LIPOFLAVON® APPLICATION FOR PHARMACOLOGICAL CORRECTION OF ENDOTHELIAL DYSFUNCTION IN DIABETIC RATS

K. I. Klymenko, A. V. Parshikov, A. I. Soloviev


DOI: http://dx.doi.org/10.30970/sbi.0703.306

Abstract


It is known that endothelial dysfunction is one of the major factors in development of diabetic cardio-vascular complications. Besides, pathophysiological linkages between high concentration of glucose and vascular dysfunction remain not fully established. The aim of this study was to investigate acetylcholine-induced endothelium-dependent dilation of vascular segments obtained from healthy rats and incubated in hyperglycemic solution and vascular segments from diabetic rats before and after quercetin-filled phosphatidylcholine liposomes (Lipoflavon®) treatment in both in vitro and in vivo conditions. Changes in vascular tone were registered in isometric mode. Data are presented as mean ± SEM with “n” indicating the number of vascular preparations tested. On the day of the experiment diabetic rats showed four times higher blood glucose level and decreased dilation responses to acetylcholine (ACh, 1 nM–10 mM) of aortic rings precontracted with noradrenaline (NA, 1 mM)as compared to controls. Incubation of vascular rings under hyperglycemic (25 mM/L glucose) conditions led to time-dependent impairment of dilation responses as compared to normoglycemic (5.5 mM/L glucose) conditions. Lipoflavon® (3 µg/mL of quercetin) application to the organ bath with diabetic rats precontracted vascular rings resulted in a significant reduction in vascular tension. Being added on the plateau of Lipoflavon® relaxation, ACh showed increased dilation responses in comparison to diabetic tissues without Lipoflavon® application. Intravenous Lipoflavon® injections to diabetic rats in concentrations 15 mg/kg or 50 mg/kg of phosphatidylcholine restored dilatation responses up to the control level. In conclusion, we confirmed that hyperglycemia is one of the main factors leading to impairment of endothelium-dependent vasodilation. Quercetin-filled phosphatidylcholine liposomes significantly improve endothelium-dependent relaxation of isolated vascular rings from diabetic rats. We assume that Lipoflavon® is perspective in treatment of diabetic angiopathies.


Keywords


diabetic vascular complications, endothelial disfunction, quercetin, Lipoflavon®

References


1. Клименко К.І. Новохацька Т.В., Кізуб І.В., Соловйов А.І. Вплив Ліпофлавону на сумарні вихідні K+-струми в гладеньком'язових клітинах аорти щурів із цукровим діабетом. Фармакологія та лікарська токсикологія, 2012; 5(30): 31-36.

2. Соловьев А.И., Стефанов А.В. Фармакология и токсикология оксида азота: два "лица" одной и той же молекулы. Современные проблемы токсикологии, 1998; 1: 35-38.

3. Хромов О.С., Добреля Н.В. Експериментальне обґрунтування застосування фосфатидилхолінових ліпосом як нового гіпотензивного засобу. Вісник Дніпропетр. ун-ту. Біологія. Екологія, 2008; 1 (16):197-203.

4. Annapurna A., Reddy C.S., Akondi R.B., Rao S.R. Cardioprotective actions of two bioflavonoids, quercetin and rutin, in experimental myocardial infarction in both normal and streptozotocin-induced type I diabetic rats. J. Pharm. Pharmacol, 2009; 61(10): 1365-74.
https://doi.org/10.1211/jpp/61.10.0014
PMid:19814870

5. Avogaro A., Albiero M., Menegazzo L. et al. Endothelial dysfunction in diabetes. The role of reparatory mechanisms. Diabetes Care, 2011; 34 (2): S285-S290.
https://doi.org/10.2337/dc11-s239
PMid:21525470 PMCid:PMC3632194

6. Bayraktutan U. Free radicals, diabetes and endothelial dysfunction. Diabetes, Obesity and Metabolism, 2002; 4(4): 224-238.
https://doi.org/10.1046/j.1463-1326.2002.00184.x

7. Bohlen H.G., Lash J.M. Topical hyperglycemia rapidly suppresses EDRF-mediated vasodilation of normal rat arterioles. Am. J. Physiol, 1993; 265: H219-H225.
https://doi.org/10.1152/ajpheart.1993.265.1.H219
PMid:8342636

8. Calles-Escandon J., Cipolla M. Diabetes and endothelial dysfunction: a clinical perspective. Endocrine Reviews, 2001; 22: 36-52.
https://doi.org/10.1210/edrv.22.1.0417
PMid:11159815

9. Cogolludo A., Frazziano G., Briones A.M. The dietary flavonoid quercetin activates BKCa currents in coronary arteries via production of H2O2. Role in vasodilatation. Cardiovascular Research, 2007; 73: 424-431.
https://doi.org/10.1016/j.cardiores.2006.09.008
PMid:17055466

10. Cosentino F., Hishikawa K., Katusic Z.S., Lüscher T.F. High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells, Circulation, 1997; 96: 25-28.
https://doi.org/10.1161/01.CIR.96.1.25
PMid:9236411

11. De Vriese A.S., Verbeuren T.J., Van de Voorde J. et al. Endothelial dysfunction in diabetes. Br. J. Pharmacol, 2000; 130: 963-974.
https://doi.org/10.1038/sj.bjp.0703393
PMid:10882379 PMCid:PMC1572156

