STRESS-PROTECTIVE AND REGULATORY PROPERTIES OF SALICYLIC ACID AND PROSPECTS OF ITS USE IN PLANT PRODUCTION

Yana Kavulych, Myroslava Kobyletska, Nataliya Romanyuk, Olga Terek


DOI: http://dx.doi.org/10.30970/sbi.1702.718

Abstract


Salicylic acid (SA), as a secondary phenolic metabolite with phytohormonal activity, is an important component of the plant defense system against biotic and abiotic stresses. The scale of industrial synthesis of SA in the world is constantly growing, it is used as an intermediate for the synthesis of drugs and dyes, it is also used in cosmetology, food industry, plant biotechnology, etc. Recently, it has been considered as a promising growth-regulating agent in crop production for decreasing harmful effects of biotic and abiotic stresses in plants. Over the past two decades, numerous data have been published concerning the metabolic pathways of SA synthesis and its signaling in plant immunity. It regulates and affects various stages of plant ontogenesis and metabolism: seed germination, flowering, stomatal movements, pigment synthesis, photosynthesis and respiration, ethylene biosynthesis, thermoregulation, the activity of antioxidant enzymes, nutrient absorption, membrane integrity and functioning, nodulation in legumes, synthesis of secondary metabolites, general growth and development of plants. Numerous studies have confirmed that endogenous SA and/or its derivatives are involved in stress responses to heavy metals (HMs), hyper- and hypothermia, salinity, water deficiency, and, primarily, pathogenic infections. In parallel with fundamental studies of regulatory functions of SA and/or its derivatives, new ways of their exogenous application are constantly discovered. The use of low concentrations of exogenous SA (0.1–0.5 mM) for seed priming or foliar treatment is reported as an economically viable alternative approach for increasing plant tolerance from both economic and environmental points of view. Exogenous SA leads to an increase in endogenous SA levels that induces plant adaptive responses by changing phytohormonal status, increased synthesis of a number of secondary metabolites (alkaloids, cyanogenic glycosides, phenolics, terpenes), by increasing activity of antioxidant enzymes. One of the main advantages of using SA in crop production is the ability to reduce the dosage of pesticides and fertilizers that are potentially harmful to the environment and human health. It is also reported that the use of SA in some cases may lead to negative results – growth retardation, sterility, and yield decrease; the causes of this phenomenon are actively investigated. Further studies are necessary to clarify the mechanisms of exogenic SA action and its use on various crops in different growing conditions. This review aims to analyze the recent data on SA, crop production, and biotechnology areas where it is possible to effectively apply the SA and/or its derivatives.


Keywords


salicylic acid, plant resistance, secondary metabolites, biotic and abiotic stress, crop production

References


Ababaf, M., Omidi, H., & Bakhshandeh, A. (2021). Changes in antioxidant enzymes activities and alkaloid amount of Catharanthus roseus in response to plant growth regulators under drought condition. Industrial Crops and Products, 167, 113505. doi:10.1016/j.indcrop.2021.113505
CrossrefGoogle Scholar

Abbaszadeh, B., Layeghhaghighi, M., Azimi, R., & Hadi, N. (2020). Improving water use efficiency through drought stress and using salicylic acid for proper production of Rosmarinus officinalis L. Industrial Crops and Products, 144, 111893. doi:10.1016/j.indcrop.2019.111893
CrossrefGoogle Scholar

Ahmad, A., Aslam, Z., Naz, M., Hussain, S., Javed, T., Aslam, S., Raza, A., Ali, H. M., Siddiqui, M. H., Salem, M. Z. M., Hano, C., Shabbir, R., Ahmar, S., Saeed, T., & Jamal, M. A. (2021). Exogenous salicylic acid-induced drought stress tolerance in wheat (Triticum aestivum L.) grown under hydroponic culture. PLoS One, 16(12), e0260556. doi:10.1371/journal.pone.0260556
CrossrefPubMedPMCGoogle Scholar

Aires, E. S., Ferraz, A. K. L., Carvalho, B. L., Teixeira, F. P., Putti, F. F., de Souza, E. P., Rodrigues,J. D., & Ono, E. O. (2022). Foliar application of salicylic acid to mitigate water stress in tomato. Plants, 11(13), 1775. doi:10.3390/plants11131775
CrossrefPubMedPMCGoogle Scholar

Alcalde, M. A., Perez-Matas, E., Escrich, A., Cusido, R. M., Palazon, J., & Bonfill, M. (2022). Biotic elicitors in adventitious and hairy root cultures: a review from 2010 to 2022. Molecules, 27(16), 5253. doi:10.3390/molecules27165253
CrossrefPubMedPMCGoogle Scholar

Abdulaziz S. Alhaithloul, H., M. Abu-Elsaoud, A., & H. Soliman, M. (2021). Abiotic stress tolerance in crop plants: role of phytohormones. Abiotic Stress in Plants. doi:10.5772/intechopen.93710
CrossrefGoogle Scholar

Alamri, S. A., Siddiqui, M. H., Al-Khaishany, M. Y., Nasir Khan, M., Ali, H. M., Alaraidh, I. A., Alsahli, A. A., Al-Rabiah, H., & Mateen, M. (2018). Ascorbic acid improves the tolerance of wheat plants to lead toxicity. Journal of Plant Interactions, 13(1), 409-419. doi:10.1080/17429145.2018.1491067
CrossrefGoogle Scholar

Ali, S., Ganai, B. A., Kamili, A. N., Bhat, A. A., Mir, Z. A., Bhat, J. A., Tyagi, A., Islam, S. T., Mushtaq, M., Yadav, P., Rawat, S., & Grover, A. (2018). Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiological Research, 212-213, 29-37. doi:10.1016/j.micres.2018.04.008
CrossrefPubMedGoogle Scholar

Ali, B. (2021). Salicylic acid: an efficient elicitor of secondary metabolite production in plants. Biocatalysis and Agricultural Biotechnology, 31, 101884. doi:10.1016/j.bcab.2020.101884
CrossrefGoogle Scholar

Alotaibi, M., El-Hendawy, S., Mohammed, N., Alsamin, B., & Refay, Y. (2023). Appropriate application methods for salicylic acid and plant nutrients combinations to promote morpho-physiological traits, production, and water use efficiency of wheat under normal and deficit irrigation in an arid climate. Plants, 12(6), 1368. doi:10.3390/plants12061368
CrossrefPubMedPMCGoogle Scholar

Ansari, O., & Sharif-Zadeh, F. (2012). Does gibberelic acid (GA), salicylic acid (SA) and ascorbic acid (ASc) improve Mountain Rye (Secale montanum) seeds germination and seedlings growth under cold stress. The International Research Journal of Applied and Basic Sciences, 3, 1651-1657.
Google Scholar

Ameye, M., Audenaert, K., De Zutter, N., Steppe, K., Van Meulebroek, L., Vanhaecke, L., De Vleesschauwer, D., Haesaert, G., & Smagghe, G. (2015). Priming of wheat with the green leaf volatile Z-3-hexenyl acetate enhances defense against Fusarium graminearum but boosts deoxynivalenol production. Plant Physiology, 167(4), 1671-1684. doi:10.1104/pp.15.00107
CrossrefPubMedPMCGoogle Scholar

