OXIDATIVE STRESS AND PROTECTION AGAINST IT IN BACTERIA

Olha Maslovska, Solomiia Komplikevych, Svitlana Hnatush


DOI: http://dx.doi.org/10.30970/sbi.1702.716

Abstract


Microorganisms are exposed to reactive oxygen species (ROS) that are formed in various ways, in particular, as a result of respiration or other intracellular processes, during metal-catalyzed Fenton reactions, as a result of the action of UV- and X-radiation, under the influence of some antimicrobial drugs, or during the host immune oxidative-burst response against infection agents. In this review, we take a look at the mechanisms of microbial cell damage, including damage of lipids and proteins. Lipid peroxidation (LPO) is one of the main molecular mechanisms involved in oxidative damage to cellular structures. A variety of products are formed during LPO reactions: alkoxyl radicals, peroxyl radicals, hydroperoxides, diene conjugates, carbonyl compounds, aldehyde adducts with biopolymers, alcohols, esters, etc. These products include cytotoxic and highly reactive compounds. Free radical reactions of protein damage occur via hydrogen atom abstraction from α-carbon or SH-, NH2-groups of aminoacids and electron abstraction from nucleophile centers of proteins resulting in the fragmentation of proteins, their denaturation and the formation of amino acid radicals. Bacteria show a significant adaptive potential to the influence of stress agents, including ROS. We summarized the data on bacterial antioxidant protection, ROS redox sensors, and regulators of bacterial cell response to ROS exposure, focusing on the features of anaerobic microorganisms, as their responses to the oxidative damage are the least studied, and many problems remain unsolved. This review contains information about changes in fatty acid composition of lipids of the plasma membrane to maintain the necessary fluidity, and, thus, counteract the effects of various stressing agents, including ROS. The main modifications of the fatty acid composition of lipids important for the regulation of membrane fluidity are described, in particular, via changes in the degree of lipid saturation, cis/trans isomerization, and synthesis of cyclopropane fatty acids.

Keywords


bacteria, oxidative stress, reactive oxygen species, antioxidant protection, fatty acid composition of lipids, lipid damage, protein damage

Full Text:

PDF

References


Aklujkar, M., Young, N. D., Holmes, D., Chavan, M., Risso, C., Kiss, H. E., Han, C. S., Land, M. L., & Lovley, D. R. (2010). The genome of Geobacter bemidjiensis, exemplar for the subsurface clade of Geobacter species that predominate in Fe(III)-reducing subsurface environments. BMC Genomics, 11(1), 490. doi:10.1186/1471-2164-11-490
CrossrefPubMedPMCGoogle Scholar

Allocati, N., Federici, L., Masulli, M., & Di Ilio, C. (2008). Glutathione transferases in bacteria. FEBS Journal, 276(1), 58-75. doi:10.1111/j.1742-4658.2008.06743.x
CrossrefPubMedGoogle Scholar

Antelmann, H., & Helmann, J. D. (2011). Thiol-based redox switches and gene regulation. Antioxidants & Redox Signaling, 14(6), 1049-1063. doi:10.1089/ars.2010.3400
CrossrefPubMedPMCGoogle Scholar

Aussel, L., & Ezraty, B. (2021). Methionine redox homeostasis in protein quality control. Frontiers in Molecular Biosciences, 8, 665492. doi:10.3389/fmolb.2021.665492
CrossrefPubMedPMCGoogle Scholar

Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 2014, 1-31. doi:10.1155/2014/360438
CrossrefPubMedPMCGoogle Scholar

Battesti, A., Majdalani, N., & Gottesman, S. (2015). Stress sigma factor RpoS degradation and translation are sensitive to the state of central metabolism. Proceedings of the National Academy of Sciences, 112(16), 5159-5164. doi:10.1073/pnas.1504639112
CrossrefPubMedPMCGoogle Scholar

Bhattacharjee, S. (2014). Membrane lipid peroxidation and its conflict of interest: the two faces of oxidative stress. Current Science, 107(11), 1811-1823.
Google Scholar

Borysiuk, K., Ostaszewska-Bugajska, M., Kryzheuskaya, K., Gardeström, P., & Szal, B. (2022). Glyoxalase I activity affects Arabidopsis sensitivity to ammonium nutrition. Plant Cell Reports, 41(12), 2393-2413. doi:10.1007/s00299-022-02931-5
CrossrefPubMedPMCGoogle Scholar

