thioredoxins in the obligate anaerobic green sulfur photosynthetic bacterium Chlorobaculum tepidum. Molecular Plant, 2(2), 336-343. doi:10.1093/mp/ssn077 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Imlay, J. A. (2015). Transcription factors that defend bacteria against reactive oxygen species. Annual Review of Microbiology, 69(1), 93-108. doi:10.1146/annurev-micro-091014-104322 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Imlay, J. A. (2018). Where in the world do bacteria experience oxidative stress? Environmental Microbiology, 21(2), 521-530. doi:10.1111/1462-2920.14445 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kaneda, T. (1991). Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiological Reviews, 55(2), 288-302. doi:10.1128/mr.55.2.288-302.1991 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Karlinsey, J. E., Fung, A. M., Johnston, N., Goldfine, H., Libby, S. J., & Fang, F. C. (2022). Cyclopropane fatty acids are important for Salmonella enterica serovar Typhimurium virulence. Infection and Immunity, 90(1), e0047921. doi.org/10.1128/iai.00479-21 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kim, J.-S., Liu, L., & Vázquez-Torres, A. (2021). The DnaK/DnaJ chaperone system enables RNA polymerase-DksA complex formation in Salmonella experiencing oxidative stress. MBio, 12(3), e03443-20. doi:10.1128/mbio.03443-20 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Koga, Y. (2012). Thermal adaptation of the archaeal and bacterial lipid membranes. Archaea, 2012, 1-6. doi:10.1155/2012/789652 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Lahir, Y. K. (2015). Lipid oxidation in biological systems: biochemical, biological and biophysical aspects. Global Journal of Bio Sciences and Biotechnology, 4(3), 224-233. Google Scholar | ||||
| ||||
Lemire, J., Alhasawi, A., Appanna, V. P., Tharmalingam, S., & Appanna, V. D. (2017). Metabolic defence against oxidative stress: the road less travelled so far. Journal of Applied Microbiology, 123(4), 798-809. doi:10.1111/jam.13509 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Li, J., Ran, X., Zhou, M., Wang, K., Wang, H., & Wang, Y. (2022). Oxidative stress and antioxidant mechanisms of obligate anaerobes involved in biological waste treatment processes: a review. Science of The Total Environment, 838, 156454. doi:10.1016/j.scitotenv.2022.156454 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Liu, J., Chakraborty, S., Hosseinzadeh, P., Yu, Y., Tian, S., Petrik, I., Bhagi, A., & Lu, Y. (2014). Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chemical Reviews, 114(8), 4366-4469. doi:10.1021/cr400479b Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Loiseau, L., Vergnes, A., & Ezraty, B. (2022). Methionine oxidation under anaerobic conditions in Escherichia coli. Molecular Microbiology, 118(4), 387-402. doi:10.1111/mmi.14971 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Malovanyy, M., Zhuk, V., Tymchuk, I., Sliusar, V., Vronska, N., Marakhovska, A., & Sereda, A. (2022). Optimal parameters for reagent treatment of Hrybovychi landfill leachates at the pilot-scale treatment plant. Ecological Questions, 33(3), 89-97. Google Scholar | ||||
| ||||
Malovanyy, M., Zhuk, V., Tymchuk, I., Grechanik, R., Sliusar, V., Vronska, N., Marakhovska, A., & Sereda, A. (2023). Pilot-scale modelling of aerated lagoon technology for the treatment of landfill leachate: case study Hrybovychi plant. Environment and Natural Resources Journal, 21(1), 1-8. doi:10.32526/ennrj/21/202200103 Crossref ● Google Scholar | ||||
| ||||
Mansilla, M. C., Cybulski, L. E., Albanesi, D., & de Mendoza, D. (2004). Control of membrane lipid fluidity by molecular thermosensors. Journal of Bacteriology, 186(20), 6681-6688. doi:10.1128/jb.186.20.6681-6688.2004 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Markowicz, A., Płociniczak, T., & Piotrowska-Seget, Z. (2010). Response of bacteria to heavy metals measured as changes in FAME profiles. Polish Journal of Environmental Studies, 19(5), 957-965. Google Scholar | ||||
| ||||
Masip, L., Veeravalli, K., & Georgiou, G. (2006). The many faces of glutathione in bacteria. Antioxidants & Redox Signaling, 8(5-6), 753-762. doi:10.1089/ars.2006.8.753 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Matallana-Surget, S., Cavicchioli, R., Fauconnier, C., Wattiez, R., Leroy, B., Joux, F., Raftery, M. J., & Lebaron, P. (2013). Shotgun redox proteomics: identification and quantitation of carbonylated proteins in the UVB-resistant marine bacterium, Photobacterium angustum S14. PLoS One, 8(7), e68112. doi:10.1371/journal.pone.0068112 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Miller, A.-F. (2011). Superoxide dismutases: ancient enzymes and new insights. FEBS Letters, 586(5), 585-595. do:10.1016/j.febslet.2011.10.048 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Mishra, A., Aja, E., & Fletcher, H. M. (2020). Role of superoxide reductase FA796 in oxidative stress resistance in Filifactor alocis. Scientific Reports, 10(1), 9178. doi:10.1038/s41598-020-65806-3 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Montanari, C., Sado Kamdem, S. L., Serrazanetti, D. I., Etoa, F.