STRESS-PROTECTIVE AND REGULATORY PROPERTIES OF SALICYLIC ACID AND PROSPECTS OF ITS USE IN PLANT PRODUCTION
DOI: http://dx.doi.org/10.30970/sbi.1702.718
Abstract
Salicylic acid (SA), as a secondary phenolic metabolite with phytohormonal activity, is an important component of the plant defense system against biotic and abiotic stresses. The scale of industrial synthesis of SA in the world is constantly growing, it is used as an intermediate for the synthesis of drugs and dyes, it is also used in cosmetology, food industry, plant biotechnology, etc. Recently, it has been considered as a promising growth-regulating agent in crop production for decreasing harmful effects of biotic and abiotic stresses in plants. Over the past two decades, numerous data have been published concerning the metabolic pathways of SA synthesis and its signaling in plant immunity. It regulates and affects various stages of plant ontogenesis and metabolism: seed germination, flowering, stomatal movements, pigment synthesis, photosynthesis and respiration, ethylene biosynthesis, thermoregulation, the activity of antioxidant enzymes, nutrient absorption, membrane integrity and functioning, nodulation in legumes, synthesis of secondary metabolites, general growth and development of plants. Numerous studies have confirmed that endogenous SA and/or its derivatives are involved in stress responses to heavy metals (HMs), hyper- and hypothermia, salinity, water deficiency, and, primarily, pathogenic infections. In parallel with fundamental studies of regulatory functions of SA and/or its derivatives, new ways of their exogenous application are constantly discovered. The use of low concentrations of exogenous SA (0.1–0.5 mM) for seed priming or foliar treatment is reported as an economically viable alternative approach for increasing plant tolerance from both economic and environmental points of view. Exogenous SA leads to an increase in endogenous SA levels that induces plant adaptive responses by changing phytohormonal status, increased synthesis of a number of secondary metabolites (alkaloids, cyanogenic glycosides, phenolics, terpenes), by increasing activity of antioxidant enzymes. One of the main advantages of using SA in crop production is the ability to reduce the dosage of pesticides and fertilizers that are potentially harmful to the environment and human health. It is also reported that the use of SA in some cases may lead to negative results – growth retardation, sterility, and yield decrease; the causes of this phenomenon are actively investigated. Further studies are necessary to clarify the mechanisms of exogenic SA action and its use on various crops in different growing conditions. This review aims to analyze the recent data on SA, crop production, and biotechnology areas where it is possible to effectively apply the SA and/or its derivatives.
Keywords
Full Text:
PDF (Українська)References
Ababaf, M., Omidi, H., & Bakhshandeh, A. (2021). Changes in antioxidant enzymes activities and alkaloid amount of Catharanthus roseus in response to plant growth regulators under drought condition. Industrial Crops and Products, 167, 113505. doi:10.1016/j.indcrop.2021.113505 Crossref ● Google Scholar | ||||
| ||||
Abbaszadeh, B., Layeghhaghighi, M., Azimi, R., & Hadi, N. (2020). Improving water use efficiency through drought stress and using salicylic acid for proper production of Rosmarinus officinalis L. Industrial Crops and Products, 144, 111893. doi:10.1016/j.indcrop.2019.111893 Crossref ● Google Scholar | ||||
| ||||
Ahmad, A., Aslam, Z., Naz, M., Hussain, S., Javed, T., Aslam, S., Raza, A., Ali, H. M., Siddiqui, M. H., Salem, M. Z. M., Hano, C., Shabbir, R., Ahmar, S., Saeed, T., & Jamal, M. A. (2021). Exogenous salicylic acid-induced drought stress tolerance in wheat (Triticum aestivum L.) grown under hydroponic culture. PLoS One, 16(12), e0260556. doi:10.1371/journal.pone.0260556 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Aires, E. S., Ferraz, A. K. L., Carvalho, B. L., Teixeira, F. P., Putti, F. F., de Souza, E. P., Rodrigues,J. D., & Ono, E. O. (2022). Foliar application of salicylic acid to mitigate water stress in tomato. Plants, 11(13), 1775. doi:10.3390/plants11131775 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Alcalde, M. A., Perez-Matas, E., Escrich, A., Cusido, R. M., Palazon, J., & Bonfill, M. (2022). Biotic elicitors in adventitious and hairy root cultures: a review from 2010 to 2022. Molecules, 27(16), 5253. doi:10.3390/molecules27165253 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Abdulaziz S. Alhaithloul, H., M. Abu-Elsaoud, A., & H. Soliman, M. (2021). Abiotic stress tolerance in crop plants: role of phytohormones. Abiotic Stress in Plants. doi:10.5772/intechopen.93710 Crossref ● Google Scholar | ||||
| ||||
Alamri, S. A., Siddiqui, M. H., Al-Khaishany, M. Y., Nasir Khan, M., Ali, H. M., Alaraidh, I. A., Alsahli, A. A., Al-Rabiah, H., & Mateen, M. (2018). Ascorbic acid improves the tolerance of wheat plants to lead toxicity. Journal of Plant Interactions, 13(1), 409-419. doi:10.1080/17429145.2018.1491067 Crossref ● Google Scholar | ||||
| ||||
Ali, S., Ganai, B. A., Kamili, A. N., Bhat, A. A., Mir, Z. A., Bhat, J. A., Tyagi, A., Islam, S. T., Mushtaq, M., Yadav, P., Rawat, S., & Grover, A. (2018). Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiological Research, 212-213, 29-37. doi:10.1016/j.micres.2018.04.008 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Ali, B. (2021). Salicylic acid: an efficient elicitor of secondary metabolite production in plants. Biocatalysis and Agricultural Biotechnology, 31, 101884. doi:10.1016/j.bcab.2020.101884 Crossref ● Google Scholar | ||||
| ||||
Alotaibi, M., El-Hendawy, S., Mohammed, N., Alsamin, B., & Refay, Y. (2023). Appropriate application methods for salicylic acid and plant nutrients combinations to promote morpho-physiological traits, production, and water use efficiency of wheat under normal and deficit irrigation in an arid climate. Plants, 12(6), 1368. doi:10.3390/plants12061368 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Ansari, O., & Sharif-Zadeh, F. (2012). Does gibberelic acid (GA), salicylic acid (SA) and ascorbic acid (ASc) improve Mountain Rye (Secale montanum) seeds germination and seedlings growth under cold stress. The International Research Journal of Applied and Basic Sciences, 3, 1651-1657. Google Scholar | ||||
| ||||