Broxton, C. N., & Culotta, V. C. (2016). SOD enzymes and microbial pathogens: surviving the oxidative storm of infection. PLoS Pathogens, 12(1), e1005295. doi:10.1371/journal.ppat.1005295
CrossrefPubMedPMCGoogle Scholar

Chen, Y. Y., & Gänzle, M. G. (2016). Influence of cyclopropane fatty acids on heat, high pressure, acid and oxidative resistance in Escherichia coli. International Journal of Food Microbiology, 222, 16-22. doi:10.1016/j.ijfoodmicro.2016.01.017
CrossrefPubMedGoogle Scholar

Chiang, S. M., & Schellhorn, H. E. (2012). Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Archives of Biochemistry and Biophysics, 525(2), 161-169. doi:10.1016/j.abb.2012.02.007
CrossrefPubMedGoogle Scholar

Chrisnasari, R., Hennebelle, M., Vincken, J.-P., van Berkel, W. J. H., & Ewing, T. A. (2022). Bacterial lipoxygenases: biochemical characteristics, molecular structure and potential applications. Biotechnology Advances, 61, 108046. doi:10.1016/j.biotechadv.2022.108046
CrossrefPubMedGoogle Scholar

Chwastek, G., Surma, M. A., Rizk, S., Grosser, D., Lavrynenko, O., Rucińska, M., Jambor, H., & Sáenz, J. (2020). Principles of membrane adaptation revealed through environmentally induced bacterial lipidome remodeling. Cell Reports, 32(12), 108165. doi:10.1016/j.celrep.2020.108165
CrossrefPubMedGoogle Scholar

Coulter, E. D., & Kurtz, D. M. (2001). A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase. Archives of Biochemistry and Biophysics, 394(1), 76-86. doi:10.1006/abbi.2001.2531
CrossrefPubMedGoogle Scholar

Dalle-Donne, I., Rossi, R., Giustarini, D., Milzani, A., & Colombo, R. (2003). Protein carbonyl groups as biomarkers of oxidative stress. Clinica Chimica Acta, 329(1-2), 23-38. doi:10.1016/s0009-8981(03)00003-2
CrossrefPubMedGoogle Scholar

DiDonato, L. N., Sullivan, S. A., Methé, B. A., Nevin, K. P., England, R., & Lovley, D. R. (2006). Role of RelGsu in stress response and Fe(III) reduction in Geobacter sulfurreducens. Journal of Bacteriology, 188(24), 8469-8478. doi:10.1128/jb.01278-06
CrossrefPubMedPMCGoogle Scholar

Dos Santos, W. G., Pacheco, I., Liu, M.-Y., Teixeira, M., Xavier, A. V., & LeGall, J. (2000). Purification and characterization of an iron superoxide dismutase and a catalase from the sulfate-reducing bacterium Desulfovibrio gigas. Journal of Bacteriology, 182(3), 796-804. doi:10.1128/jb.182.3.796-804.2000
CrossrefPubMedPMCGoogle Scholar

Dubbs, J. M., & Mongkolsuk, S. (2012). Peroxide-sensing transcriptional regulators in bacteria. Journal of Bacteriology, 194(20), 5495-5503. doi:10.1128/jb.00304-12
CrossrefPubMedPMCGoogle Scholar

Duldhardt, I., Gaebel, J., Chrzanowski, L., Nijenhuis, I., Härtig, C., Schauer, F., & Heipieper, H. J. (2009). Adaptation of anaerobically grown Thauera aromatica, Geobacter sulfurreducens and Desulfococcus multivoransto organic solvents on the level of membrane fatty acid composition. Microbial Biotechnology, 3(2), 201-209. doi:10.1111/j.1751-7915.2009.00124.x
CrossrefPubMedPMCGoogle Scholar

Eberlein, C., Baumgarten, T., Starke, S., & Heipieper, H. J. (2018). Immediate response mechanisms of Gram-negative solvent-tolerant bacteria to cope with environmental stress: cis-trans isomerization of unsaturated fatty acids and outer membrane vesicle secretion. Applied Microbiology and Biotechnology, 102(6), 2583-2593. doi:10.1007/s00253-018-8832-9
CrossrefPubMedPMCGoogle Scholar

Ezraty, B., Gennaris, A., Barras, F., & Collet, J.-F. (2017). Oxidative stress, protein damage and repair in bacteria. Nature Reviews Microbiology, 15(7), 385-396. doi:10.1038/nrmicro.2017.26
CrossrefPubMedGoogle Scholar

