ANTIOXIDANT SYSTEM INDICES IN BRAIN OF RATS INTOXICATED BY CHLORPYRIFOS
DOI: http://dx.doi.org/10.30970/sbi.0703.325
Abstract
Chlorpyrifos is one of the most common pesticides around the world. This organophosphorus compound inhibits of acetylcholinesterase activity. A toxicity of chlorpyrifos is not limited to inhibition of cholinesterase activity, but may act through other mechanisms, including breaking antioxidant-prooxidant balance. The goal of the study was to conduct a comparative analysis of key indicators of the antioxidant defense system in different brain regions of rats intoxicated with chlorpyrifos. Wistar male rats were injected intraperitoneally once with chlorpyrifos in 15 and 30 mg/kg. After 24 hours, the animals were decapitated under ether anesthesia, after which the brain was removed immediately, and hippocampus, cerebellum and cerebral cortex were isolated. In selected areas of the brain activity of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione content were determined. It was found that intoxication of rats by chlorpyrifos caused a decreasing of key enzymatic parameters of antioxidant system in brain tissue. Different parts of brain characterised by different antiradical defense activity. The highest intensity of antioxidant processes was observed in the cerebral hemispheres of rat brain, while the lowest – in the cerebellum.
Keywords
Full Text:
PDF (Українська)References
1. Афанасьєв С.В., Лихолат О.А. Регіональні особливості вільнорадикального окиснення ліпідів та антиоксидантної системи у хворих на хронічний панкреатит. Медична хімія, 2005; 7 (1): 47-50. | |
| |
2. Влізло В.В., Салига Ю.Т. Проблеми біологічної безпеки застосування пестицидів в Україні. Вісник аграрної науки, 2011; 1: 24-27. | |
| |
3. Дубинина Е.Е., Сальникова Л.Я., Ефимова Л.Ф. Активность и изоферментный спектр СОД эритроцитов. Лаб. дело, 1983; 10: 30-33. | |
| |
4. Коробов В.М. Роль оксиду азоту в регуляції транспорту газів. Укр. біохім. журнал, 2001; 73(4): 13-18. | |
| |
5. Королюк М.А. Иванова Л. И., Майорова Н.О., Токарев В.Е. Метод определения активности каталазы. Лаб. дело, 1988; 1: 16-18. | |
| |
6. Моин В.М. Простой и специфический метод определения активности глутатионпероксидазы в эритроцитах. Лаб. дело, 1986; 12: 724-727. | |
| |
7. Andersen J.K. Oxidative stress in neurodegeneration: cause or consequence? Nat. Rev. Neurosc, 2004; 10: 18-25. | |
| |
8. Braquenier J.B., Quertemont E., Tirelli E., Plumier J.C. Anxiety in adult female mice following perinatal exposure to chlorpyrifos. Neurotoxicol Teratol, 2010; 32(2): 234-239. | |
| |
9. Brown T.P., Rumsby P.C., Capleton A.C. et al. Pesticides and Parkinson's Disease - Is There a Link? Environ Health Perspect, 2006; 114(2): 156-164. | |
| |
10. Cardona D., Lopez-Granero C., Canadas F. et al. Dose-dependent regional brain acetylcholinesterase and acylpeptide hydrolase inhibition without cell death after chlorpyrifos administration. J. Toxicol. Sci, 2013; 38(2): 193-203. | |
| |
11. Carlberg I., Mannervik B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J. Biol. Chem, 1975; 250: 5475-5480. | |
| |
12. Chen W.Q., Yuan L., Xue R. et al. Repeated exposure to chlorpyrifos alters the performance of adolescent male rats in animal models of depression and anxiety. Neurotoxicology, 2011; 32(4): 355-361. | |
| |
13. Flaskos J. The developmental neurotoxicity of organophosphorus insecticides: A direct role for the oxon metabolites. Toxicol. Lett, 2012; 209(1): 86-93. | |
| |
14. Gandhi S., A. Y. Abramov. Mechanism of Oxidative Stress in Neurodegeneration. Oxidative Medicine and Cellular Longevity, 2012; 11 p. | |
| |
15. Gupta R. C., Malik J. K., Milatovic D. Organophosphate and carbamate pesticides. Reproductive and Developmental Toxicology, 2011: 471-486. | |