Afzal, I., Akram, M. W., Rehman, H. U., Rashid, S., & Basra, S. M. A. (2020). Moringa leaf and sorghum water extracts and salicylic acid to alleviate impacts of heat stress in wheat. South African Journal of Botany, 129, 169-174. doi:10.1016/j.sajb.2019.04.009
CrossrefGoogle Scholar

Averesch, N. J. H., & Krömer, J. O. (2018). Metabolic engineering of the shikimate pathway for production of aromatics and derived compounds - present and future strain construction strategies. Frontiers in Bioengineering and Biotechnology, 6, 32. doi:10.3389/fbioe.2018.00032
CrossrefPubMedPMCGoogle Scholar

Azmat, A., Yasmin, H., Hassan, M. N., Nosheen, A., Naz, R., Sajjad, M., Ilyas, N., & Akhtar, M. N. (2020). Co-application of bio-fertilizer and salicylic acid improves growth, photosynthetic pigments and stress tolerance in wheat under drought stress. PeerJ, 8, e9960. doi:10.7717/peerj.9960
CrossrefPubMedPMCGoogle Scholar

Ballaré, C. L. (2014). Light regulation of plant defense. Annual Review of Plant Biology, 65(1), 335-363. doi:10.1146/annurev-arplant-050213-040145
CrossrefPubMedGoogle Scholar

Belkadhi, A., Djebali, W., Hédiji, H., & Chaïbi, W. (2016). Cadmium stress tolerance in plants: a key role of endogenous and exogenous salicylic acid. Plant Science Today, 3(1), 48-54. doi:10.14719/pst.2016.3.1.181
CrossrefGoogle Scholar

Bernacki, M. J., Czarnocka, W., Rusaczonek, A., Witoń, D., Kęska, S., Czyż, J., Szechyńska-Hebda, M., & Karpiński, S. (2019). LSD1-, EDS1- and PAD4-dependent conditional correlation among salicylic acid, hydrogen peroxide, water use efficiency and seed yield in Arabidopsis thaliana. Physiologia Plantarum, 165(2), 369-382. doi:10.1111/ppl.12863
CrossrefPubMedGoogle Scholar

Bernacki, M. J., Rusaczonek, A., Czarnocka, W., & Karpiński, S. (2021). Salicylic acid accumulation controlled by LSD1 is essential in triggering cell death in response to abiotic stress. Cells, 10(4), 962. doi:10.3390/cells10040962
CrossrefPubMedPMCGoogle Scholar

Boddu, J., Cho, S., Kruger, W. M., & Muehlbauer, G. J. (2006). Transcriptome analysis of the barley-Fusarium graminearum interaction. Molecular Plant-Microbe Interactions, 19(4), 407-417. doi:10.1094/mpmi-19-0407
CrossrefPubMedGoogle Scholar

Brauer, E. K., Rocheleau, H., Balcerzak, M., Pan, Y., Fauteux, F., Liu, Z., Wang, L., Zheng, W., & Ouellet, T. (2019). Transcriptional and hormonal profiling of Fusarium graminearum-infected wheat reveals an association between auxin and susceptibility. Physiological and Molecular Plant Pathology, 107, 33-39. doi:10.1016/j.pmpp.2019.04.006
CrossrefGoogle Scholar

Brown, N. A., Evans, J., Mead, A., & Hammond-Kosack, K. E. (2017). A spatial temporal analysis of the Fusarium graminearum transcriptome during symptomless and symptomatic wheat infection. Molecular Plant Pathology, 18(9), 1295-1312. doi:10.1111/mpp.12564
CrossrefPubMedPMCGoogle Scholar

Buhrow, L. M., Liu, Z., Cram, D., Sharma, T., Foroud, N. A., Pan, Y., & Loewen, M. C. (2021). Wheat transcriptome profiling reveals abscisic and gibberellic acid treatments regulate early-stage phytohormone defense signaling, cell wall fortification, and metabolic switches following Fusarium graminearum-challenge. BMC Genomics, 22(1). doi:10.1186/s12864-021-08069-0
CrossrefPubMedPMCGoogle Scholar

Chan, C. (2022). Progress in salicylic acid-dependent signaling for growth - defense trade-off. Cells, 11(19), 2985. doi:10.3390/cells11192985
CrossrefPubMedPMCGoogle Scholar

Chen, Z., Iyer, S., Caplan, A., Klessig, D. F., & Fan, B. (1997). Differential accumulation of salicylic acid and salicylic acid-sensitive catalase in different rice tissues. Plant Physiology, 114(1), 193-201. doi:10.1104/pp.114.1.193
CrossrefPubMedPMCGoogle Scholar

Chen, Z., Zheng, Z., Huang, J., Lai, Z., & Fan, B. (2009). Biosynthesis of salicylic acid in plants. Plant Signaling & Behavior, 4(6), 493-496. doi:10.4161/psb.4.6.8392
CrossrefPubMedPMCGoogle Scholar

Cheng, F., Lu, J., Gao, M., Shi, K., Kong, Q., Huang, Y., & Bie, Z. (2016). Redox signaling and CBF-responsive pathway are involved in salicylic acid-improved photosynthesis and growth under chilling stress in watermelon. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01519
CrossrefGoogle Scholar

Cleland, C. F., & Ajami, A. (1974). Identification of the flower-inducing factor isolated from aphid honeydew as being salicylic acid. Plant Physiology, 54(6), 904-906. doi:10.1104/pp.54.6.904
CrossrefPubMedPMCGoogle Scholar

Conrath, U., Beckers, G. J. M., Langenbach, C. J. G., & Jaskiewicz, M. R. (2015). Priming for enhanced defense. Annual Review of Phytopathology, 53(1), 97-119. doi:10.1146/annurev-phyto-080614-120132
CrossrefPubMedGoogle Scholar

Czarnocka, W., Van Der Kelen, K., Willems, P., Szechyńska-Hebda, M., Shahnejat-Bushehri, S., Balazadeh, S., Rusaczonek, A., Mueller-Roeber, B., Van Breusegem, F., & Karpiński, S. (2017). The dual role of Lesion Simulating Disease 1 as a condition-dependent scaffold protein and transcription regulator. Plant, Cell & Environment, 40(11), 2644-2662. doi:10.1111/pce.12994
CrossrefPubMedGoogle Scholar

Darvizheh, H., Zahedi, M., Abbaszadeh, B., & Razmjoo, J. (2019). Changes in some antioxidant enzymes and physiological indices of purple coneflower (Echinacea purpurea L.) in response to water deficit and foliar application of salicylic acid and spermine under field condition. Scientia Horticulturae, 247, 390-399. doi:10.1016/j.scienta.2018.12.037
CrossrefGoogle Scholar

Dat, J. F., Foyer, C. H., & Scott, I. M. (1998a). Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiology, 118(4), 1455-1461. doi:10.1104/pp.118.4.1455
CrossrefPubMedPMCGoogle Scholar

Dat, J. F., Lopez-Delgado, H., Foyer, C. H., & Scott, I. M. (1998b). Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiology, 116(4), 1351-1357. doi:10.1104/pp.116.4.1351
CrossrefPubMedPMCGoogle Scholar

Dawood, M. F. A., Zaid, A., & Latef, A. A. H. A. (2021). Salicylic acid spraying-induced resilience strategies against the damaging impacts of drought and/or salinity stress in two varieties of Vicia faba L. seedlings. Journal of Plant Growth Regulation, 41(5), 1919-1942. doi:10.1007/s00344-021-10381-8
CrossrefGoogle Scholar

