QUERCETIN AND HISTAMINE EFFECTS ON THE CONTENT OF SUPEROXIDE ANION AND ATP IN THE BLOOD PLASMA OF RATS

Nataliya Harasym, Victoria Grondzal, Nataliia Bodnarchuk, Alina Zyn, Svitlana Mandzynets, Anastasiia Heneha


DOI: http://dx.doi.org/10.30970/sbi.1702.710

Abstract


Background. Histamine is one of the versatile biogenic amines with multiple roles in the immune response and allergic disorders. Histamine and ATP can act as ligands in the body. In plasma, ATP is a potent vasodilator that stimulates the formation of NO and prostaglandins and, very importantly, can offset local sympathetic vasoconstriction. Adenosine triphosphate is released into plasma from erythrocytes and endothelial cells, and the plasma concentration increases in both the feed artery and the vein draining the contracting skeletal muscle. Taking this into account, it is important to study the effect of histamine in combination with quercetin, which inhibits the release of histamine from cellular depots, on the content of the superoxide anion and ATP in the blood plasma.
Materials and Methods. Nonlinear white male rats were used for the experimental studies. Quercetin solutions were added to whole blood to a final concentration of 0.1; 0.3; 0.5; 1; 3; 5 mM. In other experiments, histamine solution was added to the blood to final concentration of 0.01; 0.1; 1; 10 μM. In a series of experiments, histamine (0.01 and 10 μM) and quercetin (0.1; 0.5; 3; 5 mM) were added to the blood in various possible combinations. Blood plasma was used in each experimental group. The blood to which saline was added was used as control. The content of superoxide anion and adenosine triphosphate was measured in the selected samples.
Results and Discussion. Histamine, quercetin, as well as their combined action lead to the intensification of superoxide anion generation in the blood plasma of rats. Quercetin is known to be an antioxidant, but some of our studies have shown the opposite effect. Quercetin causes an increase in the ATP content in the blood plasma of rats. Histamine causes the same effect only at concentrations of 0.1 and 10 µM. Likewise, the combined administration of histamine and quercetin into the blood increased the ATP content. The results of ANOVA test prove that both histamine and quercetin have the same effect on the release of superoxide anion and ATP from blood cells into plasma. Their combined action only strengthens the effect of releasing the studied products.
Conclusion. Quercetin, histamine and their combined action cause an increase in the generation of superoxide anion and ATP in the blood plasma of rats.


Keywords


quercetin, histamine, superoxide anion, ATP

Full Text:

PDF

References


Arora, A., Byrem, T. M., Nair, M. G., & Strasburg, G. M. (2000). Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. Archives of Biochemistry and Biophysics, 373(1), 102-109. doi:10.1006/abbi.1999.1525
CrossrefPubMedGoogle Scholar

Bishko, O. I. (2012). Histamine and histamine receptor blockers. Structural and functional aspects. Bulletin of Lviv University. Biological Series, 60, 40-57. (In Ukrainian)
Google Scholar

Bishko, O. I., Harasym, N. P., & Sanahurs'kyj, D. I. (2014). Antioxidant defense system state in blood plasma and heart muscle of rats under the influence of histamine and sodium hypoclorite. The Ukrainian Biochemical Journal, 86(6), 56-65. doi:10.15407/ubj86.06.056 (In Ukrainian)
CrossrefPubMedGoogle Scholar

Brosnan, M. E., & Brosnan, J. T. (2020). Histidine metabolism and function. The Journal of Nutrition, 150, 2570S-2575S. doi:10.1093/jn/nxaa079
CrossrefPubMedPMCGoogle Scholar

Chen, X., Egly, C., Riley, A., Li, W., Tewson, P., Hughes, T., Quinn, A., & Obukhov, A. (2014). PKC-dependent phosphorylation of the H1 histamine receptor modulates TRPC6 activity. Cells, 3(2), 247-257. doi:10.3390/cells3020247
CrossrefPubMedPMCGoogle Scholar

Číž, M., & Lojek, A. (2013). Modulation of neutrophil oxidative burst via histamine receptors. British Journal of Pharmacology, 170(1), 17-22. doi:10.1111/bph.12107
CrossrefPubMedPMCGoogle Scholar