Fasnacht, M., & Polacek, N. (2021). Oxidative stress in bacteria and the central dogma of molecular biology. Frontiers in Molecular Biosciences, 8, 671037. doi:10.3389/fmolb.2021.671037
CrossrefPubMedPMCGoogle Scholar

Fichtel, K., Logemann, J., Fichtel, J., Rullkötter, J., Cypionka, H., & Engelen, B. (2015). Temperature and pressure adaptation of a sulfate reducer from the deep subsurface. Frontiers in Microbiology, 6, 1078. doi:10.3389/fmicb.2015.01078
CrossrefPubMedPMCGoogle Scholar

Fredriksson, A., Ballesteros, M., Dukan, S., & Nyström, T. (2005). Defense against protein carbonylation by DnaK/DnaJ and proteases of the heat shock regulon. Journal of Bacteriology, 187(12), 4207-4213. doi:10.1128/JB.187.12.4207-4213.2005
CrossrefPubMedPMCGoogle Scholar

Fu, H., Yuan, J., & Gao, H. (2015). Microbial oxidative stress response: novel insights from environmental facultative anaerobic bacteria. Archives of Biochemistry and Biophysics, 584, 28-35. doi:10.1016/j.abb.2015.08.012
CrossrefPubMedGoogle Scholar

Fu, R. Y., Chen, J., & Li, Y. (2007). The function of the glutathione/glutathione peroxidase system in the oxidative stress resistance systems of microbial cells. Chinese Journal of Biotechnology, 23(5), 770-775. doi:10.1016/s1872-2075(07)60048-x
CrossrefPubMedGoogle Scholar

Garrido Ruiz, D., Sandoval-Perez, A., Rangarajan, A. V., Gunderson, E. L., & Jacobson, M. P. (2022). Cysteine oxidation in proteins: structure, biophysics, and simulation. Biochemistry, 61(20), 2165-2176. doi:10.1021/acs.biochem.2c00349
CrossrefPubMedPMCGoogle Scholar

Guéraud, F., Atalay, M., Bresgen, N., Cipak, A., Eckl, P. M., Huc, L., Jouanin, I., Siems, W., & Uchida, K. (2010). Chemistry and biochemistry of lipid peroxidation products. Free Radical Research, 44(10), 1098-1124. doi:10.3109/10715762.2010.498477
CrossrefPubMedGoogle Scholar

Hansen, J., Garreta, A., Benincasa, M., Fusté, M. C., Busquets, M., & Manresa, A. (2013). Bacterial lipoxygenases, a new subfamily of enzymes? A phylogenetic approach. Applied Microbiology and Biotechnology, 97, 4737-4747. doi:10.1007/s00253-013-4887-9
CrossrefPubMedGoogle Scholar

Hawkins, C. L., & Davies, M. J. (2019). Detection, identification, and quantification of oxidative protein modifications. Journal of Biological Chemistry, 294(51), 19683-19708. doi:10.1074/jbc.rev119.006217
CrossrefPubMedPMCGoogle Scholar

Hillion, M., & Antelmann, H. (2015). Thiol-based redox switches in prokaryotes. Biological Chemistry, 396(5), 415-444. doi:10.1515/hsz-2015-0102
CrossrefPubMedPMCGoogle Scholar

Hnatush, S. O., Maslovska, O. D., Komplikevych, S. Y., & Kovbasa, I. V. (2022a). Influence of cobalt chloride and ferric citrate on purple non-sulfur bacteria Rhodopseudomonas yavorovii. Biosystems Diversity, 30(1), 31-38. doi:10.15421/012204
CrossrefGoogle Scholar

Hnatush, S. O., Maslovska, O. D., Komplikevych, S. Y., Segin, T. B., & Diakiv, S. V. (2022b). Relationships between prooxidant and antioxidant parameters of bacteria of sulfur cycle under the influence of heavy metal compounds. The Current State of Fundamental and Applied Natural Sciences Research, 100-125. doi:10.30525/978-9934-26-212-8-5
CrossrefGoogle Scholar

Нnatush, S., Maslovska, O., Sehin, T., Vasyliv, O., Kovalchuk, M., & Malovanyy, M. (2020). Waste water treatment by exoelectrogenic bacteria isolated from technogenically transformed lands. Ecological Questions, 31(1), 35-44. doi:10.12775/EQ.2020.005
Crossref ● PubMed ● PMC ● Google Scholar
https://doi.org/10.12775/EQ.2020.005