Deenamo, N., Kuyyogsuy, A., Khompatara, K., Chanwun, T., Ekchaweng, K., & Churngchow, N. (2018). Salicylic acid induces resistance in rubber tree against Phytophthora palmivora. International Journal of Molecular Sciences, 19(7), 1883. doi:10.3390/ijms19071883
CrossrefPubMedPMCGoogle Scholar

Dempsey, D. A., & Klessig, D. F. (2017). How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans? BMC Biology, 15(1), 23. doi:10.1186/s12915-017-0364-8
CrossrefPubMedPMCGoogle Scholar

Dempsey, D. A., Vlot, A. C., Wildermuth, M. C., & Klessig, D. F. (2011). Salicylic acid biosynthesis and metabolism. The Arabidopsis Book, 9, e0156. doi:10.1199/tab.0156
CrossrefPubMedPMCGoogle Scholar

Dinler, B., Demir, E., & Kompe, Y. (2014). Regulation of auxin, abscisic acid and salicylic acid levels by ascorbate application under heat stress in sensitive and tolerant maize leaves. Acta Biologica Hungarica, 65(4), 469-480. doi:10.1556/abiol.65.2014.4.10
CrossrefPubMedGoogle Scholar

Ding, Y., Fan, B., Zhu, C., & Chen, Z. (2023). Shared and related molecular targets and actions of salicylic acid in plants and humans. Cells, 12(2), 219. doi:10.3390/cells12020219
CrossrefPubMedPMCGoogle Scholar

Erb, M., Meldau, S., & Howe, G. A. (2012). Role of phytohormones in insect-specific plant reactions. Trends in Plant Science, 17(5), 250-259. doi:10.1016/j.tplants.2012.01.003
CrossrefPubMedPMCGoogle Scholar

Esmailzade, M., Soleimani, M. J., & Rouhani, H. (2008). Exogenous applications of salicylic acid for inducing systemic acquired resistance against tomato stem canker disease. Journal of Biological Sciences, 8(6), 1039-1044. doi:10.3923/jbs.2008.1039.1044
CrossrefGoogle Scholar

Estaji, A., & Niknam, F. (2020). Foliar salicylic acid spraying effect' on growth, seed oil content, and physiology of drought-stressed Silybum marianum L. plant. Agricultural Water Management, 234, 106116. doi:10.1016/j.agwat.2020.106116
CrossrefGoogle Scholar

Faraz, A., Faizan, M., Sami, F., Siddiqui, H., & Hayat, S. (2019). Supplementation of salicylic acid and citric acid for alleviation of cadmium toxicity to Brassica juncea. Journal of Plant Growth Regulation, 39(2), 641-655. doi:10.1007/s00344-019-10007-0
CrossrefGoogle Scholar

Filgueiras, C. C., Martins, A. D., Pereira, R. V., & Willett, D. S. (2019). The ecology of salicylic acid signaling: primary, secondary and tertiary effects with applications in agriculture. International Journal of Molecular Sciences, 20(23), 5851. doi:10.3390/ijms20235851
CrossrefPubMedPMCGoogle Scholar

Fu, Z. Q., & Dong, X. (2013). Systemic acquired resistance: turning local infection into global defense. Annual Review of Plant Biology, 64(1), 839-863. doi:10.1146/annurev-arplant-042811-105606
CrossrefPubMedGoogle Scholar

Fu, Z. Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., Mohan, R., Spoel, S. H., Tada, Y., Zheng, N., & Dong, X. (2012). NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature, 486 (7402), 228-232. doi:10.1038/nature11162
CrossrefPubMedPMCGoogle Scholar

Gadzovaska, S., Maury, S., Delaunay, A., Spasenoski, M., Hagege, D., Courtois, D., Joseph, C. (2013). The influence of salicylic acid elicitation on shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell Tissue Organ Culture, 113, 25-39. doi:10.1007/s11240-012-0248-0
CrossrefGoogle Scholar

Galván-Camacho, L. A., Feregrino-Pérez, A. A., De Moure-Flores, F. J., Morales-Hernández, L. A., Campos-Guillen, J., Rodríguez-Morales, J. A., Flores-Macias, A., Quezada-Morales, D. L., Zavala-Gómez, C. E., & Ramos-López, M. A. (2022). Assessment of salicylic acid in castor oil content increase in emissions of its biodiesel blends. Energies, 15(24), 9463. doi:10.3390/en15249463
CrossrefGoogle Scholar

Gao, Q.M., Zhu, S., Kachroo, P., & Kachroo, A. (2015). Signal regulators of systemic acquired resistance. Frontiers in Plant Science, 06. doi:10.3389/fpls.2015.00228
CrossrefGoogle Scholar

García-Pastor, M. E., Zapata, P. J., Castillo, S., Martínez-Romero, D., Guillén, F., Valero, D., & Serrano, M. (2020). The effects of salicylic acid and its derivatives on increasing pomegranate fruit quality and bioactive compounds at harvest and during storage. Frontiers in Plant Science, 11. doi:10.3389/fpls.2020.00668
CrossrefPubMedPMCGoogle Scholar

Gorni, P. H., & Pacheco, A. C. (2016). Growth promotion and elicitor activity of salicylic acid in Achillea millefolium L. African Journal of Biotechnology, 15(16), 657-665. doi:10.5897/ajb2016.15320
CrossrefGoogle Scholar

Gozzo, F., & Faoro, F. (2013). Systemic acquired resistance (50 years after discovery): moving from the lab to the field. Journal of Agricultural and Food Chemistry, 61(51), 12473-12491. doi:10.1021/jf404156x
CrossrefPubMedGoogle Scholar

Grobelak, A., & Hiller, J. (2017). Bacterial siderophores promote plant growth: screening of catechol and hydroxamate siderophores. International Journal of Phytoremediation, 19(9), 825-833. doi:10.1080/15226514.2017.1290581
CrossrefPubMedGoogle Scholar

Gu, X. Y., Liu, Y., & Liu, L. J. (2020). Progress on the biosynthesis and signal transduction of phytohormone salicylic acid. Yi chuan = Hereditas, 42(9), 858-869. doi:10.16288/j.yczz.20-173
CrossrefPubMedGoogle Scholar

Guichard, B., Wu, H., La Camera, S., Hu, R., Marivingt-Mounir, C., & Chollet, J. (2022). Synthesis, phloem mobility and induced plant resistance of synthetic salicylic acid amino acid or glucose conjugates. Pest Management Science, 78(11), 4913-4928. doi:10.1002/ps.7112
CrossrefPubMedPMCGoogle Scholar

Guo, B., Liu, C., Liang, Y., Li, N., & Fu, Q. (2019). Salicylic acid signals plant defence against cadmium toxicity. International Journal of Molecular Sciences, 20(12), 2960. doi:10.3390/ijms20122960
CrossrefPubMedPMCGoogle Scholar

Gupta, A., Hisano, H., Hojo, Y., Matsuura, T., Ikeda, Y., Mori, I. C., & Senthil-Kumar, M. (2017). Global profiling of phytohormone dynamics during combined drought and pathogen stress in Arabidopsis thaliana reveals ABA and JA as major regulators. Scientific Reports, 7(1). doi:10.1038/s41598-017-03907-2
CrossrefPubMedPMCGoogle Scholar