-X., & Guerzoni, M. E. (2010). Synthesis of cyclopropane fatty acids in Lactobacillus helveticus and Lactobacillus sanfranciscensis and their cellular fatty acids changes following short term acid and cold stresses. Food Microbiology, 27(4), 493-502. doi:10.1016/j.fm.2009.12.003 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Murínová, S., & Dercová, K. (2014). Response mechanisms of bacterial degraders to environmental contaminants on the level of cell walls and cytoplasmic membrane. International Journal of Microbiology, 2014, 1-16. doi:10.1155/2014/873081 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Nicolson, G. L. (2014). The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1838(6), 1451-1466. doi:10.1016/j.bbamem.2013.10.019 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Nyström, T. (2005). Role of oxidative carbonylation in protein quality control and senescence. The EMBO Journal, 24(7), 1311-1317. doi:10.1038/sj.emboj.7600599 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Orellana, R., Hixson, K. K., Murphy, S., Mester, T., Sharma, M. L., Lipton, M. S., & Lovley, D. R. (2014). Proteome of Geobacter sulfurreducens in the presence of U(VI). Microbiology, 160(12), 2607-2617. doi:10.1099/mic.0.081398-0 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Poger, D., & Mark, A. E. (2015). A ring to rule them all: the effect of cyclopropane fatty acids on the fluidity of lipid bilayers. The Journal of Physical Chemistry B, 119(17), 5487-5495. doi:10.1021/acs.jpcb.5b00958 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Repetto, M., Semprine, J., & Boveris, A. (2012). Lipid peroxidation: chemical mechanism, biological implications and analytical determination (pp. 3-30). In A. Catala (Ed.). Lipid Peroxidation. InTech. doi:10.5772/45943 Crossref ● Google Scholar | ||||
| ||||
Rontani, J.-F. (2012). Photo- and free radical-mediated oxidation of lipid components during the senescence of phototrophic organisms (pp. 3-31). In T. Nagata (Ed.). Senescence. IntechOpen. doi:10.5772/34002 Crossref ● Google Scholar | ||||
| ||||
Segin, T., Hnatush, S., Maslovska, O., & Vasyliv, O. (2018). Changes of fatty acid composition of Chlorobium limicola IMV K-8 cells under the influence of copper (II) sulfate. Mikrobiolohichnyi Zhurnal, 80(3), 40-52. doi:10.15407/microbiolj80.03.040 Crossref ● Google Scholar | ||||
| ||||
Sehin, T. B., Hnatush, S. O., Maslovska, O. D., Halushka, A. A., & Zaritska, Y. H. (2020). Biochemical indicators of green photosynthetic bacteria Chlorobium limicola response to Cu2+ action. The Ukrainian Biochemical Journal, 92(1), 103-112. doi:10.15407/ubj92.01.103 Crossref ● Google Scholar | ||||
| ||||
Seixas, A. F., Quendera, A. P., Sousa, J. P., Silva, A. F. Q., Arraiano, C. M., & Andrade, J. M. (2022). Bacterial response to oxidative stress and RNA oxidation. Frontiers in Genetics, 12, 821535. doi:10.3389/fgene.2021.821535 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Semchyshyn, H. M., & Lushchak, V. I. (2012). Interplay between oxidative and carbonyl stresses: molecular mechanisms, biological effects and therapeutic strategies of protection (pp. 15-46). In V. I. Lushchak & H. M. Semchyshyn (Eds.). Oxidative stress - Molecular mechanisms and biological effects. Rijeka, Croatia: InTech. Google Scholar | ||||
| ||||
Sheng, Y., Abreu, I. A., Cabelli, D. E., Maroney, M. J., Miller, A.-F., Teixeira, M., & Valentine, J. S. (2014). Superoxide dismutases and superoxide reductases. Chemical Reviews, 114(7), 3854-3918. doi:10.1021/cr4005296 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Shringarpure, R., Grune, T., Mehlhase, J., & Davies, K. J. A. (2003). Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. Journal of Biological Chemistry, 278(1), 311-318. doi:10.1074/jbc.m206279200 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Si, M., Zhang, L., Chaudhry, M. T., Ding, W., Xu, Y., Chen, C., Akbar, A., Shen, X., & Liu, S.-J. (2015). Corynebacterium glutamicum methionine sulfoxide reductase A uses both mycoredoxin and thioredoxin for regeneration and oxidative stress resistance. Applied and Environmental Microbiology, 81(8), 2781-2796. doi:10.1128/aem.04221-14 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Singh, V., Singh, K., & Baum, K. (2018). The role of methionine sulfoxide reductases in oxidative stress tolerance and virulence of Staphylococcus aureus and other bacteria. Antioxidants, 7(10), 128. doi:10.3390/antiox7100128 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Stadtman, E. R., & Levine, R. L. (2003). Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids, 25(3-4), 207-218. doi:10.1007/s00726-003-0011-2 Crossref ● PubMed ● PMC ● Google Scholar https://doi.org/10.1007/s00726-003-0011-2 PMid:14661084 | ||||
| ||||
Ulrich, K., & Jakob, U. (2019). The role of thiols in antioxidant systems. Free Radical Biology and Medicine, 140, 14-27. doi:10.1016/j.freeradbiomed.2019.05.035 Crossref ● PubMed ● PMC ● Google Scholar | ||||
Yan, J., Ralston, M. M., Meng, X., Bongiovanni, K. D., Jones, A. L., Benndorf, R., Nelin, L. D., Joshua Frazier, W., Rogers, L. K., Smith, C. V., & Liu, Y. (2013). Glutathione reductase is essential for host defense against bacterial infection. Free Radical Biology and Medicine, 61, 320-332. doi:10.1016/j.freeradbiomed.2013.04.015 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Yuan, F., Yin, S., Xu, Y., Xiang, L., Wang, H., Li, Z., Fan, K., & Pan, G. (2021). The richness and diversity of catalases in bacteria. Frontiers in Microbiology, 12, 645477. doi:10.3389/fmicb.2021.645477 Crossref ● PubMed ● PMC ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Olha Maslovska, Solomiia Komplikevych, Svitlana Hnatush
This work is licensed under a Creative Commons Attribution 4.0 International License.