Holmes, D. E., O'Neil, R. A., Chavan, M. A., N'Guessan, L. A., Vrionis, H. A., Perpetua, L. A., Larrahondo, M. J., DiDonato, R., Liu, A., & Lovley, D. R. (2009). Transcriptome of Geobacter uraniireducens growing in uranium-contaminated subsurface sediments. The ISME Journal, 3(2), 216-230. doi:10.1038/ismej.2008.89
CrossrefPubMedGoogle Scholar

Hong, Y., Zeng, J., Wang, X., Drlica, K., & Zhao, X. (2019). Post-stress bacterial cell death mediated by reactive oxygen species. Proceedings of the National Academy of Sciences, 116(20), 10064-10071. doi:10.1073/pnas.1901730116
CrossrefPubMedPMCGoogle Scholar

Hosoya-Matsuda, N., Inoue, K., & Hisabori, T. (2009). Roles of thioredoxins in the obligate anaerobic green sulfur photosynthetic bacterium Chlorobaculum tepidum. Molecular Plant, 2(2), 336-343. doi:10.1093/mp/ssn077
CrossrefPubMedGoogle Scholar

Imlay, J. A. (2015). Transcription factors that defend bacteria against reactive oxygen species. Annual Review of Microbiology, 69(1), 93-108. doi:10.1146/annurev-micro-091014-104322
CrossrefPubMedPMCGoogle Scholar

Imlay, J. A. (2018). Where in the world do bacteria experience oxidative stress? Environmental Microbiology, 21(2), 521-530. doi:10.1111/1462-2920.14445
CrossrefPubMedPMCGoogle Scholar

Kaneda, T. (1991). Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiological Reviews, 55(2), 288-302. doi:10.1128/mr.55.2.288-302.1991
CrossrefPubMedPMCGoogle Scholar

Karlinsey, J. E., Fung, A. M., Johnston, N., Goldfine, H., Libby, S. J., & Fang, F. C. (2022). Cyclopropane fatty acids are important for Salmonella enterica serovar Typhimurium virulence. Infection and Immunity, 90(1), e0047921. doi.org/10.1128/iai.00479-21
CrossrefPubMedPMCGoogle Scholar

Kim, J.-S., Liu, L., & Vázquez-Torres, A. (2021). The DnaK/DnaJ chaperone system enables RNA polymerase-DksA complex formation in Salmonella experiencing oxidative stress. MBio, 12(3), e03443-20. doi:10.1128/mbio.03443-20
CrossrefPubMedPMCGoogle Scholar

Koga, Y. (2012). Thermal adaptation of the archaeal and bacterial lipid membranes. Archaea, 2012, 1-6. doi:10.1155/2012/789652
CrossrefPubMedPMCGoogle Scholar

Lahir, Y. K. (2015). Lipid oxidation in biological systems: biochemical, biological and biophysical aspects. Global Journal of Bio Sciences and Biotechnology, 4(3), 224-233.
Google Scholar

Lemire, J., Alhasawi, A., Appanna, V. P., Tharmalingam, S., & Appanna, V. D. (2017). Metabolic defence against oxidative stress: the road less travelled so far. Journal of Applied Microbiology, 123(4), 798-809. doi:10.1111/jam.13509
CrossrefPubMedGoogle Scholar

Li, J., Ran, X., Zhou, M., Wang, K., Wang, H., & Wang, Y. (2022). Oxidative stress and antioxidant mechanisms of obligate anaerobes involved in biological waste treatment processes: a review. Science of The Total Environment, 838, 156454. doi:10.1016/j.scitotenv.2022.156454
CrossrefPubMedGoogle Scholar

Liu, J., Chakraborty, S., Hosseinzadeh, P., Yu, Y., Tian, S., Petrik, I., Bhagi, A., & Lu, Y. (2014). Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chemical Reviews, 114(8), 4366-4469. doi:10.1021/cr400479b
CrossrefPubMedPMCGoogle Scholar

Loiseau, L., Vergnes, A., & Ezraty, B. (2022). Methionine oxidation under anaerobic conditions in Escherichia coli. Molecular Microbiology, 118(4), 387-402. doi:10.1111/mmi.14971
CrossrefPubMedPMCGoogle Scholar

Malovanyy, M., Zhuk, V., Tymchuk, I., Sliusar, V., Vronska, N., Marakhovska, A., & Sereda, A. (2022). Optimal parameters for reagent treatment of Hrybovychi landfill leachates at the pilot-scale treatment plant. Ecological Questions, 33(3), 89-97.
Google Scholar