Hafez, E. M., Kheir, A. M. S., Badawy, S. A., Rashwan, E., Farig, M., & Osman, H. S. (2020). Differences in physiological and biochemical attributes of wheat in response to single and combined salicylic acid and biochar subjected to limited water irrigation in saline sodic soil. Plants, 9(10), 1346. doi:10.3390/plants9101346
CrossrefPubMedPMCGoogle Scholar

Haidoulis, J. F., & Nicholson, P. (2020). Different effects of phytohormones on Fusarium head blight and Fusarium root rot resistance in Brachypodium distachyon. Journal of Plant Interactions, 15(1), 335-344. doi:10.1101/2020.06.26.173385
CrossrefGoogle Scholar

Haider, S.A., Ahmad, S., Sattar Khan, A., Anjum, M. A., Nasir, M., & Naz, S. (2020). Effects of salicylic acid on postharvest fruit quality of "Kinnow" mandarin under cold storage. Scientia Horticulturae, 259, 108843. doi:10.1016/j.scienta.2019.108843
CrossrefGoogle Scholar

Hao, G., Naumann, T. A., Vaughan, M. M., McCormick, S., Usgaard, T., Kelly, A., & Ward, T. J. (2019). Characterization of a Fusarium graminearum salicylate hydroxylase. Frontiers in Microbiology, 9, 3219. doi:10.3389/fmicb.2018.03219
CrossrefPubMedPMCGoogle Scholar

Hasanuzzaman, M., Matin, Md. A., Fardus, J., Hasanuzzaman, Md., Hossain, Md. S., & Parvin, K. (2019). Foliar application of salicylic acid improves growth and yield attributes by upregulating the antioxidant defense system in Brassica campestris plants grown in lead-amended soils. Acta Agrobotanica, 72(2). doi:10.5586/aa.1765
CrossrefGoogle Scholar

Heil, M. (2002). Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends in Plant Science, 7(2), 61-67. doi:10.1016/s1360-1385(01)02186-0
CrossrefPubMedGoogle Scholar

Horváth, E., Csiszár, J., Gallé, Á., Poór, P., Szepesi, Á., & Tari, I. (2015). Hardening with salicylic acid induces concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress. Journal of Plant Physiology, 183, 54-63. doi:10.1016/j.jplph.2015.05.010
CrossrefPubMedGoogle Scholar

Huang, W., Wang, Y., Li, X., & Zhang, Y. (2020). Biosynthesis and regulation of salicylic acid and N-hydroxypipecolic acid in plant immunity. Molecular Plant, 13(1), 31-41. doi:10.1016/j.molp.2019.12.008
CrossrefPubMedGoogle Scholar

Hubrich, F., Müller, M., & Andexer, J. N. (2021). Chorismate- and isochorismate converting enzymes: versatile catalysts acting on an important metabolic node. Chemical Communications, 57(20), 2441-2463. doi:10.1039/d0cc08078k
CrossrefPubMedGoogle Scholar

Islam, F., Yasmeen, T., Arif, M. S., Riaz, M., Shahzad, S. M., Imran, Q., & Ali, I. (2016). Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants. Plant Physiology and Biochemistry, 108, 456-467. doi:10.1016/j.plaphy.2016.08.014
CrossrefPubMedGoogle Scholar

Jahan, S. M., Wang, Y., Shu, S., Zhong, M., Chen, Z., Wu, J., Sun, J., & Guo, S. (2019). Exogenous salicylic acid increases the heat tolerance in Tomato (Solanum lycopersicum L.) by enhancing photosynthesis efficiency and improving antioxidant defense system through scavenging of reactive oxygen species. Scientia Horticulturae, 247, 421-429. doi:10.1016/j.scienta.2018.12.047
CrossrefGoogle Scholar

Jansen, C., von Wettstein, D., Schäfer, W., Kogel, K.-H., Felk, A., & Maier, F. J. (2005). Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proceedings of the National Academy of Sciences, 102(46), 16892-16897. doi:10.1073/pnas.0508467102
CrossrefPubMedPMCGoogle Scholar

Kang, H.-M., & Saltveit, M. E. (2002). Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiologia Plantarum, 115(4), 571-576. doi:10.1034/j.1399-3054.2002.1150411.x
CrossrefPubMedGoogle Scholar

Kavulych, Y., Kobyletska, M., & Terek, O. (2019). Investigation of salicylic acid-induced change on flavonoids production under cadmium toxicity in buckwheat (Fagopyrum esculentum Moench) plants. Eureka: Life Sciences, 5, 13-18. doi:10.21303/2504-5695.2019.00986
CrossrefGoogle Scholar

Khalvandi, M., Siosemardeh, A., Roohi, E., & Keramati, S. (2021). Salicylic acid alleviated the effect of drought stress on photosynthetic characteristics and leaf protein pattern in winter wheat. Heliyon, 7(1), e05908. doi:10.1016/j.heliyon.2021.e05908
CrossrefPubMedPMCGoogle Scholar

Khan, M. I. R., Iqbal, N., Masood, A., Per, T. S., & Khan, N. A. (2013). Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signaling & Behavior, 8(11), e26374. doi:10.4161/psb.26374
CrossrefPubMedPMCGoogle Scholar

Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A., & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00462
CrossrefGoogle Scholar

Khan, M. I. R., Poor, P., & Janda, T. (2022). Salicylic acid: a versatile signaling molecule in plants. Journal of Plant Growth Regulation, 41(5), 1887-1890. doi:10.1007/s00344-022-10692-4
CrossrefGoogle Scholar

Kim, J.-H., Han, J.-E., Murthy, H. N., Kim, J.-Y., Kim, M.-J., Jeong, T.-K., & Park, S.-Y. (2023). Production of secondary metabolites from cell cultures of Sageretia thea (Osbeck) M. C. Johnst. using balloon-type bubble bioreactors. Plants, 12(6), 1390. doi:10.3390/plants12061390
CrossrefPubMedPMCGoogle Scholar

Kjærbølling, I., Mortensen, U. H., Vesth, T., & Andersen, M. R. (2019). Strategies to establish the link between biosynthetic gene clusters and secondary metabolites. Fungal Genetics and Biology, 130, 107-121. doi:10.1016/j.fgb.2019.06.001
CrossrefPubMedGoogle Scholar

Klessig, D. F., Tian, M., & Choi, H. W. (2016). Multiple targets of salicylic acid and its derivatives in plants and animals. Frontiers in Immunology, 7, 206. doi:10.3389/fimmu.2016.00206
CrossrefPubMedPMCGoogle Scholar

Klessig, D. F., Choi, H. W., & Dempsey, D. A. (2018). Systemic acquired resistance and salicylic acid: past, present, and future. Molecular Plant-Microbe Interactions, 31(9), 871-888. doi:10.1094/mpmi-03-18-0067-cr
CrossrefPubMedGoogle Scholar

Kobyletska, M., Kavulych, Y., Romanyuk, N., Korchynska, O., & Terek, O. (2023). Exogenous salicylic acid modifies cell wall lignification, total phenolic content, PAL-activity in wheat (Triticum aestivum L.) and buckwheat (Fagopyrum esculentum Moench) plants under cadmium chloride impac. Biointerface Research in Applied Chemistry, 13(2), 117. doi:10.33263/briac132.117
CrossrefGoogle Scholar