Ameye, M., Audenaert, K., De Zutter, N., Steppe, K., Van Meulebroek, L., Vanhaecke, L., De Vleesschauwer, D., Haesaert, G., & Smagghe, G. (2015). Priming of wheat with the green leaf volatile Z-3-hexenyl acetate enhances defense against Fusarium graminearum but boosts deoxynivalenol production. Plant Physiology, 167(4), 1671-1684. doi:10.1104/pp.15.00107 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Afzal, I., Akram, M. W., Rehman, H. U., Rashid, S., & Basra, S. M. A. (2020). Moringa leaf and sorghum water extracts and salicylic acid to alleviate impacts of heat stress in wheat. South African Journal of Botany, 129, 169-174. doi:10.1016/j.sajb.2019.04.009 Crossref ● Google Scholar | ||||
| ||||
Averesch, N. J. H., & Krömer, J. O. (2018). Metabolic engineering of the shikimate pathway for production of aromatics and derived compounds - present and future strain construction strategies. Frontiers in Bioengineering and Biotechnology, 6, 32. doi:10.3389/fbioe.2018.00032 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Azmat, A., Yasmin, H., Hassan, M. N., Nosheen, A., Naz, R., Sajjad, M., Ilyas, N., & Akhtar, M. N. (2020). Co-application of bio-fertilizer and salicylic acid improves growth, photosynthetic pigments and stress tolerance in wheat under drought stress. PeerJ, 8, e9960. doi:10.7717/peerj.9960 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Ballaré, C. L. (2014). Light regulation of plant defense. Annual Review of Plant Biology, 65(1), 335-363. doi:10.1146/annurev-arplant-050213-040145 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Belkadhi, A., Djebali, W., Hédiji, H., & Chaïbi, W. (2016). Cadmium stress tolerance in plants: a key role of endogenous and exogenous salicylic acid. Plant Science Today, 3(1), 48-54. doi:10.14719/pst.2016.3.1.181 Crossref ● Google Scholar | ||||
| ||||
Bernacki, M. J., Czarnocka, W., Rusaczonek, A., Witoń, D., Kęska, S., Czyż, J., Szechyńska-Hebda, M., & Karpiński, S. (2019). LSD1-, EDS1- and PAD4-dependent conditional correlation among salicylic acid, hydrogen peroxide, water use efficiency and seed yield in Arabidopsis thaliana. Physiologia Plantarum, 165(2), 369-382. doi:10.1111/ppl.12863 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Bernacki, M. J., Rusaczonek, A., Czarnocka, W., & Karpiński, S. (2021). Salicylic acid accumulation controlled by LSD1 is essential in triggering cell death in response to abiotic stress. Cells, 10(4), 962. doi:10.3390/cells10040962 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Boddu, J., Cho, S., Kruger, W. M., & Muehlbauer, G. J. (2006). Transcriptome analysis of the barley-Fusarium graminearum interaction. Molecular Plant-Microbe Interactions, 19(4), 407-417. doi:10.1094/mpmi-19-0407 | ||||
| ||||
Brauer, E. K., Rocheleau, H., Balcerzak, M., Pan, Y., Fauteux, F., Liu, Z., Wang, L., Zheng, W., & Ouellet, T. (2019). Transcriptional and hormonal profiling of Fusarium graminearum-infected wheat reveals an association between auxin and susceptibility. Physiological and Molecular Plant Pathology, 107, 33-39. doi:10.1016/j.pmpp.2019.04.006 Crossref ● Google Scholar | ||||
| ||||
Brown, N. A., Evans, J., Mead, A., & Hammond-Kosack, K. E. (2017). A spatial temporal analysis of the Fusarium graminearum transcriptome during symptomless and symptomatic wheat infection. Molecular Plant Pathology, 18(9), 1295-1312. doi:10.1111/mpp.12564 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Buhrow, L. M., Liu, Z., Cram, D., Sharma, T., Foroud, N. A., Pan, Y., & Loewen, M. C. (2021). Wheat transcriptome profiling reveals abscisic and gibberellic acid treatments regulate early-stage phytohormone defense signaling, cell wall fortification, and metabolic switches following Fusarium graminearum-challenge. BMC Genomics, 22(1). doi:10.1186/s12864-021-08069-0 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Chan, C. (2022). Progress in salicylic acid-dependent signaling for growth - defense trade-off. Cells, 11(19), 2985. doi:10.3390/cells11192985 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Chen, Z., Iyer, S., Caplan, A., Klessig, D. F., & Fan, B. (1997). Differential accumulation of salicylic acid and salicylic acid-sensitive catalase in different rice tissues. Plant Physiology, 114(1), 193-201. doi:10.1104/pp.114.1.193 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Chen, Z., Zheng, Z., Huang, J., Lai, Z., & Fan, B. (2009). Biosynthesis of salicylic acid in plants. Plant Signaling & Behavior, 4(6), 493-496. doi:10.4161/psb.4.6.8392 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Cheng, F., Lu, J., Gao, M., Shi, K., Kong, Q., Huang, Y., & Bie, Z. (2016). Redox signaling and CBF-responsive pathway are involved in salicylic acid-improved photosynthesis and growth under chilling stress in watermelon. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01519 | ||||
| ||||
Cleland, C. F., & Ajami, A. (1974). Identification of the flower-inducing factor isolated from aphid honeydew as being salicylic acid. Plant Physiology, 54(6), 904-906. doi:10.1104/pp.54.6.904 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Conrath, U., Beckers, G. J. M., Langenbach, C. J. G., & Jaskiewicz, M. R. (2015). Priming for enhanced defense. Annual Review of Phytopathology, 53(1), 97-119. doi:10.1146/annurev-phyto-080614-120132 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Czarnocka, W., Van Der Kelen, K., Willems, P., Szechyńska-Hebda, M., Shahnejat-Bushehri, S., Balazadeh, S., Rusaczonek, A., Mueller-Roeber, B., Van Breusegem, F., & Karpiński, S. (2017). The dual role of Lesion Simulating Disease 1 as a condition-dependent scaffold protein and transcription regulator. Plant, Cell & Environment, 40(11), 2644-2662. doi:10.1111/pce.12994 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Darvizheh, H., Zahedi, M., Abbaszadeh, B., & Razmjoo, J. (2019). Changes in some antioxidant enzymes and physiological indices of purple coneflower (Echinacea purpurea L.) in response to water deficit and foliar application of salicylic acid and spermine under field condition. Scientia Horticulturae, 247, 390-399. doi:10.1016/j.scienta.2018.12.037 Crossref ● Google Scholar | ||||
| ||||