Denisenko, S. V., & Kostenko, V. A. (2002). Changes in the production of reactive oxygen species in the testes of white rats under conditions of chronic intoxication with sodium nitrate. Modern Problems Toxicology, 4, 44-46. (In Russian)
Google Scholar

Di Petrillo, A., Orrù, G., Fais, A., & Fantini, M. C. (2022). Quercetin and its derivates as antiviral potentials: a comprehensive review. Phytotherapy Research, 36(1), 266-278. doi:10.1002/ptr.7309
CrossrefPubMedPMCGoogle Scholar

Ferrali, M., Signorini, C., Caciotti, B., Sugherini, L., Ciccoli, L., Giachetti, D., & Comporti, M. (1997). Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity. FEBS Letters, 416(2), 123-129. doi:10.1016/s0014-5793(97)01182-4
CrossrefPubMedGoogle Scholar

Griffiths, K., Aggarwal, B., Singh, R., Buttar, H., Wilson, D., & De Meester, F. (2016). Food antioxidants and their anti-inflammatory properties: a potential role in cardiovascular diseases and cancer prevention. Diseases, 4(4), 28. doi:10.3390/diseases4030028
CrossrefPubMedPMCGoogle Scholar

Harasym, N., Verbeschuk, M., Bodnarchuk, N., Galan, M., & Sanagursky, D. (2020). Intensity of free-radical processes in plasma of rat blood due to histamine and quercetin. Visnyk of Lviv University. Biological Series, 82, 36-52. doi:10.30970/vlubs.2020.82.03 (In Ukrainian)
CrossrefGoogle Scholar

Harasym, N., Baran, H., Bodnarchuk, N., Otchych, V., Galan, M., Zyn, A., & Sanagursky, D. (2021). State of antioxidant system of rat blood plasma at the action of quartzetin and histamine in in vitro experiments. Visnyk of the Lviv University. Series Biology, 84, 40-53. doi:10.30970/vlubs.2021.84 (In Ukrainian)
CrossrefGoogle Scholar

Hodnick, W. F., Kung, F. S., Roettger, W. J., Bohmont, C. W., & Pardini, R. S. (1986). Inhibition of mitochondrial respiration and production of toxic oxygen radicals by flavonoids. A structure-activity study. Biochemical Pharmacology, 35(14), 2345-2357. doi:10.1016/0006-2952(86)90461-2
CrossrefPubMedGoogle Scholar

Jafarinia, M., Sadat Hosseini, M., Kasiri, N., Fazel, N., Fathi, F., Ganjalikhani Hakemi, M., & Eskandari, N. (2020). Quercetin with the potential effect on allergic diseases. Allergy, Asthma & Clinical Immunology, 16(1), 36. doi:10.1186/s13223-020-00434-0
CrossrefPubMedPMCGoogle Scholar

Kovalevska, I. V. (2014). Quercetin physical-chemical characteristics' definition. Current Issues in Pharmacy and Medicine: Science and Practice, 1(14), 9-11. (In Ukrainian)
Google Scholar

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275. doi:10.1016/S0021-9258(19)52451-6
CrossrefPubMedGoogle Scholar

Melenevska, N. V., Miroshnichenko, M. S., Phylippov, I. B., Kholodna, L. S., & Shuba, M. F. (2007). Transfer factor of immune reactivityto diphtheria-tetanus anatoxin modulates the action of neurotransmittersin intestinal smooth muscle. Fiziolohichnyi zhurnal, 53(1), 24-32. (In Ukrainian)
Google Scholar

Mlcek, J., Jurikova, T., Skrovankova, S., & Sochor, J. (2016). Quercetin and Its anti-allergic immune response. Molecules, 21(5), 623. doi:10.3390/molecules21050623
CrossrefPubMedPMCGoogle Scholar

Mortensen, S. P., Thaning, P., Nyberg, M., Saltin, B., & Hellsten, Y. (2011). Local release of ATP into the arterial inflow and venous drainage of human skeletal muscle: insight from ATP determination with the intravascular microdialysis technique. The Journal of Physiology, 589(7), 1847-1857. doi:10.1113/jphysiol.2010.203034
CrossrefPubMedPMCGoogle Scholar

Mortensen, S. P., & Saltin, B. (2014). Regulation of the skeletal muscle blood flow in humans. Experimental Physiology, 99(12), 1552-1558. doi:10.1113/expphysiol.2014.081620
CrossrefPubMedGoogle Scholar