Kolupaev, Yu. E., Yastreb, T. O., Shvidenko, M., & Karpets, Yu. (2011). Influence of salicylic and succinic acids on formation of active oxygen forms in wheat coleoptiles. Ukrains'kyi Biokhimichnyi Zhurnal, 83(5), 82-88. (In Ukrainian)
PubMedGoogle Scholar

Kolupaev, Yu. E., Yastreb, T. O., Shkliarevskyi, M. A., Karpets, Yu. V., & Dyachenko, A. I. (2021). Salicylic acid: synthesis and stress-protective effects in plants. The Bulletin of Kharkiv National Agrarian University. Series Biology, 2021(2), 6-22. doi:10.35550/vbio2021.02.006 (In Ukrainian)
CrossrefGoogle Scholar

Koo, Y. M., Heo, A. Y., & Choi, H. W. (2020). Salicylic acid as a safe plant protector and growth regulator. The Plant Pathology Journal, 36(1), 1-10. doi:10.5423/ppj.rw.12.2019.0295
CrossrefPubMedPMCGoogle Scholar

Kou, M.-Z., Bastías, D. A., Christensen, M. J., Zhong, R., Nan, Z.-B., & Zhang, X.-X. (2021). The plant salicylic acid signalling pathway regulates the infection of a biotrophic pathogen in grasses associated with an Epichloë endophyte. Journal of Fungi, 7(8), 633. doi:10.3390/jof7080633
CrossrefPubMedPMCGoogle Scholar

Le Thanh, T., Thumanu, K., Wongkaew, S., Boonkerd, N., Teaumroong, N., Phansak, P., & Buensanteai, N. (2017). Salicylic acid-induced accumulation of biochemical components associated with resistance against Xanthomonas oryzae pv. oryzae in rice. Journal of Plant Interactions, 12(1), 108-120. doi:10.1080/17429145.2017.1291859
CrossrefGoogle Scholar

Lefevere, H., Bauters, L., & Gheysen, G. (2020). Salicylic acid biosynthesis in plants. Frontiers in Plant Science, 11. doi:10.3389/fpls.2020.00338
CrossrefPubMedPMCGoogle Scholar

Li, A., Sun, X., & Liu, L. (2022). Action of salicylic acid on plant growth. Frontiers in Plant Science, 13, 878076. doi:10.3389/fpls.2022.878076
CrossrefPubMedPMCGoogle Scholar

Li, G., & Yen, Y. (2008). Jasmonate and ethylene signaling pathway may mediate Fusarium head blight resistance in wheat. Crop Science, 48(5), 1888-1896. doi:10.2135/cropsci2008.02.0097
CrossrefGoogle Scholar

Li, N., Han, X., Feng, D., Yuan, D., & Huang, L.-J. (2019). Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense: do we understand what they are whispering? International Journal of Molecular Sciences, 20(3), 671. doi:10.3390/ijms20030671
CrossrefPubMedPMCGoogle Scholar

Liang, B., Wang, H., Yang, C., Wang, L., Qi, L., Guo, Z., & Chen, X. (2022). Salicylic acid is required for broad-spectrum disease resistance in rice. International Journal of Molecular Sciences, 23(3), 1354. doi:10.3390/ijms23031354
CrossrefPubMedPMCGoogle Scholar

Liu, H.-T., Huang, W.-D., Pan, Q.-H., Weng, F.-H., Zhan, J.-C., Liu, Y., Wan, S.-B., & Liu, Y.-Y. (2006). Contributions of PIP2-specific-phospholipase C and free salicylic acid to heat acclimation-induced thermotolerance in pea leaves. Journal of Plant Physiology, 163(4), 405-416. doi:10.1016/j.jplph.2005.04.027
CrossrefPubMedGoogle Scholar

Liu, J., Qiu, G., Liu, C., Li, H., Chen, X., Fu, Q., Lin, Y., & Guo, B. (2022). Salicylic acid, a multifaceted hormone, combats abiotic stresses in plants. Life, 12(6), 886. doi:10.3390/life12060886
CrossrefPubMedPMCGoogle Scholar

Lucas, J. A., Hawkins, N. J., & Fraaije, B. A. (2015). The evolution of fungicide resistance. Advances in Applied Microbiology, 29-92. doi:10.1016/bs.aambs.2014.09.001
CrossrefPubMedGoogle Scholar

Makandar, R., Nalam, V. J., Lee, H., Trick, H. N., Dong, Y., & Shah, J. (2012). Salicylic acid regulates basal resistance to Fusarium head blight in wheat. Molecular Plant-Microbe Interactions, 25(3), 431-439. doi:10.1094/mpmi-09-11-0232
CrossrefPubMedGoogle Scholar

Makar, O. O., & Romanyuk, N. D. (2022). Endophytic bacteria of wheat and the potential to improve microelement composition of grain. Studia Biologica, 16(3), 101-128. doi:10.30970/sbi.1603.692
CrossrefGoogle Scholar

Makar, O., Kuźniar, A., Patsula, O., Kavulych, Y., Kozlovskyy, V., Wolińska, A., Skórzyńska-Polit, E., Vatamaniuk, O., Terek, O., & Romanyuk, N. (2021). Bacterial endophytes of spring wheat grains and the potential to acquire Fe, Cu, and Zn under their low soil bioavailability. Biology, 10(5), 409. doi:10.3390/biology10050409
CrossrefPubMedPMCGoogle Scholar

Mahalakshmi, R., Eganathan, P., & Ajay, P. (2013). Changes in secondary metabolite production in Jatropha curcas calluses treated with NaCl. Analytical Chemistry Letters, 3(5-6), 359-369. doi:10.1080/22297928.2013.873225
CrossrefGoogle Scholar

Majumdar, S., Sachdev, S., & Kundu, R. (2020). Salicylic acid mediated reduction in grain cadmium accumulation and amelioration of toxicity in Oryza sativa L. cv Bandana. Ecotoxicology and Environmental Safety, 205, 111167. doi:10.1016/j.ecoenv.2020.111167
CrossrefPubMedGoogle Scholar

Maruri-López, I., Aviles-Baltazar, N. Y., Buchala, A., & Serrano, M. (2019). Intra and extracellular journey of the phytohormone salicylic acid. Frontiers in Plant Science, 10, 423. doi:10.3389/fpls.2019.00423
CrossrefPubMedPMCGoogle Scholar

Mishra, A., & Baek, K.-H. (2021). Salicylic acid biosynthesis and metabolism: a divergent pathway for plants and bacteria. Biomolecules, 11(5), 705. doi:10.3390/biom11050705
CrossrefPubMedPMCGoogle Scholar

Mishra, S., Bhardwaj, M., Mehrotra, S., Chowdhary, A. A., & Srivastava, V. (2020). The contribution of phytohormones in plant thermotolerance. Heat Stress Tolerance in Plants, 213-238. doi:10.1002/9781119432401.ch10
CrossrefGoogle Scholar

Mohammed, N., El-Hendawy, S., Alsamin, B., Mubushar, M., & Dewir, Y. H. (2023). Integrating application methods and concentrations of salicylic acid as an avenue to enhance growth, production, and water use efficiency of wheat under full and deficit Irrigation in arid countries. Plants, 12(5), 1019. doi:10.3390/plants12051019
CrossrefPubMedPMCGoogle Scholar

Momeni, M., Pirbalouti, A. G., Mousavi, A., & Badi, H. N. (2020). Effect of foliar applications of salicylic acid and chitosan on the essential oil of Thymbra spicata L. under different soil moisture conditions. Journal of Essential Oil Bearing Plants, 23(5), 1142-1153. doi:10.1080/0972060x.2020.1801519
CrossrefGoogle Scholar