Dat, J. F., Foyer, C. H., & Scott, I. M. (1998a). Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiology, 118(4), 1455-1461. doi:10.1104/pp.118.4.1455 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Dat, J. F., Lopez-Delgado, H., Foyer, C. H., & Scott, I. M. (1998b). Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiology, 116(4), 1351-1357. doi:10.1104/pp.116.4.1351 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Dawood, M. F. A., Zaid, A., & Latef, A. A. H. A. (2021). Salicylic acid spraying-induced resilience strategies against the damaging impacts of drought and/or salinity stress in two varieties of Vicia faba L. seedlings. Journal of Plant Growth Regulation, 41(5), 1919-1942. doi:10.1007/s00344-021-10381-8 Crossref ● Google Scholar | ||||
| ||||
Deenamo, N., Kuyyogsuy, A., Khompatara, K., Chanwun, T., Ekchaweng, K., & Churngchow, N. (2018). Salicylic acid induces resistance in rubber tree against Phytophthora palmivora. International Journal of Molecular Sciences, 19(7), 1883. doi:10.3390/ijms19071883 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Dempsey, D. A., & Klessig, D. F. (2017). How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans? BMC Biology, 15(1), 23. doi:10.1186/s12915-017-0364-8 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Dempsey, D. A., Vlot, A. C., Wildermuth, M. C., & Klessig, D. F. (2011). Salicylic acid biosynthesis and metabolism. The Arabidopsis Book, 9, e0156. doi:10.1199/tab.0156 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Dinler, B., Demir, E., & Kompe, Y. (2014). Regulation of auxin, abscisic acid and salicylic acid levels by ascorbate application under heat stress in sensitive and tolerant maize leaves. Acta Biologica Hungarica, 65(4), 469-480. doi:10.1556/abiol.65.2014.4.10 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Ding, Y., Fan, B., Zhu, C., & Chen, Z. (2023). Shared and related molecular targets and actions of salicylic acid in plants and humans. Cells, 12(2), 219. doi:10.3390/cells12020219 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Erb, M., Meldau, S., & Howe, G. A. (2012). Role of phytohormones in insect-specific plant reactions. Trends in Plant Science, 17(5), 250-259. doi:10.1016/j.tplants.2012.01.003 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Esmailzade, M., Soleimani, M. J., & Rouhani, H. (2008). Exogenous applications of salicylic acid for inducing systemic acquired resistance against tomato stem canker disease. Journal of Biological Sciences, 8(6), 1039-1044. doi:10.3923/jbs.2008.1039.1044 Crossref ● Google Scholar | ||||
| ||||
Estaji, A., & Niknam, F. (2020). Foliar salicylic acid spraying effect' on growth, seed oil content, and physiology of drought-stressed Silybum marianum L. plant. Agricultural Water Management, 234, 106116. doi:10.1016/j.agwat.2020.106116 Crossref ● Google Scholar | ||||
| ||||
Faraz, A., Faizan, M., Sami, F., Siddiqui, H., & Hayat, S. (2019). Supplementation of salicylic acid and citric acid for alleviation of cadmium toxicity to Brassica juncea. Journal of Plant Growth Regulation, 39(2), 641-655. doi:10.1007/s00344-019-10007-0 Crossref ● Google Scholar | ||||
| ||||
Filgueiras, C. C., Martins, A. D., Pereira, R. V., & Willett, D. S. (2019). The ecology of salicylic acid signaling: primary, secondary and tertiary effects with applications in agriculture. International Journal of Molecular Sciences, 20(23), 5851. doi:10.3390/ijms20235851 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Fu, Z. Q., & Dong, X. (2013). Systemic acquired resistance: turning local infection into global defense. Annual Review of Plant Biology, 64(1), 839-863. doi:10.1146/annurev-arplant-042811-105606 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Fu, Z. Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., Mohan, R., Spoel, S. H., Tada, Y., Zheng, N., & Dong, X. (2012). NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature, 486 (7402), 228-232. doi:10.1038/nature11162 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Gadzovaska, S., Maury, S., Delaunay, A., Spasenoski, M., Hagege, D., Courtois, D., Joseph, C. (2013). The influence of salicylic acid elicitation on shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell Tissue Organ Culture, 113, 25-39. doi:10.1007/s11240-012-0248-0 Crossref ● Google Scholar | ||||
| ||||
Galván-Camacho, L. A., Feregrino-Pérez, A. A., De Moure-Flores, F. J., Morales-Hernández, L. A., Campos-Guillen, J., Rodríguez-Morales, J. A., Flores-Macias, A., Quezada-Morales, D. L., Zavala-Gómez, C. E., & Ramos-López, M. A. (2022). Assessment of salicylic acid in castor oil content increase in emissions of its biodiesel blends. Energies, 15(24), 9463. doi:10.3390/en15249463 Crossref ● Google Scholar | ||||
| ||||
Gao, Q.M., Zhu, S., Kachroo, P., & Kachroo, A. (2015). Signal regulators of systemic acquired resistance. Frontiers in Plant Science, 06. doi:10.3389/fpls.2015.00228 Crossref ● Google Scholar | ||||
| ||||
García-Pastor, M. E., Zapata, P. J., Castillo, S., Martínez-Romero, D., Guillén, F., Valero, D., & Serrano, M. (2020). The effects of salicylic acid and its derivatives on increasing pomegranate fruit quality and bioactive compounds at harvest and during storage. Frontiers in Plant Science, 11. doi:10.3389/fpls.2020.00668 | ||||
| ||||
Gorni, P. H., & Pacheco, A. C. (2016). Growth promotion and elicitor activity of salicylic acid in Achillea millefolium L. African Journal of Biotechnology, 15(16), 657-665. doi:10.5897/ajb2016.15320 Crossref ● Google Scholar | ||||
| ||||
Gozzo, F., & Faoro, F. (2013). Systemic acquired resistance (50 years after discovery): moving from the lab to the field. Journal of Agricultural and Food Chemistry, 61(51), 12473-12491. doi:10.1021/jf404156x | ||||
| ||||
Grobelak, A., & Hiller, J. (2017). Bacterial siderophores promote plant growth: screening of catechol and hydroxamate siderophores. International Journal of Phytoremediation, 19(9), 825-833. doi:10.1080/15226514.2017.1290581 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Gu, X. Y., Liu, Y., & Liu, L. J. (2020). Progress on the biosynthesis and signal transduction of phytohormone salicylic acid. Yi chuan = Hereditas, 42(9), 858-869. doi:10.16288/j.yczz.20-173 | ||||
| ||||
Guichard, B., Wu, H., La Camera, S., Hu, R., Marivingt-Mounir, C., & Chollet, J. (2022). Synthesis, phloem mobility and induced plant resistance of synthetic salicylic acid amino acid or glucose conjugates. Pest Management Science, 78(11), 4913-4928. doi:10.1002/ps.7112 | ||||
| ||||
Guo, B., Liu, C., Liang, Y., Li, N., & Fu, Q. (2019). Salicylic acid signals plant defence against cadmium toxicity. International Journal of Molecular Sciences, 20(12), 2960. doi:10.3390/ijms20122960 | ||||
| ||||