Malovanyy, M., Zhuk, V., Tymchuk, I., Grechanik, R., Sliusar, V., Vronska, N., Marakhovska, A., & Sereda, A. (2023). Pilot-scale modelling of aerated lagoon technology for the treatment of landfill leachate: case study Hrybovychi plant. Environment and Natural Resources Journal, 21(1), 1-8. doi:10.32526/ennrj/21/202200103
CrossrefGoogle Scholar

Mansilla, M. C., Cybulski, L. E., Albanesi, D., & de Mendoza, D. (2004). Control of membrane lipid fluidity by molecular thermosensors. Journal of Bacteriology, 186(20), 6681-6688. doi:10.1128/jb.186.20.6681-6688.2004
CrossrefPubMedPMCGoogle Scholar

Markowicz, A., Płociniczak, T., & Piotrowska-Seget, Z. (2010). Response of bacteria to heavy metals measured as changes in FAME profiles. Polish Journal of Environmental Studies, 19(5), 957-965.
Google Scholar

Masip, L., Veeravalli, K., & Georgiou, G. (2006). The many faces of glutathione in bacteria. Antioxidants & Redox Signaling, 8(5-6), 753-762. doi:10.1089/ars.2006.8.753
CrossrefPubMedGoogle Scholar

Matallana-Surget, S., Cavicchioli, R., Fauconnier, C., Wattiez, R., Leroy, B., Joux, F., Raftery, M. J., & Lebaron, P. (2013). Shotgun redox proteomics: identification and quantitation of carbonylated proteins in the UVB-resistant marine bacterium, Photobacterium angustum S14. PLoS One, 8(7), e68112. doi:10.1371/journal.pone.0068112
CrossrefPubMedPMCGoogle Scholar

Miller, A.-F. (2011). Superoxide dismutases: ancient enzymes and new insights. FEBS Letters, 586(5), 585-595. do:10.1016/j.febslet.2011.10.048
CrossrefPubMedPMCGoogle Scholar

Mishra, A., Aja, E., & Fletcher, H. M. (2020). Role of superoxide reductase FA796 in oxidative stress resistance in Filifactor alocis. Scientific Reports, 10(1), 9178. doi:10.1038/s41598-020-65806-3
CrossrefPubMedPMCGoogle Scholar

Montanari, C., Sado Kamdem, S. L., Serrazanetti, D. I., Etoa, F.-X., & Guerzoni, M. E. (2010). Synthesis of cyclopropane fatty acids in Lactobacillus helveticus and Lactobacillus sanfranciscensis and their cellular fatty acids changes following short term acid and cold stresses. Food Microbiology, 27(4), 493-502. doi:10.1016/j.fm.2009.12.003
CrossrefPubMedGoogle Scholar

Murínová, S., & Dercová, K. (2014). Response mechanisms of bacterial degraders to environmental contaminants on the level of cell walls and cytoplasmic membrane. International Journal of Microbiology, 2014, 1-16. doi:10.1155/2014/873081
CrossrefPubMedPMCGoogle Scholar

Nicolson, G. L. (2014). The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1838(6), 1451-1466. doi:10.1016/j.bbamem.2013.10.019
CrossrefPubMedGoogle Scholar

Nyström, T. (2005). Role of oxidative carbonylation in protein quality control and senescence. The EMBO Journal, 24(7), 1311-1317. doi:10.1038/sj.emboj.7600599
CrossrefPubMedPMCGoogle Scholar

Orellana, R., Hixson, K. K., Murphy, S., Mester, T., Sharma, M. L., Lipton, M. S., & Lovley, D. R. (2014). Proteome of Geobacter sulfurreducens in the presence of U(VI). Microbiology, 160(12), 2607-2617. doi:10.1099/mic.0.081398-0
CrossrefPubMedGoogle Scholar

Poger, D., & Mark, A. E. (2015). A ring to rule them all: the effect of cyclopropane fatty acids on the fluidity of lipid bilayers. The Journal of Physical Chemistry B, 119(17), 5487-5495. doi:10.1021/acs.jpcb.5b00958
CrossrefPubMedGoogle Scholar

Repetto, M., Semprine, J., & Boveris, A. (2012). Lipid peroxidation: chemical mechanism, biological implications and analytical determination (pp. 3-30). In A. Catala (Ed.). Lipid Peroxidation. InTech. doi:10.5772/45943
CrossrefGoogle Scholar