Moussa, H. R., & El-Gamal, S. M. (2010). Effect of salicylic acid pretreatment on cadmium toxicity in wheat. Biologia Plantarum, 54(2), 315-320. doi:10.1007/s10535-010-0054-7
CrossrefGoogle Scholar

Mutlu, S., Karadağoğlu, Ö., Atici, Ö., & Nalbantoğlu, B. (2013). Protective role of salicylic acid applied before cold stress on antioxidative system and protein patterns in barley apoplast. Biologia Plantarum, 57(3), 507-513. doi:10.1007/s10535-013-0322-4
CrossrefGoogle Scholar

Napoleão, T. A., Soares, G., Vital, C. E., Bastos, C., Castro, R., Loureiro, M. E., & Giordano, A. (2017). Methyl jasmonate and salicylic acid are able to modify cell wall but only salicylic acid alters biomass digestibility in the model grass Brachypodium distachyon. Plant Science, 263, 46-54. doi:10.1016/j.plantsci.2017.06.014
CrossrefPubMedGoogle Scholar

Nawrath, C., Heck, S., Parinthawong, N., & Métraux, J.-P. (2002). EDS5, an essential component of salicylic acid - dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. The Plant Cell, 14(1), 275-286. doi:10.1105/tpc.010376
CrossrefPubMedPMCGoogle Scholar

Pan, Q., Zhan, J., Liu, H., Zhang, J., Chen, J., Wen, P., & Huang, W. (2006). Salicylic acid synthesized by benzoic acid 2-hydroxylase participates in the development of thermotolerance in pea plants. Plant Science, 171(2), 226-233. doi:10.1016/j.plantsci.2006.03.012
CrossrefGoogle Scholar

Parinthawong, N., Cottier, S., Buchala, A., Nawrath, C., & Métraux, J.-P. (2015). Localization and expression of EDS5H a homologue of the SA transporter EDS5. BMC Plant Biology, 15(1). doi:10.1186/s12870-015-0518-1
CrossrefPubMedPMCGoogle Scholar

Park, S.-W., Kaimoyo, E., Kumar, D., Mosher, S., & Klessig, D. F. (2007). Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science, 318(5847), 113-116. doi:10.1126/science.1147113
CrossrefPubMedGoogle Scholar

Parry, D. W., Jenkinson, P., & McLeod, L. (1995). Fusarium ear blight (scab) in small grain cereals - a review. Plant Pathology, 44(2), 207-238. doi:10.1111/j.1365-3059.1995.tb02773.x
CrossrefGoogle Scholar

Peng, Y., Yang, J., Li, X., & Zhang, Y. (2021). Salicylic acid: biosynthesis and signaling. Annual Review of Plant Biology, 72(1), 761-791. doi:10.1146/annurev-arplant-081320-092855
CrossrefPubMedGoogle Scholar

Pluhařová, K., Leontovyčová, H., Stoudková, V., Pospíchalová, R., Maršík, P., Klouček, P., Starodubtseva, A., Iakovenko, O., Krčková, Z., Valentová, O., Burketová, L., Janda, M., & Kalachova, T. (2019). "Salicylic acid mutant collection" as a tool to explore the role of salicylic acid in regulation of plant growth under a changing environment. International Journal of Molecular Sciences, 20(24), 6365. doi:10.3390/ijms20246365
CrossrefPubMedPMCGoogle Scholar

Pokotylo, I., Kravets, V., & Ruelland, E. (2019). Salicylic acid binding proteins (SABPs): the hidden forefront of salicylic acid signalling. International Journal of Molecular Sciences, 20(18), 4377. doi:10.3390/ijms20184377
CrossrefPubMedPMCGoogle Scholar

Powell, J. J., Carere, J., Fitzgerald, T. L., Stiller, J., Covarelli, L., Xu, Q., Gubler, F., Colgrave, M. L., Gardiner, D. M., Manners, J. M., Henry, R. J., & Kazan, K. (2016). The Fusarium crown rot pathogen Fusarium pseudograminearum triggers a suite of transcriptional and metabolic changes in bread wheat (Triticum aestivum L.). Annals of Botany, mcw207. doi:10.1093/aob/mcw207
CrossrefPubMedPMCGoogle Scholar

Qi, P.-F., Zhang, Y.-Z., Liu, C.-H., Chen, Q., Guo, Z.-R., Wang, Y., Xu, B.-J., Jiang, Y.-F., Zheng, T., Gong, X., Luo, C.-H., Wu, W., Kong, L., Deng, M., Ma, J., Lan, X.-J., Jiang, Q.-T., Wei, Y.-M., Wang, J.-R., & Zheng, Y.-L. (2019). Functional analysis of FgNahG clarifies the contribution of salicylic acid to wheat (Triticum aestivum) resistance against Fusarium head blight. Toxins, 11(2), 59. doi:10.3390/toxins11020059
CrossrefPubMedPMCGoogle Scholar

Ramirez-Estrada, K., Vidal-Limon, H., Hidalgo, D., Moyano, E., Golenioswki, M., Cusidó, R., & Palazon, J. (2016). Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules, 21(2), 182. doi:10.3390/molecules21020182
CrossrefPubMedPMCGoogle Scholar

Raskin, I. (1992). Role of salicylic acid in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 43(1), 439-463. doi:10.1146/annurev.pp.43.060192.002255
CrossrefGoogle Scholar

Raskin, I., Ehmann, A., Melander, W. R., & Meeuse, B. J. D. (1987). Salicylic acid: a natural inducer of heat production in Arum lilies. Science, 237(4822), 1601-1602. doi:10.1126/science.237.4822.1601
CrossrefPubMedGoogle Scholar

Ratzinger, A., Riediger, N., von Tiedemann, A., & Karlovsky, P. (2009). Salicylic acid and salicylic acid glucoside in xylem sap of Brassica napus infected with Verticillium longisporum. Journal of Plant Research, 122(5), 571-579. doi:10.1007/s10265-009-0237-5
CrossrefPubMedPMCGoogle Scholar

Rekhter, D., Lüdke, D., Ding, Y., Feussner, K., Zienkiewicz, K., Lipka, V., Wiermer, M., Zhang, Y., & Feussner, I. (2019). Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science, 365(6452), 498-502. doi:10.1126/science.aaw1720
CrossrefPubMedGoogle Scholar

Research and Markets. (2022, June 17). The worldwide salicylic acid industry is projected to reach $886 million by 2030. Globe Newswire News Room. Retrieved from https://www.globenewswire.com/en/news-release/2022/06/17/2464645/28124/en/The-Worldwide-Salicylic-Acid-Industry-is-Projected-to-Reach-886-Million-by-2030.html

Robert-Seilaniantz, A., Grant, M., & Jones, J. D. G. (2011). Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annual Review of Phytopathology, 49(1), 317-343. doi:10.1146/annurev-phyto-073009-114447
CrossrefPubMedGoogle Scholar

Saleem, M., Fariduddin, Q., & Castroverde, C. D. M. (2021). Salicylic acid: a key regulator of redox signalling and plant immunity. Plant Physiology and Biochemistry, 168, 381-397. doi:10.1016/j.plaphy.2021.10.011
CrossrefPubMedGoogle Scholar