Gupta, A., Hisano, H., Hojo, Y., Matsuura, T., Ikeda, Y., Mori, I. C., & Senthil-Kumar, M. (2017). Global profiling of phytohormone dynamics during combined drought and pathogen stress in Arabidopsis thaliana reveals ABA and JA as major regulators. Scientific Reports, 7(1). doi:10.1038/s41598-017-03907-2 | ||||
| ||||
Hafez, E. M., Kheir, A. M. S., Badawy, S. A., Rashwan, E., Farig, M., & Osman, H. S. (2020). Differences in physiological and biochemical attributes of wheat in response to single and combined salicylic acid and biochar subjected to limited water irrigation in saline sodic soil. Plants, 9(10), 1346. doi:10.3390/plants9101346 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Haidoulis, J. F., & Nicholson, P. (2020). Different effects of phytohormones on Fusarium head blight and Fusarium root rot resistance in Brachypodium distachyon. Journal of Plant Interactions, 15(1), 335-344. doi:10.1101/2020.06.26.173385 Crossref ● Google Scholar | ||||
| ||||
Haider, S.A., Ahmad, S., Sattar Khan, A., Anjum, M. A., Nasir, M., & Naz, S. (2020). Effects of salicylic acid on postharvest fruit quality of "Kinnow" mandarin under cold storage. Scientia Horticulturae, 259, 108843. doi:10.1016/j.scienta.2019.108843 Crossref ● Google Scholar | ||||
| ||||
Hao, G., Naumann, T. A., Vaughan, M. M., McCormick, S., Usgaard, T., Kelly, A., & Ward, T. J. (2019). Characterization of a Fusarium graminearum salicylate hydroxylase. Frontiers in Microbiology, 9, 3219. doi:10.3389/fmicb.2018.03219 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Hasanuzzaman, M., Matin, Md. A., Fardus, J., Hasanuzzaman, Md., Hossain, Md. S., & Parvin, K. (2019). Foliar application of salicylic acid improves growth and yield attributes by upregulating the antioxidant defense system in Brassica campestris plants grown in lead-amended soils. Acta Agrobotanica, 72(2). doi:10.5586/aa.1765 Crossref ● Google Scholar | ||||
| ||||
Heil, M. (2002). Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends in Plant Science, 7(2), 61-67. doi:10.1016/s1360-1385(01)02186-0 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Horváth, E., Csiszár, J., Gallé, Á., Poór, P., Szepesi, Á., & Tari, I. (2015). Hardening with salicylic acid induces concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress. Journal of Plant Physiology, 183, 54-63. doi:10.1016/j.jplph.2015.05.010 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Huang, W., Wang, Y., Li, X., & Zhang, Y. (2020). Biosynthesis and regulation of salicylic acid and N-hydroxypipecolic acid in plant immunity. Molecular Plant, 13(1), 31-41. doi:10.1016/j.molp.2019.12.008 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Hubrich, F., Müller, M., & Andexer, J. N. (2021). Chorismate- and isochorismate converting enzymes: versatile catalysts acting on an important metabolic node. Chemical Communications, 57(20), 2441-2463. doi:10.1039/d0cc08078k Crossref ● PubMed ● Google Scholar | ||||
| ||||
Islam, F., Yasmeen, T., Arif, M. S., Riaz, M., Shahzad, S. M., Imran, Q., & Ali, I. (2016). Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants. Plant Physiology and Biochemistry, 108, 456-467. doi:10.1016/j.plaphy.2016.08.014 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Jahan, S. M., Wang, Y., Shu, S., Zhong, M., Chen, Z., Wu, J., Sun, J., & Guo, S. (2019). Exogenous salicylic acid increases the heat tolerance in Tomato (Solanum lycopersicum L.) by enhancing photosynthesis efficiency and improving antioxidant defense system through scavenging of reactive oxygen species. Scientia Horticulturae, 247, 421-429. doi:10.1016/j.scienta.2018.12.047 Crossref ● Google Scholar | ||||
| ||||
Jansen, C., von Wettstein, D., Schäfer, W., Kogel, K.-H., Felk, A., & Maier, F. J. (2005). Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proceedings of the National Academy of Sciences, 102(46), 16892-16897. doi:10.1073/pnas.0508467102 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kang, H.-M., & Saltveit, M. E. (2002). Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiologia Plantarum, 115(4), 571-576. doi:10.1034/j.1399-3054.2002.1150411.x Crossref ● PubMed ● Google Scholar | ||||
| ||||
Kavulych, Y., Kobyletska, M., & Terek, O. (2019). Investigation of salicylic acid-induced change on flavonoids production under cadmium toxicity in buckwheat (Fagopyrum esculentum Moench) plants. Eureka: Life Sciences, 5, 13-18. doi:10.21303/2504-5695.2019.00986 Crossref ● Google Scholar | ||||
| ||||
Khalvandi, M., Siosemardeh, A., Roohi, E., & Keramati, S. (2021). Salicylic acid alleviated the effect of drought stress on photosynthetic characteristics and leaf protein pattern in winter wheat. Heliyon, 7(1), e05908. doi:10.1016/j.heliyon.2021.e05908 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Khan, M. I. R., Iqbal, N., Masood, A., Per, T. S., & Khan, N. A. (2013). Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signaling & Behavior, 8(11), e26374. doi:10.4161/psb.26374 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A., & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00462 Crossref ● Google Scholar | ||||
| ||||
Khan, M. I. R., Poor, P., & Janda, T. (2022). Salicylic acid: a versatile signaling molecule in plants. Journal of Plant Growth Regulation, 41(5), 1887-1890. doi:10.1007/s00344-022-10692-4 Crossref ● Google Scholar | ||||
| ||||
Kim, J.-H., Han, J.-E., Murthy, H. N., Kim, J.-Y., Kim, M.-J., Jeong, T.-K., & Park, S.-Y. (2023). Production of secondary metabolites from cell cultures of Sageretia thea (Osbeck) M. C. Johnst. using balloon-type bubble bioreactors. Plants, 12(6), 1390. doi:10.3390/plants12061390 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kjærbølling, I., Mortensen, U. H., Vesth, T., & Andersen, M. R. (2019). Strategies to establish the link between biosynthetic gene clusters and secondary metabolites. Fungal Genetics and Biology, 130, 107-121. doi:10.1016/j.fgb.2019.06.001 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Klessig, D. F., Tian, M., & Choi, H. W. (2016). Multiple targets of salicylic acid and its derivatives in plants and animals. Frontiers in Immunology, 7, 206. doi:10.3389/fimmu.2016.00206 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Klessig, D. F., Choi, H. W., & Dempsey, D. A. (2018). Systemic acquired resistance and salicylic acid: past, present, and future. Molecular Plant-Microbe Interactions, 31(9), 871-888. doi:10.1094/mpmi-03-18-0067-cr Crossref ● PubMed ● Google Scholar | ||||
| ||||
