STUDY OF THE EFFECT OF STATIC MAGNETIC FIELD ON SEED GERMINATION OF PHYSOSTEGIA VIRGINIANA ALBA (L.) BENTH.

Yu. Beno, M. Dyka, K. Skvarko


DOI: http://dx.doi.org/10.30970/sbi.0703.315

Abstract


The article presents the results of studing of the influence of static magnetic field on seed germination of Physostegia virginiana alba (L.) Benth (Fizostehiya Virginia). Stimulating effect of static magnetic field strength by 5.0–60.0 Еrsted towards germination of the plant was found. At an early stage (fourth and fifth days after seeding) germination of Physostegia virginiana alba (L.) Benth. depended on the duration of static magnetic field and on its strength in range of 5 to 60 Е. At the final stage (tenth day), this relationship was very weak. The stimulation effects upon seed germination were found at short-term influence of static magnetic field on the plant during all ten days of the experiment (exposure of seeds within 0.5–3.0 hours), with the exception of three-hour magnetic field strength at 60.0 Е. The first germinated seeds were found as soon as on the fourth day of the experiment. For a long-term action (duration 6.0 and 18.0 h) of a static magnetic field on seeds of Physostegia virginiana alba (L.) Benth., stimulation of seed germination was observed only starting from the seven day after seeding.


Keywords


Physostegia virginiana alba (L.) Benth, static magnetic field, seed ger­mination

References


1. Аксенов С.И., Булычев А.А., Грунина Т.Ю. О механизмах воздействия низкочастотного магнитного поля на начальной стадии прорастания семян пшеницы. Биофизика, 1996; 41 (4): 179-198.

2. Баран Б.А. Влияние магнитного поля на кинетику химических реакций. Укр. хим. журнал, 1998; 64 (4): 26-29.

3. Бено Ю., Дика М., Скварко К. Ростові процеси у дурману звичайного за дії постійного магнітного поля. VI Міжнар. наук. конф. студентів та аспірантів "Молодь і поступ біології", 2010; 6: 6-7.

4. Рошко В.Г., Роман В.В. Влияние электромагнитного поля линий электропередач на покрытосеменные растения. Наук. вiсн. Ужгор. Ун-ту. сер. Бiол, 1997; 4: 122-128.

5. Cкрипа І.Д., Пашковський М.В., Скварко К.О. Вплив постійного магнітного поля на ростові процеси у рослин. Біофізичні механізми функціонування живих систем, 2008; 88-89.

6. Совински П., Быкова Л.В., Шепановска М., Бельцаж Б. К вопросу о механизме действия постоянного магнитного поля на проростки кукурузы, выявляемого по повышению устойчивости к холоду: препринт. Дубна: Объед. Ин-т Ядерных Исслед, 1990. № Р19-90-157. С. 1-7.

7. Сиротина Л.В. Сиротин А.А., Травкин М.П. Некоторые особенности биологического действия слабых магнитных полей. В кн.: Реакция биологических систем на слабые магнитные поля. М.: Наука, 1971: С. 95.

8. Azadniv M., Miller M.W., Brayman A.A., Cox C. Repetitive pulsed-train "off" duration mitigates reductions in root growth rates of Pisum sativum L. induced by 60-Hz electric field. Radiat. Res, 1990; 124 (1): 62-5.
https://doi.org/10.2307/3577695
PMid:2236497

9. Brayman A.A, Miller M.W. Proportionality of 60-Hz electric field bioeffect severity to average induced transmembrane potential magnitude in a root model system. Radiat. Res, 1989; 117(2): 207-213.
https://doi.org/10.2307/3577321
PMid:2922466

10. Cakmak T., Dumlupinar R., Erdal S. Acceleration of germination and early growth of wheat and bean seedlings grown under various magnetic field and osmotic conditions. Bioelectromagnetics, 2010; 31(2): 120-129.
https://doi.org/10.1002/bem.20537
PMid:19681058

11. Jinapang P., Prakob P., Wongwattananard P. et al. Growth characteristics of mung beans and water convolvuluses exposed to 425-MHz electromagnetic fields. Bioelectromagnetics, 2010; 31(7): 519-27.
https://doi.org/10.1002/bem.20584
PMid:20564175

12. Hajnorouzi A., Vaezzadeh M., Ghanati F. et al. Growth promotion and a decrease of oxidative stress in maize seedlings by a combination of geomagnetic and weak electromagnetic fields. J. Plant Physiol, 2011; 168(10): 1123-1128.
https://doi.org/10.1016/j.jplph.2010.12.003
PMid:21227536

13. Payez A., Ghanati F., Behmanesh M. et al. Increase of seed germination, growth and membrane integrity of wheat seedlings by exposure to static and a 10-KHz electromagnetic field. Electromagn. Biol. Med, 2013; 23.
https://doi.org/10.3109/15368378.2012.735625
PMid:23343429

14. Shine M.B., Guruprasad K.N., Anand A. Enhancement of germination, growth, and photosynthesis in soybean by pre-treatment of seeds with magnetic field. Bioelectromagnetics, 2011; 32(6): 474-84.
https://doi.org/10.1002/bem.20656
PMid:21381047

15. Vashisth A., Nagarajan S. Exposure of seeds to static magnetic field enhances germination and early growth characteristics in chickpea (Cicer arietinum L.). Bioelectromagnetics, 2008; 29(7): 571-8.
https://doi.org/10.1002/bem.20426
PMid:18512697

16. Vashisth A., Nagarajan S. Characterization of water distribution and activities of enzymes during germination in magnetically-exposed maize (Zea mays L) seeds. Indian J. Biochem. Biophys, 2010; 47(5): 311-8.

17. Vashisth A, Nagarajan S. Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. J. Plant Physiol, 2010; 167(2): 149-156.
https://doi.org/10.1016/j.jplph.2009.08.011
PMid:19783321

18. Veselova T.V, Veselovskiĭ V.A. Possible mechanisms of aftereffects of GSM electromagnetic radiation on air-dry seeds. Radiats Biol Radioecol, 2012; 52(4): 428-30.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2013 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.