Sambyal, K., & Singh, R. V. (2021). Production of salicylic acid; a potent pharmaceutically active agent and its future prospects. Critical Reviews in Biotechnology, 41(3), 394-405. doi:10.1080/07388551.2020.1869687
CrossrefPubMedGoogle Scholar

Sanmartín, N., Pastor, V., Pastor-Fernández, J., Flors, V., Pozo, M. J., & Sánchez-Bel, P. (2020). Role and mechanisms of callose priming in mycorrhiza-induced resistance. Journal of Experimental Botany, 71(9), 2769-2781. doi:10.1093/jxb/eraa030
CrossrefPubMedPMCGoogle Scholar

Schmid, J., Day, R., Zhang, N., Dupont, P.-Y., Cox, M. P., Schardl, C. L., Minards, N., Truglio, M., Moore, N., Harris, D. R., & Zhou, Y. (2017). Host tissue environment directs activities of an Epichloë endophyte, while it induces systemic hormone and defense responses in its native perennial ryegrass host. Molecular Plant-Microbe Interactions, 30(2), 138-149. doi:10.1094/mpmi-10-16-0215-r
CrossrefPubMedGoogle Scholar

Schreinemachers, P., & Tipraqsa, P. (2012). Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy, 37(6), 616-626. doi:10.1016/j.foodpol.2012.06.003
CrossrefGoogle Scholar

Scott, I. M., Clarke, S. M., Wood, J. E., & Mur, L. A. J. (2004). Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiology, 135(2), 1040-1049. doi:10.1104/pp.104.041293
CrossrefPubMedPMCGoogle Scholar

Serrano, M., Wang, B., Aryal, B., Garcion, C., Abou-Mansour, E., Heck, S., Geisler, M., Mauch, F., Nawrath, C., & Métraux, J.-P. (2013). Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5. Plant Physiology, 162(4), 1815-1821. doi:10.1104/pp.113.218156
CrossrefPubMedPMCGoogle Scholar

Seyfferth, C., & Tsuda, K. (2014). Salicylic acid signal transduction: the initiation of biosynthesis, perception and transcriptional reprogramming. Frontiers in Plant Science, 5, 697. doi:10.3389/fpls.2014.00697
CrossrefPubMedPMCGoogle Scholar

Shah, K., An, N., Kamanova, S., Chen, L., Jia, P., Zhang, C., Mobeen Tahir, M., Han, M., Ding, Y., Ren, X., & Xing, L. (2021). Regulation of flowering time by improving leaf health markers and expansion by salicylic acid treatment: a new approach to induce flowering in Malus domestica. Frontiers in Plant Science, 12. doi:10.3389/fpls.2021.655974
CrossrefPubMedPMCGoogle Scholar

Sharma, A., Sidhu, G. P. S., Araniti, F., Bali, A. S., Shahzad, B., Tripathi, D. K., Brestic, M., Skalicky, M., & Landi, M. (2020). The role of salicylic acid in plants exposed to heavy metals. Molecules, 25(3), 540. doi:10.3390/molecules25030540
CrossrefPubMedPMCGoogle Scholar

Sharma, M., Gupta, S. K., Majumder, B., Maurya, V. K., Deeba, F., Alam, A., & Pandey, V. (2017). Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress. Journal of Proteomics, 163, 28-51. doi:10.1016/j.jprot.2017.05.011
CrossrefPubMedGoogle Scholar

Shehroz, M., Aslam, M., Ali Khan, M., Aiman, S., Gul Afridi, S., & Khan, A. (2019). The in silico characterization of a salicylic acid analogue coding gene clusters in selected Pseudomonas fluorescens strains. Iranian Journal of Biotechnology, 17, e2250. doi:10.30498/ijb.2019.95299
CrossrefPubMedPMCGoogle Scholar

Shelton, C. L., & Lamb, A. L. (2018). Unraveling the structure and mechanism of the MST(ery) enzymes. Trends in Biochemical Sciences, 43(5), 342-357. doi:10.1016/j.tibs.2018.02.011
CrossrefPubMedPMCGoogle Scholar

Shi, X., Qin, T., Liu, H., Wu, M., Li, J., Shi, Y., Gao, Y., & Ren, A. (2020). Endophytic fungi activated similar defense strategies of Achnatherum sibiricum host to different trophic types of pathogens. Frontiers in Microbiology, 11, 1607. doi:10.3389/fmicb.2020.01607
CrossrefPubMedPMCGoogle Scholar

Snoeren, T. A. L., Mumm, R., Poelman, E. H., Yang, Y., Pichersky, E., & Dicke, M. (2010). The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum. Journal of Chemical Ecology, 36(5), 479-489. doi:10.1007/s10886-010-9787-1
CrossrefPubMedPMCGoogle Scholar

Soliman, M. H., Alayafi, A. A. M., El Kelish, A. A., & Abu-Elsaoud, A. M. (2018). Acetylsalicylic acid enhance tolerance of Phaseolus vulgaris L. to chilling stress, improving photosynthesis, antioxidants and expression of cold stress responsive genes. Botanical Studies, 59(1), 6. doi:10.1186/s40529-018-0222-1
CrossrefPubMedPMCGoogle Scholar

Sorahinobar, M., Niknam, V., Ebrahimzadeh, H., Soltanloo, H., Behmanesh, M., & Enferadi, S. T. (2015). Central role of salicylic acid in resistance of wheat against Fusarium graminearum. Journal of Plant Growth Regulation, 35(2), 477-491. doi:10.1007/s00344-015-9554-1
CrossrefGoogle Scholar

Souri, M. K., & Tohidloo, G. (2019). Effectiveness of different methods of salicylic acid application on growth characteristics of tomato seedlings under salinity. Chemical and Biological Technologies in Agriculture, 6(1), 26. doi:10.1186/s40538-019-0169-9
CrossrefGoogle Scholar

Stanislawska-Glubiak, E., & Korzeniowska, J. (2021). Effect of salicylic acid foliar application on two wheat cultivars grown under zinc stress. Agronomy, 12(1), 60. doi:10.3390/agronomy12010060
CrossrefGoogle Scholar

Su, H., Song, S., Yan, X., Fang, L., Zeng, B., & Zhu, Y. (2018). Endogenous salicylic acid shows different correlation with baicalin and baicalein in the medicinal plant Scutellaria baicalensis Georgi subjected to stress and exogenous salicylic acid. PLoS One, 13(2), e0192114. doi:10.1371/journal.pone.0192114
CrossrefPubMedPMCGoogle Scholar

Takagi, K., Tasaki, K., Komori, H., & Katou, S. (2022). Hypersensitivity-related genes HSR201 and HSR203J are regulated by calmodulin-binding protein 60-type transcription factors and required for pathogen signal-induced salicylic acid synthesis. Plant and Cell Physiology, 63(7), 1008-1022. doi:10.1093/pcp/pcac074
CrossrefPubMedGoogle Scholar

Torrens-Spence, M. P., Bobokalonova, A., Carballo, V., Glinkerman, C. M., Pluskal, T., Shen, A., & Weng, J.-K. (2019). PBS3 and EPS1 complete salicylic acid biosynthesis from isochorismate in Arabidopsis. Molecular Plant, 12(12), 1577-1586. doi:10.1016/j.molp.2019.11.005
CrossrefPubMedGoogle Scholar