Kobyletska, M., Kavulych, Y., Romanyuk, N., Korchynska, O., & Terek, O. (2023). Exogenous salicylic acid modifies cell wall lignification, total phenolic content, PAL-activity in wheat (Triticum aestivum L.) and buckwheat (Fagopyrum esculentum Moench) plants under cadmium chloride impac. Biointerface Research in Applied Chemistry, 13(2), 117. doi:10.33263/briac132.117 Crossref ● Google Scholar | ||||
| ||||
Kolupaev, Yu. E., Yastreb, T. O., Shvidenko, M., & Karpets, Yu. (2011). Influence of salicylic and succinic acids on formation of active oxygen forms in wheat coleoptiles. Ukrains'kyi Biokhimichnyi Zhurnal, 83(5), 82-88. (In Ukrainian) PubMed ● Google Scholar | ||||
| ||||
Kolupaev, Yu. E., Yastreb, T. O., Shkliarevskyi, M. A., Karpets, Yu. V., & Dyachenko, A. I. (2021). Salicylic acid: synthesis and stress-protective effects in plants. The Bulletin of Kharkiv National Agrarian University. Series Biology, 2021(2), 6-22. doi:10.35550/vbio2021.02.006 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
Koo, Y. M., Heo, A. Y., & Choi, H. W. (2020). Salicylic acid as a safe plant protector and growth regulator. The Plant Pathology Journal, 36(1), 1-10. doi:10.5423/ppj.rw.12.2019.0295 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kou, M.-Z., Bastías, D. A., Christensen, M. J., Zhong, R., Nan, Z.-B., & Zhang, X.-X. (2021). The plant salicylic acid signalling pathway regulates the infection of a biotrophic pathogen in grasses associated with an Epichloë endophyte. Journal of Fungi, 7(8), 633. doi:10.3390/jof7080633 | ||||
| ||||
Le Thanh, T., Thumanu, K., Wongkaew, S., Boonkerd, N., Teaumroong, N., Phansak, P., & Buensanteai, N. (2017). Salicylic acid-induced accumulation of biochemical components associated with resistance against Xanthomonas oryzae pv. oryzae in rice. Journal of Plant Interactions, 12(1), 108-120. doi:10.1080/17429145.2017.1291859 Crossref ● Google Scholar | ||||
| ||||
Lefevere, H., Bauters, L., & Gheysen, G. (2020). Salicylic acid biosynthesis in plants. Frontiers in Plant Science, 11. doi:10.3389/fpls.2020.00338 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Li, A., Sun, X., & Liu, L. (2022). Action of salicylic acid on plant growth. Frontiers in Plant Science, 13, 878076. doi:10.3389/fpls.2022.878076 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Li, G., & Yen, Y. (2008). Jasmonate and ethylene signaling pathway may mediate Fusarium head blight resistance in wheat. Crop Science, 48(5), 1888-1896. doi:10.2135/cropsci2008.02.0097 Crossref ● Google Scholar | ||||
| ||||
Li, N., Han, X., Feng, D., Yuan, D., & Huang, L.-J. (2019). Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense: do we understand what they are whispering? International Journal of Molecular Sciences, 20(3), 671. doi:10.3390/ijms20030671 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Liang, B., Wang, H., Yang, C., Wang, L., Qi, L., Guo, Z., & Chen, X. (2022). Salicylic acid is required for broad-spectrum disease resistance in rice. International Journal of Molecular Sciences, 23(3), 1354. doi:10.3390/ijms23031354 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Liu, H.-T., Huang, W.-D., Pan, Q.-H., Weng, F.-H., Zhan, J.-C., Liu, Y., Wan, S.-B., & Liu, Y.-Y. (2006). Contributions of PIP2-specific-phospholipase C and free salicylic acid to heat acclimation-induced thermotolerance in pea leaves. Journal of Plant Physiology, 163(4), 405-416. doi:10.1016/j.jplph.2005.04.027 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Liu, J., Qiu, G., Liu, C., Li, H., Chen, X., Fu, Q., Lin, Y., & Guo, B. (2022). Salicylic acid, a multifaceted hormone, combats abiotic stresses in plants. Life, 12(6), 886. doi:10.3390/life12060886 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Lucas, J. A., Hawkins, N. J., & Fraaije, B. A. (2015). The evolution of fungicide resistance. Advances in Applied Microbiology, 29-92. doi:10.1016/bs.aambs.2014.09.001 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Makandar, R., Nalam, V. J., Lee, H., Trick, H. N., Dong, Y., & Shah, J. (2012). Salicylic acid regulates basal resistance to Fusarium head blight in wheat. Molecular Plant-Microbe Interactions, 25(3), 431-439. doi:10.1094/mpmi-09-11-0232 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Makar, O. O., & Romanyuk, N. D. (2022). Endophytic bacteria of wheat and the potential to improve microelement composition of grain. Studia Biologica, 16(3), 101-128. doi:10.30970/sbi.1603.692 Crossref ● Google Scholar | ||||
| ||||
Makar, O., Kuźniar, A., Patsula, O., Kavulych, Y., Kozlovskyy, V., Wolińska, A., Skórzyńska-Polit, E., Vatamaniuk, O., Terek, O., & Romanyuk, N. (2021). Bacterial endophytes of spring wheat grains and the potential to acquire Fe, Cu, and Zn under their low soil bioavailability. Biology, 10(5), 409. doi:10.3390/biology10050409 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Mahalakshmi, R., Eganathan, P., & Ajay, P. (2013). Changes in secondary metabolite production in Jatropha curcas calluses treated with NaCl. Analytical Chemistry Letters, 3(5-6), 359-369. doi:10.1080/22297928.2013.873225 Crossref ● Google Scholar | ||||
| ||||
Majumdar, S., Sachdev, S., & Kundu, R. (2020). Salicylic acid mediated reduction in grain cadmium accumulation and amelioration of toxicity in Oryza sativa L. cv Bandana. Ecotoxicology and Environmental Safety, 205, 111167. doi:10.1016/j.ecoenv.2020.111167 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Maruri-López, I., Aviles-Baltazar, N. Y., Buchala, A., & Serrano, M. (2019). Intra and extracellular journey of the phytohormone salicylic acid. Frontiers in Plant Science, 10, 423. doi:10.3389/fpls.2019.00423 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Mishra, A., & Baek, K.-H. (2021). Salicylic acid biosynthesis and metabolism: a divergent pathway for plants and bacteria. Biomolecules, 11(5), 705. doi:10.3390/biom11050705 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Mishra, S., Bhardwaj, M., Mehrotra, S., Chowdhary, A. A., & Srivastava, V. (2020). The contribution of phytohormones in plant thermotolerance. Heat Stress Tolerance in Plants, 213-238. doi:10.1002/9781119432401.ch10 | ||||
| ||||
Mohammed, N., El-Hendawy, S., Alsamin, B., Mubushar, M., & Dewir, Y. H. (2023). Integrating application methods and concentrations of salicylic acid as an avenue to enhance growth, production, and water use efficiency of wheat under full and deficit Irrigation in arid countries. Plants, 12(5), 1019. doi:10.3390/plants12051019 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Momeni, M., Pirbalouti, A. G., Mousavi, A., & Badi, H. N. (2020). Effect of foliar applications of salicylic acid and chitosan on the essential oil of Thymbra spicata L. under different soil moisture conditions. Journal of Essential Oil Bearing Plants, 23(5), 1142-1153. doi:10.1080/0972060x.2020.1801519 Crossref ● Google Scholar | ||||