| |
16. Hissin P.J., Hilf R.A. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Analyt. Biochem, 1976; 74: 214-226. | |
| |
17. Ki Y.W., Park J.H., Lee J.E. et al. JNK and p38 MAPK regulate oxidative stress and the inflammatory response in chlorpyrifos-induced apoptosis. Toxicol. Lett, 2013; 26; 218(3): 235-245. | |
| |
18. Kinouchi H., Kamii H., Mikawa S. et al. Role of superoxide dismutase in ischemic brain injury: a study using SOD-1 transgensc mice. Cell Mol. Neurobiol, 1998; 18(6): 609-620. | |
| |
19. Kovacic P., Somanathan R. Redox processes in neurodegenerative disease involving reactive Oxygen species. Current Neuropharmacology, 2012; 1: 289-302. | |
| |
20. Lowry O.H. Protein measurement with the folin phenol reagent. Biol. Chem, 1951; 193(1): 265-275. | |
| |
21. Lukaszewicz-Hussain A. Subchronic intoxication with chlorfenvinphos, an organophosphate insecticide, affects rat brain antioxidative enzymes and glutathione level. Food and Chem. Tox, 2008; 46(1): 82-86. | |
| |
22. Mullen B.R., Khialeeva E., Hoffman D.B. et al. Decreased Reelin Expression and Organophosphate Pesticide Exposure Alters Mouse Behavior and Brain Morphology. ASN Neuro, 2013; 8. | |
| |
23. Nakamura R., Kimura Y., Matsuoka H. et al. Effects of transplacental and trans-breast milk exposure to the organophosphate compound chlorpyrifos on the developing immune system of mice. Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku, 2011; (129): 105-10. | |
| |
24. Palkovits M., Brownstem M.J. Maps and guide to microdissection of the rat brain. New York: Elsevier Academic Press, 1988; 223. | |
| |
25. Rauh V., Arunajadai S., Horton M. et al. Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. Environ. Health Perspect, 2011; 119(8): 1196-1201. | |
| |
26. Ryan M.M., Morris G.P., Mockett B.G. et al. Time-dependent changes in gene expression induced by secreted amyloid precursor protein-alpha in the rat hippocampus. BMC Genomics, 2013; 14(1): 376. | |
| |
27. Salyha Y. Biological effects assessment of chlorpyrifos and some aspects of its neurotoxicity. Visnyk of Lviv University. Biology Series, 2010; 54: 3-14. | |
| |
28. Sandhu M. A., Saeed A. A., Khilji M. S. et al. Genotoxicity evaluation of chlorpyrifos: a gender related approach in regular toxicity testing. J. Toxicol. Sci, 2013; 38 (2): 237-244. | |
| |
29. Saulsbury M. D., Heyliger S. O., Wang K. et al. Chlorpyrifos induces oxidative stress in oligodendrocyte progenitor cells. Toxicolology, 2009; 259(1): 1-9. | |
| |
30. Shelton J.F., Hertz-Picciotto I., Pessah I.N. Tipping the Balance of Autism Risk: Potential Mechanisms Linking Pesticides and Autism. Environ. Health Perspect, 2012; 120(7): 944-951. | |
| |
31. Slotkin T.A., Seidler F. J. Oxidative and excitatory mechanisms of developmental neurotoxicity: transcriptional profiles for chlorpyrifos, diazinon, dieldrin, and divalent nickel in PC12 cells. Environ. Health Perspect, 2009; 117(4): 587-96. | |
| |
32. Spijker S. Dissection of rodent brain regions. Neuroproteomics, 57; 2011: 13-26. | |
| |
33. Swanson L.W. Brain maps: structure of the rat brain. 3rd revised edition. Amsterdam: Elsevier Academic Press, 2004: 215. | |
| |
34. Yonar M.E., Yonar S.M., Ural M.S. et al. Protective role of propolis in chlorpyrifos-induced changes in the haematological parameters and the oxidative/antioxidative status of Cyprinus carpio carpio. Food and Chem. Tox, 2012; 50: 2703-2708. | |
| |
35. Yowtak J., Wang J., Young K.H. et al. Effect of antioxidant treatment on spinal GABA neurons in a neuropathic pain model in the mouse. PAIN; 2013. |
Refbacks
- There are currently no refbacks.
Copyright (c) 2013 Studia biologica
This work is licensed under a Creative Commons Attribution 4.0 International License.