INFLUENCE OF CALIXARENE C-99 ON CONTRACTILE ACTIVITY OF RAT LARGE INTESTINE SMOOTH MUSCLES

O. V. Tsymbalyuk


DOI: http://dx.doi.org/10.30970/sbi.1003.503

Abstract


The regularities of influence of new high-affinity inhibitor of plasma membrane sodium pump calixarene C-99 on the contractile activity of rat’s large intestine circular smooth muscle were studied. It was found that under preliminary complete blockage of the sodium pump using ouabain (100 µM) the calixarene C-99 (100 µM) causes activation of smooth muscles spontaneous contractions. It has been also found that under ouabain preliminary action the calixarene changes mechanokinetical parameters of contractile responses to depolarization of smooth muscle cells plasma membranes via potassium solution (80 mM), as well as per application of the muscarinic acetylcholine agonist (10 µM). It has been shown that calixarene C-99 has no effect on the Ca2+ mobilization from the sarcoplasmic reticulum. Thus, the calixarene C-99 action on intestinal smooth muscles is not limited to the plasma membrane’s sodium pump blocking. Possible mechanisms of action calixarenes C-99 on smooth muscle’s contractile activity are discussed.


Keywords


smooth muscle, calixarene C-99, the sodium pump, mechanokinetics, spontaneous and induced contractions

References


1. Ausina P., Savineau J.P., Hernandez J.S. et al. Effect of inhibition of the electrogenic Na+/K+ pump on the mechanical activity in the rat uterus. Fundam. Clin. Pharmacol, 1996; 10(1): 38-46.
https://doi.org/10.1111/j.1472-8206.1996.tb00148.x
PMid:8900499

2. Barajas-Lopez C., Chow E., Hertog A.D., Huizing J.D. Role of the sodium pump in pacemaker generation in dog colonic smooth muscle. J. Physiol, 1989; 416: 369-383.
https://doi.org/10.1113/jphysiol.1989.sp017766
PMid:2607455 PMCid:PMC1189220

3. Barajas-Lopez C., Huizinga J.D. Ouabain-induced excitation of colonic smooth muscle due to block of K+ conductance by intracellular Na+ ions. Eur. J. Pharm, 1992; 221: 51-58.
https://doi.org/10.1016/0014-2999(92)90771-U

4. Blair P.J., Rhee P.-L., Sanders K.M., Ward S.M. The Significance of Interstitial Cells in Neurogastroenterology. J. Neurogastroenterol. Motil, 2014; 20, 3: 294-317.
https://doi.org/10.5056/jnm14060
PMid:24948131 PMCid:PMC4102150

5. Bukach O.P., Antoniuk M.V., Sydorchuk L.P. et al. Сomorbid diseases in patients with arterial hypertension in outpatient practice. Bukovinian Medical Herald Journal, 2013; 17, 4(68): 26-30. (In Ukrainian)

6. Burdyga Th.V., Kosterin S.A. Kinetic analysis of smooth muscle relaxation. Gen. Physiol. Biophys, 1991; 10: 589-598.

7. Connor J. A., Prosser C. L., Weems W. A. A study of pace-maker activity in intestinal smooth muscle. J. Physiol, 1974; 240: 671-701.
https://doi.org/10.1113/jphysiol.1974.sp010629
PMid:4411767

8. Correa R.M., Lafayette S.S.L., Pereira G.J.S. et al. Mitochondrial involvement in carbachol-induced intracellular Ca2+ mobilization and contraction in rat gastric smooth muscle. Life Sci, 2011; 89(21-22): 757-764.
https://doi.org/10.1016/j.lfs.2011.08.003
PMid:21871904

9. Danylovych G.V., Danylovych Yu.V., Kolomiets O.V. et al. Changes in polarization of myometrial cells plasma and internal mitochondrial membranes under calixarenes action as inhibitors of plasma membrane Na+, K+-ATPase. Ukr. Biochem. J, 2012; 84(6): 37-48. (In Ukrainian)

10. de Fátima A., Fernandes S.A., Sabino A.A. Calixarenes as new platforms for drug design. Curr. Drug Discov. Technol, 2009; 6(2): 151-170.
https://doi.org/10.2174/157016309788488302
PMid:19519339