| ||||
Moussa, H. R., & El-Gamal, S. M. (2010). Effect of salicylic acid pretreatment on cadmium toxicity in wheat. Biologia Plantarum, 54(2), 315-320. doi:10.1007/s10535-010-0054-7 Crossref ● Google Scholar | ||||
| ||||
Mutlu, S., Karadağoğlu, Ö., Atici, Ö., & Nalbantoğlu, B. (2013). Protective role of salicylic acid applied before cold stress on antioxidative system and protein patterns in barley apoplast. Biologia Plantarum, 57(3), 507-513. doi:10.1007/s10535-013-0322-4 Crossref ● Google Scholar | ||||
| ||||
Napoleão, T. A., Soares, G., Vital, C. E., Bastos, C., Castro, R., Loureiro, M. E., & Giordano, A. (2017). Methyl jasmonate and salicylic acid are able to modify cell wall but only salicylic acid alters biomass digestibility in the model grass Brachypodium distachyon. Plant Science, 263, 46-54. doi:10.1016/j.plantsci.2017.06.014 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Nawrath, C., Heck, S., Parinthawong, N., & Métraux, J.-P. (2002). EDS5, an essential component of salicylic acid - dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. The Plant Cell, 14(1), 275-286. doi:10.1105/tpc.010376 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Pan, Q., Zhan, J., Liu, H., Zhang, J., Chen, J., Wen, P., & Huang, W. (2006). Salicylic acid synthesized by benzoic acid 2-hydroxylase participates in the development of thermotolerance in pea plants. Plant Science, 171(2), 226-233. doi:10.1016/j.plantsci.2006.03.012 Crossref ● Google Scholar | ||||
| ||||
Parinthawong, N., Cottier, S., Buchala, A., Nawrath, C., & Métraux, J.-P. (2015). Localization and expression of EDS5H a homologue of the SA transporter EDS5. BMC Plant Biology, 15(1). doi:10.1186/s12870-015-0518-1 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Park, S.-W., Kaimoyo, E., Kumar, D., Mosher, S., & Klessig, D. F. (2007). Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science, 318(5847), 113-116. doi:10.1126/science.1147113 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Parry, D. W., Jenkinson, P., & McLeod, L. (1995). Fusarium ear blight (scab) in small grain cereals - a review. Plant Pathology, 44(2), 207-238. doi:10.1111/j.1365-3059.1995.tb02773.x | ||||
| ||||
Peng, Y., Yang, J., Li, X., & Zhang, Y. (2021). Salicylic acid: biosynthesis and signaling. Annual Review of Plant Biology, 72(1), 761-791. doi:10.1146/annurev-arplant-081320-092855 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Pluhařová, K., Leontovyčová, H., Stoudková, V., Pospíchalová, R., Maršík, P., Klouček, P., Starodubtseva, A., Iakovenko, O., Krčková, Z., Valentová, O., Burketová, L., Janda, M., & Kalachova, T. (2019). "Salicylic acid mutant collection" as a tool to explore the role of salicylic acid in regulation of plant growth under a changing environment. International Journal of Molecular Sciences, 20(24), 6365. doi:10.3390/ijms20246365 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Pokotylo, I., Kravets, V., & Ruelland, E. (2019). Salicylic acid binding proteins (SABPs): the hidden forefront of salicylic acid signalling. International Journal of Molecular Sciences, 20(18), 4377. doi:10.3390/ijms20184377 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Powell, J. J., Carere, J., Fitzgerald, T. L., Stiller, J., Covarelli, L., Xu, Q., Gubler, F., Colgrave, M. L., Gardiner, D. M., Manners, J. M., Henry, R. J., & Kazan, K. (2016). The Fusarium crown rot pathogen Fusarium pseudograminearum triggers a suite of transcriptional and metabolic changes in bread wheat (Triticum aestivum L.). Annals of Botany, mcw207. doi:10.1093/aob/mcw207 | ||||
| ||||
Qi, P.-F., Zhang, Y.-Z., Liu, C.-H., Chen, Q., Guo, Z.-R., Wang, Y., Xu, B.-J., Jiang, Y.-F., Zheng, T., Gong, X., Luo, C.-H., Wu, W., Kong, L., Deng, M., Ma, J., Lan, X.-J., Jiang, Q.-T., Wei, Y.-M., Wang, J.-R., & Zheng, Y.-L. (2019). Functional analysis of FgNahG clarifies the contribution of salicylic acid to wheat (Triticum aestivum) resistance against Fusarium head blight. Toxins, 11(2), 59. doi:10.3390/toxins11020059 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Ramirez-Estrada, K., Vidal-Limon, H., Hidalgo, D., Moyano, E., Golenioswki, M., Cusidó, R., & Palazon, J. (2016). Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules, 21(2), 182. doi:10.3390/molecules21020182 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Raskin, I. (1992). Role of salicylic acid in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 43(1), 439-463. doi:10.1146/annurev.pp.43.060192.002255 Crossref ● Google Scholar | ||||
| ||||
Raskin, I., Ehmann, A., Melander, W. R., & Meeuse, B. J. D. (1987). Salicylic acid: a natural inducer of heat production in Arum lilies. Science, 237(4822), 1601-1602. doi:10.1126/science.237.4822.1601 | ||||
| ||||
Ratzinger, A., Riediger, N., von Tiedemann, A., & Karlovsky, P. (2009). Salicylic acid and salicylic acid glucoside in xylem sap of Brassica napus infected with Verticillium longisporum. Journal of Plant Research, 122(5), 571-579. doi:10.1007/s10265-009-0237-5 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Rekhter, D., Lüdke, D., Ding, Y., Feussner, K., Zienkiewicz, K., Lipka, V., Wiermer, M., Zhang, Y., & Feussner, I. (2019). Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science, 365(6452), 498-502. doi:10.1126/science.aaw1720 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Research and Markets. (2022, June 17). The worldwide salicylic acid industry is projected to reach $886 million by 2030. Globe Newswire News Room. Retrieved from https://www.globenewswire.com/en/news-release/2022/06/17/2464645/28124/en/The-Worldwide-Salicylic-Acid-Industry-is-Projected-to-Reach-886-Million-by-2030.html | ||||
| ||||