Rontani, J.-F. (2012). Photo- and free radical-mediated oxidation of lipid components during the senescence of phototrophic organisms (pp. 3-31). In T. Nagata (Ed.). Senescence. IntechOpen. doi:10.5772/34002
CrossrefGoogle Scholar

Segin, T., Hnatush, S., Maslovska, O., & Vasyliv, O. (2018). Changes of fatty acid composition of Chlorobium limicola IMV K-8 cells under the influence of copper (II) sulfate. Mikrobiolohichnyi Zhurnal, 80(3), 40-52. doi:10.15407/microbiolj80.03.040
CrossrefGoogle Scholar

Sehin, T. B., Hnatush, S. O., Maslovska, O. D., Halushka, A. A., & Zaritska, Y. H. (2020). Biochemical indicators of green photosynthetic bacteria Chlorobium limicola response to Cu2+ action. The Ukrainian Biochemical Journal, 92(1), 103-112. doi:10.15407/ubj92.01.103
CrossrefGoogle Scholar

Seixas, A. F., Quendera, A. P., Sousa, J. P., Silva, A. F. Q., Arraiano, C. M., & Andrade, J. M. (2022). Bacterial response to oxidative stress and RNA oxidation. Frontiers in Genetics, 12, 821535. doi:10.3389/fgene.2021.821535
CrossrefPubMedPMCGoogle Scholar

Semchyshyn, H. M., & Lushchak, V. I. (2012). Interplay between oxidative and carbonyl stresses: molecular mechanisms, biological effects and therapeutic strategies of protection (pp. 15-46). In V. I. Lushchak & H. M. Semchyshyn (Eds.). Oxidative stress - Molecular mechanisms and biological effects. Rijeka, Croatia: InTech.
Google Scholar

Sheng, Y., Abreu, I. A., Cabelli, D. E., Maroney, M. J., Miller, A.-F., Teixeira, M., & Valentine, J. S. (2014). Superoxide dismutases and superoxide reductases. Chemical Reviews, 114(7), 3854-3918. doi:10.1021/cr4005296
CrossrefPubMedPMCGoogle Scholar

Shringarpure, R., Grune, T., Mehlhase, J., & Davies, K. J. A. (2003). Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. Journal of Biological Chemistry, 278(1), 311-318. doi:10.1074/jbc.m206279200
CrossrefPubMedGoogle Scholar

Si, M., Zhang, L., Chaudhry, M. T., Ding, W., Xu, Y., Chen, C., Akbar, A., Shen, X., & Liu, S.-J. (2015). Corynebacterium glutamicum methionine sulfoxide reductase A uses both mycoredoxin and thioredoxin for regeneration and oxidative stress resistance. Applied and Environmental Microbiology, 81(8), 2781-2796. doi:10.1128/aem.04221-14
CrossrefPubMedPMCGoogle Scholar

Singh, V., Singh, K., & Baum, K. (2018). The role of methionine sulfoxide reductases in oxidative stress tolerance and virulence of Staphylococcus aureus and other bacteria. Antioxidants, 7(10), 128. doi:10.3390/antiox7100128
CrossrefPubMedPMCGoogle Scholar

Stadtman, E. R., & Levine, R. L. (2003). Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids, 25(3-4), 207-218. doi:10.1007/s00726-003-0011-2
Crossref ● PubMed ● PMC ● Google Scholar
https://doi.org/10.1007/s00726-003-0011-2
PMid:14661084

Ulrich, K., & Jakob, U. (2019). The role of thiols in antioxidant systems. Free Radical Biology and Medicine, 140, 14-27. doi:10.1016/j.freeradbiomed.2019.05.035
CrossrefPubMedPMCGoogle Scholar
Yan, J., Ralston, M. M., Meng, X., Bongiovanni, K. D., Jones, A. L., Benndorf, R., Nelin, L. D., Joshua Frazier, W., Rogers, L. K., Smith, C. V., & Liu, Y. (2013). Glutathione reductase is essential for host defense against bacterial infection. Free Radical Biology and Medicine, 61, 320-332. doi:10.1016/j.freeradbiomed.2013.04.015
CrossrefPubMedPMCGoogle Scholar

Yuan, F., Yin, S., Xu, Y., Xiang, L., Wang, H., Li, Z., Fan, K., & Pan, G. (2021). The richness and diversity of catalases in bacteria. Frontiers in Microbiology, 12, 645477. doi:10.3389/fmicb.2021.645477
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Olha Maslovska, Solomiia Komplikevych, Svitlana Hnatush

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.