Nazar, W., Plata-Nazar, K., Sznurkowska, K., & Szlagatys-Sidorkiewicz, A. (2021). Histamine intolerance in children: a narrative review. Nutrients, 13(5), 1486. doi:10.3390/nu13051486
CrossrefPubMedPMCGoogle Scholar

Phillips, T. R., Yang, W. C., & Schultz, R. D. (1987). In vitro effects of prostaglandin E1, prostaglandin E2, indomethacin, histamine, and tuftsin on chemiluminescence response of bovine polymorphonuclear leukocytes. Veterinary Immunology and Immunopathology, 14(3), 233-244. doi:10.1016/0165-2427(87)90092-4
CrossrefPubMedGoogle Scholar

Radchenko, O. M. (2017). Histamin yak zhyttievo vazhlyvyi universalnyi rehuliator [Histamine as a vital universal regulator]. Rational Pharmacotherapy, 4(45), 5-9. (In Ukrainian)
Google Scholar

Ruiz, L. M., Salazar, C., Jensen, E., Ruiz, P. A., Tiznado, W., Quintanilla, R. A., Barreto, M., & Elorza, A. A. (2015). Quercetin affects erythropoiesis and heart mitochondrial function in mice. Oxidative Medicine and Cellular Longevity, 2015, 1-12. doi:10.1155/2015/836301
CrossrefPubMedPMCGoogle Scholar

Slesarchuk, V. Yu. (2014). The neuroprotective properties of quercetin containing preparations. Pharmacology and Drug Toxicology, 6(41), 11-18. (In Russian)
Google Scholar

Shalai, Ya. R., Popovych, M. V., Mandzynets, S. M., Hreniukh, V. P., Finiuk, N. S., & Babsky, A. M. (2020). Prooxidant and antioxidant processes in lymphoma cells under the action of pyrazolopyrimidine derivative. Studia Biologica, 14(4), 15-22. doi:10.30970/sbi.1404.635
CrossrefGoogle Scholar

Sklyarov, O. (2017). Histamine in the stomach: past, present and future. Proceedings of the Shevchenko Scientific Society. Medical Sciences, 47(2), 28-33. doi:10.25040/ntsh2016.02.03 (In Ukrainian)
CrossrefGoogle Scholar

Sluyter, R. (2015). P2X and P2Y receptor signaling in red blood cells. Frontiers in Molecular Biosciences, 2, 60. doi:10.3389/fmolb.2015.00060
CrossrefPubMedPMCGoogle Scholar

Suzuki, Y., Yamamura, H., Imaizumi, Y., Clark, R. B., & Giles, W. R. (2020). K+ and Ca2+ channels regulate Ca2+ signaling in chondrocytes: an illustrated review. Cells, 9(7), 1577. doi:10.3390/cells9071577
CrossrefPubMedPMCGoogle Scholar

Ushakova, G. O., & Dyomshyna, O. O. (2015). Laboratornyi praktykum z navchalnoi dystsypliny "Biokhimiia" [Laboratory practicum for the academic discipline "Biochemistry"]. Dnipropetrovsk: Arbuz. Retrieved from https://www.biochemistry-dnu.dp.ua/wp-content/downloads/metodichki/lab_practicum_biochem.pdf (In Ukrainian)

Wang, L., Olivecrona, G., Götberg, M., Olsson, M. L., Winzell, M. S., & Erlinge, D. (2005). ADP acting on P2Y13 receptors is a negative feedback pathway for ATP release from human red blood cells. Circulation Research, 96(2), 189-196. doi:10.1161/01.res.0000153670.07559.e4
CrossrefPubMedGoogle Scholar

Xu, D., Hu, M.-J., Wang, Y.-Q., & Cui, Y.-L. (2019). Antioxidant activities of auercetin and Its complexes for medicinal application. Molecules, 24(6), 1123. doi:10.3390/molecules24061123
CrossrefPubMedPMCGoogle Scholar

Zhao, Y., Zhang, X., Jin, H., Chen, L., Ji, J., & Zhang, Z. (2022). Histamine intolerance - a kind of pseudoallergic reaction. Biomolecules, 12(3), 454. doi:10.3390/biom12030454
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Nataliya Harasym, Victoria Grondzal, Nataliia Bodnarchuk, Alina Zyn, Svitlana Mandzynets, Anastasiia Heneha

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.