Robert-Seilaniantz, A., Grant, M., & Jones, J. D. G. (2011). Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annual Review of Phytopathology, 49(1), 317-343. doi:10.1146/annurev-phyto-073009-114447 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Saleem, M., Fariduddin, Q., & Castroverde, C. D. M. (2021). Salicylic acid: a key regulator of redox signalling and plant immunity. Plant Physiology and Biochemistry, 168, 381-397. doi:10.1016/j.plaphy.2021.10.011 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Sambyal, K., & Singh, R. V. (2021). Production of salicylic acid; a potent pharmaceutically active agent and its future prospects. Critical Reviews in Biotechnology, 41(3), 394-405. doi:10.1080/07388551.2020.1869687 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Sanmartín, N., Pastor, V., Pastor-Fernández, J., Flors, V., Pozo, M. J., & Sánchez-Bel, P. (2020). Role and mechanisms of callose priming in mycorrhiza-induced resistance. Journal of Experimental Botany, 71(9), 2769-2781. doi:10.1093/jxb/eraa030 | ||||
| ||||
Schmid, J., Day, R., Zhang, N., Dupont, P.-Y., Cox, M. P., Schardl, C. L., Minards, N., Truglio, M., Moore, N., Harris, D. R., & Zhou, Y. (2017). Host tissue environment directs activities of an Epichloë endophyte, while it induces systemic hormone and defense responses in its native perennial ryegrass host. Molecular Plant-Microbe Interactions, 30(2), 138-149. doi:10.1094/mpmi-10-16-0215-r Crossref ● PubMed ● Google Scholar | ||||
| ||||
Schreinemachers, P., & Tipraqsa, P. (2012). Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy, 37(6), 616-626. doi:10.1016/j.foodpol.2012.06.003 Crossref ● Google Scholar | ||||
| ||||
Scott, I. M., Clarke, S. M., Wood, J. E., & Mur, L. A. J. (2004). Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiology, 135(2), 1040-1049. doi:10.1104/pp.104.041293 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Serrano, M., Wang, B., Aryal, B., Garcion, C., Abou-Mansour, E., Heck, S., Geisler, M., Mauch, F., Nawrath, C., & Métraux, J.-P. (2013). Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5. Plant Physiology, 162(4), 1815-1821. doi:10.1104/pp.113.218156 | ||||
| ||||
Seyfferth, C., & Tsuda, K. (2014). Salicylic acid signal transduction: the initiation of biosynthesis, perception and transcriptional reprogramming. Frontiers in Plant Science, 5, 697. doi:10.3389/fpls.2014.00697 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Shah, K., An, N., Kamanova, S., Chen, L., Jia, P., Zhang, C., Mobeen Tahir, M., Han, M., Ding, Y., Ren, X., & Xing, L. (2021). Regulation of flowering time by improving leaf health markers and expansion by salicylic acid treatment: a new approach to induce flowering in Malus domestica. Frontiers in Plant Science, 12. doi:10.3389/fpls.2021.655974 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Sharma, A., Sidhu, G. P. S., Araniti, F., Bali, A. S., Shahzad, B., Tripathi, D. K., Brestic, M., Skalicky, M., & Landi, M. (2020). The role of salicylic acid in plants exposed to heavy metals. Molecules, 25(3), 540. doi:10.3390/molecules25030540 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Sharma, M., Gupta, S. K., Majumder, B., Maurya, V. K., Deeba, F., Alam, A., & Pandey, V. (2017). Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress. Journal of Proteomics, 163, 28-51. doi:10.1016/j.jprot.2017.05.011 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Shehroz, M., Aslam, M., Ali Khan, M., Aiman, S., Gul Afridi, S., & Khan, A. (2019). The in silico characterization of a salicylic acid analogue coding gene clusters in selected Pseudomonas fluorescens strains. Iranian Journal of Biotechnology, 17, e2250. doi:10.30498/ijb.2019.95299 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Shelton, C. L., & Lamb, A. L. (2018). Unraveling the structure and mechanism of the MST(ery) enzymes. Trends in Biochemical Sciences, 43(5), 342-357. doi:10.1016/j.tibs.2018.02.011 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Shi, X., Qin, T., Liu, H., Wu, M., Li, J., Shi, Y., Gao, Y., & Ren, A. (2020). Endophytic fungi activated similar defense strategies of Achnatherum sibiricum host to different trophic types of pathogens. Frontiers in Microbiology, 11, 1607. doi:10.3389/fmicb.2020.01607 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Snoeren, T. A. L., Mumm, R., Poelman, E. H., Yang, Y., Pichersky, E., & Dicke, M. (2010). The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum. Journal of Chemical Ecology, 36(5), 479-489. doi:10.1007/s10886-010-9787-1 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Soliman, M. H., Alayafi, A. A. M., El Kelish, A. A., & Abu-Elsaoud, A. M. (2018). Acetylsalicylic acid enhance tolerance of Phaseolus vulgaris L. to chilling stress, improving photosynthesis, antioxidants and expression of cold stress responsive genes. Botanical Studies, 59(1), 6. doi:10.1186/s40529-018-0222-1 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Sorahinobar, M., Niknam, V., Ebrahimzadeh, H., Soltanloo, H., Behmanesh, M., & Enferadi, S. T. (2015). Central role of salicylic acid in resistance of wheat against Fusarium graminearum. Journal of Plant Growth Regulation, 35(2), 477-491. doi:10.1007/s00344-015-9554-1 Crossref ● Google Scholar | ||||
| ||||
Souri, M. K., & Tohidloo, G. (2019). Effectiveness of different methods of salicylic acid application on growth characteristics of tomato seedlings under salinity. Chemical and Biological Technologies in Agriculture, 6(1), 26. doi:10.1186/s40538-019-0169-9 Crossref ● Google Scholar | ||||
| ||||
Stanislawska-Glubiak, E., & Korzeniowska, J. (2021). Effect of salicylic acid foliar application on two wheat cultivars grown under zinc stress. Agronomy, 12(1), 60. doi:10.3390/agronomy12010060 Crossref ● Google Scholar | ||||
| ||||
Su, H., Song, S., Yan, X., Fang, L., Zeng, B., & Zhu, Y. (2018). Endogenous salicylic acid shows different correlation with baicalin and baicalein in the medicinal plant Scutellaria baicalensis Georgi subjected to stress and exogenous salicylic acid. PLoS One, 13(2), e0192114. doi:10.1371/journal.pone.0192114 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Takagi, K., Tasaki, K., Komori, H., & Katou, S. (2022). Hypersensitivity-related genes HSR201 and HSR203J are regulated by calmodulin-binding protein 60-type transcription factors and required for pathogen signal-induced salicylic acid synthesis. Plant and Cell Physiology, 63(7), 1008-1022. doi:10.1093/pcp/pcac074 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Torrens-Spence, M. P., Bobokalonova, A., Carballo, V., Glinkerman, C. M., Pluskal, T., Shen, A., & Weng, J.-K. (2019). PBS3 and EPS1 complete salicylic acid biosynthesis from isochorismate in Arabidopsis. Molecular Plant, 12(12), 1577-1586. doi:10.1016/j.molp.2019.11.005 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Tran, P. N., Yen, M.-R., Chiang, C.-Y., Lin, H.-C., & Chen, P.