Tran, P. N., Yen, M.-R., Chiang, C.-Y., Lin, H.-C., & Chen, P.-Y. (2019). Detecting and prioritizing biosynthetic gene clusters for bioactive compounds in bacteria and fungi. Applied Microbiology and Biotechnology, 103(8), 3277-3287. doi:10.1007/s00253-019-09708-z
CrossrefPubMedPMCGoogle Scholar

Tsuda, K., Sato, M., Stoddard, T., Glazebrook, J., & Katagiri, F. (2009). Network properties of robust immunity in plants. PLoS Genetics, 5(12), e1000772. doi:10.1371/journal.pgen.1000772
CrossrefPubMedPMCGoogle Scholar

Vaca, E., Behrens, C., Theccanat, T., Choe, J.-Y., & Dean, J. V. (2017). Mechanistic differences in the uptake of salicylic acid glucose conjugates by vacuolar membrane-enriched vesicles isolated from Arabidopsis thaliana. Physiologia Plantarum, 161(3), 322-338. doi:10.1111/ppl.12602
CrossrefPubMed ● Google Scholar

Vlot, A. C., Dempsey, D. A., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 47(1), 177-206. doi:10.1146/annurev.phyto.050908.135202
CrossrefPubMedGoogle Scholar

Wallis, C. M., & Galarneau, E. R.-A. (2020). Phenolic compound induction in plant-microbe and plant-insect interactions: a meta-analysis. Frontiers in Plant Science, 11, 580753. doi:10.3389/fpls.2020.580753
CrossrefPubMedPMCGoogle Scholar

Walters, D. R., Ratsep, J., & Havis, N. D. (2013). Controlling crop diseases using induced resistance: challenges for the future. Journal of Experimental Botany, 64(5), 1263-1280. doi:10.1093/jxb/ert026
CrossrefPubMedGoogle Scholar

Wang, C., Liu, Y., Li, S.-S., & Han, G.-Z. (2015). Insights into the origin and evolution of the plant hormone signaling machinery. Plant Physiology, 167(3), 872-886. doi:10.1104/pp.114.247403
CrossrefPubMedPMCGoogle Scholar

Wang, F., Tan, H., Zhang, Y., Huang, L., Bao, H., Ding, Y., Chen, Z., & Zhu, C. (2021). Salicylic acid application alleviates cadmium accumulation in brown rice by modulating its shoot to grain translocation in rice. Chemosphere, 263, 128034. doi:10.1016/j.chemosphere.2020.128034
CrossrefPubMedGoogle Scholar

Wang, W., Wang, X., Huang, M., Cai, J., Zhou, Q., Dai, T., Cao, W., & Jiang, D. (2018). Hydrogen peroxide and abscisic acid mediate salicylic acid-induced freezing tolerance in wheat. Frontiers in Plant Science, 9, 1137. doi:10.3389/fpls.2018.01137
CrossrefPubMedPMCGoogle Scholar

Wang, Y., & Liu, J.-H. (2012). Exogenous treatment with salicylic acid attenuates occurrence of citrus canker in susceptible navel orange (Citrus sinensis Osbeck). Journal of Plant Physiology, 169(12), 1143-1149. doi:10.1016/j.jplph.2012.03.018
CrossrefPubMedGoogle Scholar

Weber, T., & Kim, H. U. (2016). The secondary metabolite bioinformatics portal: computational tools to facilitate synthetic biology of secondary metabolite production. Synthetic and Systems Biotechnology, 1(2), 69-79. doi:10.1016/j.synbio.2015.12.002
CrossrefPubMedPMCGoogle Scholar

Widiastuti, A., Yoshino, M., Hasegawa, M., Nitta, Y., & Sato, T. (2013). Heat shock-induced resistance increases chitinase-1 gene expression and stimulates salicylic acid production in melon (Cucumis melo L.). Physiological and Molecular Plant Pathology, 82, 51-55. doi:10.1016/j.pmpp.2013.01.003
CrossrefGoogle Scholar

Xia, C., Zhang, X., Christensen, M. J., Nan, Z., & Li, C. (2015). Epichloë endophyte affects the ability of powdery mildew (Blumeria graminis) to colonise drunken horse grass (Achnatherum inebrians). Fungal Ecology, 16, 26-33. doi:10.1016/j.funeco.2015.02.003
CrossrefGoogle Scholar

Yang, J., Duan, L., He, H., Li, Y., Li, X., Liu, D., Wang, J., Jin, G., & Huang, S. (2021). Application of exogenous KH2PO4 and salicylic acid and optimization of the sowing date enhance rice yield under high-temperature conditions. Journal of Plant Growth Regulation, 41(4), 1532-1546. doi:10.1007/s00344-021-10399-y
CrossrefGoogle Scholar

Yamasaki, K., Motomura, Y., Yagi, Y., Nomura, H., Kikuchi, S., Nakai, M., & Shiina, T. (2013). Chloroplast envelope localization of EDS5, an essential factor for salicylic acid biosynthesis in Arabidopsis thaliana. Plant Signaling & Behavior, 8(4), e23603. doi:10.4161/psb.23603
CrossrefPubMedPMCGoogle Scholar

Zafar, Z., Rasheed, F., Mushtaq, N., Khan, M. U., Mohsin, M., Irshad, M. A., Summer, M., Raza, Z., & Gailing, O. (2023). Exogenous application of salicylic acid improves physiological and biochemical attributes of Morus alba saplings under soil water deficit. Forests, 14(2), 236. doi:10.3390/f14020236
CrossrefGoogle Scholar

Zavala-Gómez, C. E., Rodríguez-deLeón, E., Bah, M. M., Feregrino-Pérez, A. A., Campos-Guillén, J., Amaro-Reyes, A., Rodríguez-Morales, J. A., García-Trejo, J. F., Flores-Macias, A., Figueroa-Brito, R., & Ramos-López, M. A. (2021). Effect of salicylic acid in the yield of ricinine in Ricinus communis under greenhouse condition. Plants, 10(9), 1902. doi:10.3390/plants10091902
CrossrefPubMedPMCGoogle Scholar

Zhang, Y., & Li, X. (2019). Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Current Opinion in Plant Biology, 50, 29-36. doi:10.1016/j.pbi.2019.02.004
CrossrefPubMedGoogle Scholar

Zhang, Y., Li, S., Deng, M., Gui, R., Liu, Y., Chen, X., Lin, Y., Li, M., Wang, Y., He, W., Chen, Q., Zhang, Y., Luo, Y., Wang, X., & Tang, H. (2022). Blue light combined with salicylic acid treatment maintained the postharvest quality of strawberry fruit during refrigerated storage. Food Chemistry: X, 15, 100384. doi:10.1016/j.fochx.2022.100384
CrossrefPubMedPMCGoogle Scholar

Zhong, Q., Hu, H., Fan, B., Zhu, C., & Chen, Z. (2021). Biosynthesis and roles of salicylic acid in balancing stress response and growth in plants. International Journal of Molecular Sciences, 22(21), 11672. doi:10.3390/ijms222111672
CrossrefPubMedPMCGoogle Scholar

Zhou, Y., Memelink, J., & Linthorst, H. J. M. (2018). An E. coli biosensor for screening of cDNA libraries for isochorismate pyruvate lyase-encoding cDNAs. Molecular Genetics and Genomics, 293(5), 1181-1190. doi:10.1007/s00438-018-1450-5
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Yana Kavulych, Myroslava Kobyletska, Nataliya Romanyuk, Olga Terek

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.