11. Espinosa-Tanguma R., Valle-Aguilera J.R., Zarazúa-Garcia O. et al. Mechanism of ouabain-induced contractions in guinea-pig tracheal rings. Clin. Exp. Pharm. Physiol, 2004; 31: 710-715.
https://doi.org/10.1111/j.1440-1681.2004.04080.x
PMid:15554913

12. Joo M.C., Kim Y.S., Choi E.S. et al. Changes in the muscarinic receptors on the colonic smooth muscles of rats with spinal cord injury. Ann. Rehabil. Med, 2011; 35: 589-598.
https://doi.org/10.5535/arm.2011.35.5.589
PMid:22506180 PMCid:PMC3309258

13. Hauck C., Frishman W.H. Systemic hypertension: the roles of salt, vascular Na+/K+ ATPase and the endogenous glycosides, ouabain and marinobufagenin. Cardiol. Rev, 2012; 20(3): 130-138.
https://doi.org/10.1097/CRD.0b013e31823c835c
PMid:22183064

14. Kawamura M., Yabu H. Selective inhibition of potassium contracture in guinea pig taenia coli by ruthenium red. Jap. J. Physiol, 1978; 28: 447-460.
https://doi.org/10.2170/jjphysiol.28.447
PMid:722992

15. Kim H.R., Appel S., Vetterkind S. et al. Smooth muscle signalling pathways in health and disease. J. Cell. Mol. Med, 2008; 12(6A): 2165-2180.
https://doi.org/10.1111/j.1582-4934.2008.00552.x
PMid:19120701 PMCid:PMC2692531

16. Kishimoto T., Urakawa N. Effects of ouabain on high-K induced contractions of various smooth muscle tissues in the guinea-pig. Japan. J. Pharmacol, 1982; 32: 551-561.
https://doi.org/10.1254/jjp.32.551
PMid:7109351

17. Labyntseva R.D., Slinchenkо N.М., Vеklіch Т.О. et al. Сomparative investigation of calixarenes influence on Mg2+-dependent ATP -hydrolase enzymatic systems from smooth muscle cells of the uterus. Ukr. Biochem. J, 2007; 79(3): 44-54. (In Ukrainian)

18. Oguri G., Nakajima T., Yamamoto Y. et al. Effects of methylglyoxal on human cardiac fibroblast: roles of transient receptor potential ankyrin 1 (TRPA1) channels. Am. J. Physiol. Heart. Circ. Physiol, 2014; 307(9): H1339-H1352.
https://doi.org/10.1152/ajpheart.01021.2013
PMid:25172898

19. Olson M.L., Sandison M.E., McCarron J.G. Microdomains of muscarinic acetylcholine and Ins(1,4,5)P3 receptors create 'Ins(1,4,5)P3 junctions' and sites of Ca²+ wave initiation in smooth muscle. J. Cell. Sci, 2012; 125 (Pt 22): 5315-5328.
https://doi.org/10.1242/jcs.105163
PMid:22946060 PMCid:PMC3561854

20. Pluja L., Alberti E., Fernandez E. et al. Evidence supporting presence of two pacemakers in rat colon. Am. J. Physiol. Gastrointest. Liver. Physiol, 2001; 281: G255-G266.
https://doi.org/10.1152/ajpgi.2001.281.1.G255
PMid:11408279

21. Pritchard K., Ashley C.C. Na+/Ca2+ exchange in isolated smooth muscle cells demonstrated by the fluorescent calcium indicator fura-2. FEBS Letters, 1986; 195(1-2): 23-27.
https://doi.org/10.1016/0014-5793(86)80122-3

22. Rizzuto R., Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol. Rev, 2006; 86: 369-408.
https://doi.org/10.1152/physrev.00004.2005
PMid:16371601

23. Rodik R.V., Boyko V.I., Kalchenko V.I. Calixarenes in bio-medical researches. Curr. Med. Chem, 2009; 16(13): 1630-1655.
https://doi.org/10.2174/092986709788186219
PMid:19442137

24. Rychter J., Espín F., Gallego D. et al. Colonic smooth muscle cells and colonic motility patterns as a target for irritable bowel syndrome therapy: mechanisms of action of otilonium bromide. Therap. Adv. Gastroenterol, 2014; 7(4): 156-166.
https://doi.org/10.1177/1756283X14525250
PMid:25057296 PMCid:PMC4107708