-Y. (2019). Detecting and prioritizing biosynthetic gene clusters for bioactive compounds in bacteria and fungi. Applied Microbiology and Biotechnology, 103(8), 3277-3287. doi:10.1007/s00253-019-09708-z Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Tsuda, K., Sato, M., Stoddard, T., Glazebrook, J., & Katagiri, F. (2009). Network properties of robust immunity in plants. PLoS Genetics, 5(12), e1000772. doi:10.1371/journal.pgen.1000772 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Vaca, E., Behrens, C., Theccanat, T., Choe, J.-Y., & Dean, J. V. (2017). Mechanistic differences in the uptake of salicylic acid glucose conjugates by vacuolar membrane-enriched vesicles isolated from Arabidopsis thaliana. Physiologia Plantarum, 161(3), 322-338. doi:10.1111/ppl.12602 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Vlot, A. C., Dempsey, D. A., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 47(1), 177-206. doi:10.1146/annurev.phyto.050908.135202 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Wallis, C. M., & Galarneau, E. R.-A. (2020). Phenolic compound induction in plant-microbe and plant-insect interactions: a meta-analysis. Frontiers in Plant Science, 11, 580753. doi:10.3389/fpls.2020.580753 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Walters, D. R., Ratsep, J., & Havis, N. D. (2013). Controlling crop diseases using induced resistance: challenges for the future. Journal of Experimental Botany, 64(5), 1263-1280. doi:10.1093/jxb/ert026 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Wang, C., Liu, Y., Li, S.-S., & Han, G.-Z. (2015). Insights into the origin and evolution of the plant hormone signaling machinery. Plant Physiology, 167(3), 872-886. doi:10.1104/pp.114.247403 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Wang, F., Tan, H., Zhang, Y., Huang, L., Bao, H., Ding, Y., Chen, Z., & Zhu, C. (2021). Salicylic acid application alleviates cadmium accumulation in brown rice by modulating its shoot to grain translocation in rice. Chemosphere, 263, 128034. doi:10.1016/j.chemosphere.2020.128034 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Wang, W., Wang, X., Huang, M., Cai, J., Zhou, Q., Dai, T., Cao, W., & Jiang, D. (2018). Hydrogen peroxide and abscisic acid mediate salicylic acid-induced freezing tolerance in wheat. Frontiers in Plant Science, 9, 1137. doi:10.3389/fpls.2018.01137 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Wang, Y., & Liu, J.-H. (2012). Exogenous treatment with salicylic acid attenuates occurrence of citrus canker in susceptible navel orange (Citrus sinensis Osbeck). Journal of Plant Physiology, 169(12), 1143-1149. doi:10.1016/j.jplph.2012.03.018 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Weber, T., & Kim, H. U. (2016). The secondary metabolite bioinformatics portal: computational tools to facilitate synthetic biology of secondary metabolite production. Synthetic and Systems Biotechnology, 1(2), 69-79. doi:10.1016/j.synbio.2015.12.002 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Widiastuti, A., Yoshino, M., Hasegawa, M., Nitta, Y., & Sato, T. (2013). Heat shock-induced resistance increases chitinase-1 gene expression and stimulates salicylic acid production in melon (Cucumis melo L.). Physiological and Molecular Plant Pathology, 82, 51-55. doi:10.1016/j.pmpp.2013.01.003 Crossref ● Google Scholar | ||||
| ||||
Xia, C., Zhang, X., Christensen, M. J., Nan, Z., & Li, C. (2015). Epichloë endophyte affects the ability of powdery mildew (Blumeria graminis) to colonise drunken horse grass (Achnatherum inebrians). Fungal Ecology, 16, 26-33. doi:10.1016/j.funeco.2015.02.003 Crossref ● Google Scholar | ||||
| ||||
Yang, J., Duan, L., He, H., Li, Y., Li, X., Liu, D., Wang, J., Jin, G., & Huang, S. (2021). Application of exogenous KH2PO4 and salicylic acid and optimization of the sowing date enhance rice yield under high-temperature conditions. Journal of Plant Growth Regulation, 41(4), 1532-1546. doi:10.1007/s00344-021-10399-y Crossref ● Google Scholar | ||||
| ||||
Yamasaki, K., Motomura, Y., Yagi, Y., Nomura, H., Kikuchi, S., Nakai, M., & Shiina, T. (2013). Chloroplast envelope localization of EDS5, an essential factor for salicylic acid biosynthesis in Arabidopsis thaliana. Plant Signaling & Behavior, 8(4), e23603. doi:10.4161/psb.23603 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zafar, Z., Rasheed, F., Mushtaq, N., Khan, M. U., Mohsin, M., Irshad, M. A., Summer, M., Raza, Z., & Gailing, O. (2023). Exogenous application of salicylic acid improves physiological and biochemical attributes of Morus alba saplings under soil water deficit. Forests, 14(2), 236. doi:10.3390/f14020236 Crossref ● Google Scholar | ||||
| ||||
Zavala-Gómez, C. E., Rodríguez-deLeón, E., Bah, M. M., Feregrino-Pérez, A. A., Campos-Guillén, J., Amaro-Reyes, A., Rodríguez-Morales, J. A., García-Trejo, J. F., Flores-Macias, A., Figueroa-Brito, R., & Ramos-López, M. A. (2021). Effect of salicylic acid in the yield of ricinine in Ricinus communis under greenhouse condition. Plants, 10(9), 1902. doi:10.3390/plants10091902 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zhang, Y., & Li, X. (2019). Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Current Opinion in Plant Biology, 50, 29-36. doi:10.1016/j.pbi.2019.02.004 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Zhang, Y., Li, S., Deng, M., Gui, R., Liu, Y., Chen, X., Lin, Y., Li, M., Wang, Y., He, W., Chen, Q., Zhang, Y., Luo, Y., Wang, X., & Tang, H. (2022). Blue light combined with salicylic acid treatment maintained the postharvest quality of strawberry fruit during refrigerated storage. Food Chemistry: X, 15, 100384. doi:10.1016/j.fochx.2022.100384 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zhong, Q., Hu, H., Fan, B., Zhu, C., & Chen, Z. (2021). Biosynthesis and roles of salicylic acid in balancing stress response and growth in plants. International Journal of Molecular Sciences, 22(21), 11672. doi:10.3390/ijms222111672 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zhou, Y., Memelink, J., & Linthorst, H. J. M. (2018). An E. coli biosensor for screening of cDNA libraries for isochorismate pyruvate lyase-encoding cDNAs. Molecular Genetics and Genomics, 293(5), 1181-1190. doi:10.1007/s00438-018-1450-5 Crossref ● PubMed ● PMC ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Yana Kavulych, Myroslava Kobyletska, Nataliya Romanyuk, Olga Terek
This work is licensed under a Creative Commons Attribution 4.0 International License.