25. Saini H.K., Dhalla N.S. Sarcolemmal cation channels and exchangers modify the increase in intracellular calcium in cardiomyocytes on inhibiting Na+-K+-ATPase. Am. J. Physiol. Heart. Circ. Physiol, 2007; 293: H169-H181.
https://doi.org/10.1152/ajpheart.00007.2007
PMid:17322410

26. Shi X.-Z., Sarna S.K. Impairment of Ca2+ mobilization in circular muscle cells of the inflamed colon. Am. J. Physiol. Gastrointest. Liver Physiol, 2000; 278(2): G234-G242.
https://doi.org/10.1152/ajpgi.2000.278.2.G234
PMid:10666047

27. Shimizu K., Nakajyo S., Urakawa N. Species differences in the ihibitory effect of ouabain on high К-induced contraction in the ileal longitudinal muscle. Japan. J. Pharmacol, 1985; 39: 67-75.
https://doi.org/10.1254/jjp.39.67
PMid:4068391

28. Tajima N., Itokazu Y., Korpi E.R. et al. Activity of BKCa channel is modulated by membrane cholesterol content and association with Na+/K+-ATPase in human melanoma IGR39 cells. J. Biol. Chem, 2011; 286(7): 5624-5638.
https://doi.org/10.1074/jbc.M110.149898
PMid:21135099 PMCid:PMC3037676

29. Tsymbalyuk O. V., Kosterin S. O. Na+, K+-ATPase, endogenous cardiotonic steroids and their transducing role. Ukr. Biochem. J, 2012; 84(1): 5-17. (In Ukrainian)

30. Tsymbalyuk О.V., Kosterin S.О., Rodik R.V., Kalchenko V. І. Comparative study in the in vitro and in vivo experiments of influence of ouabain and calixarene C107 on Na+,K+-ATP ase activity of rat hepatocyte plasmatic membranes, Ukr. Biochem. J, 2010; 82(4): 78-85. (In Ukrainian)

31. Tsymbalyuk O.V., Onufryjchuk O.V., Miroshnichenko N.S., Cherenok S.A., Kalchenko V.I., Kosterin S.O. Calixarene bis-hydroxymethylphosphone acid changes the acetylcholine-evoked contractions of circular smooth muscles caecum rats. Reports NAS of Ukraine, 2007; 9: 167-173. (In Ukrainian)

32. Tsymbalyuk O.V., Onufryjchuk O.V., Veklich T.O. et al. Comparative study of influence of ouabain and calixarene bis-hydroxymethylphosphone acid on Na+,K+-ATPase activity and mechanokinetics of process "contraction-relaxation" of smooth muscle. Physics of the Alive, 2006; 14(1): 53-72. (In Ukrainian)

33. Tsymbalyuk O.V., Rodik R.V., Kаlchеnkо V.І., Kosterin S.O. The mekhanokinetical parameters of contractile activity of rat caecum smooth muscles under the conditions of calixarene С107 chronic action in vivo. Physics of the Alive, 2010; 18(1): 47-51. (In Ukrainian)

34. Usune S., Katsuragi T., Furukawa T. Inhibition by ouabain and veratridine of acetylcholine-evoked phasic contraction in the guinea-pig taenia coli. Naunyn-Schmiedeberg's Arch. Pharmacol, 1991; 343: 574- 579.
https://doi.org/10.1007/BF00184287
PMid:1944604

35. Veklich T.O., Shkrabak A.A., Cherenok S.O. et al. Сomparative investigation of the effect of calix[4]arene C-99 and its analogs on Nа+,K+-ATPase activityof uterus myocite plasma membrane. Ukr. Biochem. J, 2012; 84(6): 49-57. (In Ukrainian)

36. Ward S.M., Ordog T., Koh S.D. et al. Pacemaking in interstitial cells of Cajal depends upon calcium handling by endoplasmic reticulum and mitochondria. J. Physiol, 2000; 525(2): 355-361.
https://doi.org/10.1111/j.1469-7793.2000.t01-1-00355.x
PMid:10835039 PMCid:PMC2269944


Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.