12. Dorigo P., Fraccarollo D., Santostasi G., Maragno I. Impairment of endothelium-dependent but not of endothelium-independent dilatation in guinea-pig aorta rings incubated in the presence of elevated glucose, Br. J. Pharmacol, 1997; 121: 972-976.
https://doi.org/10.1038/sj.bjp.0701203
PMid:9222555 PMCid:PMC1564764

13. Evans J.L., Goldfine I.D., Maddux B.A., Grodsky G.M. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr. Rev, 2002; 23: 599-622.
https://doi.org/10.1210/er.2001-0039
PMid:12372842

14. Geng Y., Xue L., Liu C., Gu Y. Effect of liposomal quercertin on advanced glycation end products and receptor for advanced glycation end products in retina of diabetic rats. Chin. J. Clinicians (Electronic Edition), 2010; 4(12).

15. Geraldes P., King G.L. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ. Res, 2010; 106: 1319-1331.
https://doi.org/10.1161/CIRCRESAHA.110.217117
PMid:20431074 PMCid:PMC2877591

16. Goel A., Zhang Y., Anderson L., Rahimian R. Gender difference in rat aorta vasodilation after acute exposure to high glucose: Involvement of protein kinase C β and superoxide but not of Rho Kinase. Cardiovascular Research, 2007; 76: 351-360.
https://doi.org/10.1016/j.cardiores.2007.06.029
PMid:17678882 PMCid:PMC2128745

17. Han G., Yu X., Lu L. et al. Estrogen receptor alpha mediates acute potassium channel stimulation in human coronary artery smooth muscle cells. J. Pharmacol. Exp. Ther, 2006; 316(3): 1025-30.
https://doi.org/10.1124/jpet.105.093542
PMid:16299188

18. Ishii H., Jirousek M.R., Koya D. et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science, 1996; 272:728-731.
https://doi.org/10.1126/science.272.5262.728
PMid:8614835

19. Kakimoto M., Inoguchi T., Sonta T. et al. Accumulation of 8-hydroxy-2′-deoxyguanosine and mitochondrial DNA deletion in kidney of diabetic rats. Diabetes, 2002; 51:1588-1595.
https://doi.org/10.2337/diabetes.51.5.1588
PMid:11978660

20. Keenan H.A., Costacou T., Sun J.K. et al. Clinical factors associated with resistance to microvascular complications in diabetic patients of extreme disease duration: the 50-year medalist study. Diabetes Care, 2007; 30: 1995-1997.
https://doi.org/10.2337/dc06-2222
PMid:17507696

21. Kelly G.S. Quercetin. Monograph. Altern. Med. Rev, 2011; 16(2): 172-94.

22. Kyaw M., Yoshizumi M., Tsuchiya K. et al. Atheroprotective effects of antioxidants through inhibition of mitogen-activated protein kinases. Acta Pharmacol. Sin, 2004; 25 (8): 977-985.

23. Lakhanpal P., Rai D.K. Role of quercetin in cardiovascular diseases. Internet J. of Med. Update, 2008; 3(1): 31-49.
https://doi.org/10.4314/ijmu.v3i1.39858

24. Leo C.H., Hart J.L., Woodman O.L. Impairment of both nitric oxide-mediated and EDHF-type relaxation in small mesenteric arteries from rats with streptozotocin-induced diabetes. Br. J. Pharmacol, 2011; 162(2): 365-377.
https://doi.org/10.1111/j.1476-5381.2010.01023.x
PMid:20840539 PMCid:PMC3031058

25. Liu Y., Terata K., Rusch N.J., Gutterman D.D. High Glucose impairs voltage-gated K+ channel current in rat small coronary arteries. Circ. Res, 2001; 89: 146-152.
https://doi.org/10.1161/hh1401.093294
PMid:11463721

26. Lu T., Zhang D.M., Wang X.L. et al. Regulation of coronary arterial BK channels by caveolae-mediated angiotensin II signaling in diabetes mellitus Circ. Res, 2010; 106(6): 1164-1173.
https://doi.org/10.1161/CIRCRESAHA.109.209767
PMid:20167931 PMCid:PMC2927991

27. Lyle A.N., Griendling K.K. Modulation of vascular smooth muscle signaling by reactive oxygen species. Physiology, 2006; 21(4): 269-280.
https://doi.org/10.1152/physiol.00004.2006
PMid:16868316

28. Panicker S.R., Sreenivas P., Babu M.S. et al. Quercetin attenuates Monocyte Chemoattractant Protein-1 gene expression in glucose primed aortic endothelial cells through NF-kappaB and AP-1. Pharmacol. Res, 2010; 62(4): 328-36.
https://doi.org/10.1016/j.phrs.2010.06.003
PMid:20542118

29. Perez-Vizcaino F., Ibarra M., Cogolludo A.L. et al. Endothelium-independent vasodilator effects of the flavonoid quercetin and its methylated metabolites in rat conductance and resistance arteries. J. Pharmacol. Exp. Ther, 2002; 302: 66-72.
https://doi.org/10.1124/jpet.302.1.66
PMid:12065701

30. Sano T., Umeda F., Hashimoto T. et al. Oxidative stress measurement by in vivo electron spin resonance spectroscopy in rats with streptozotocin-induced diabetes. Diabetologia, 1998; 41: 1355-1360.
https://doi.org/10.1007/s001250051076
PMid:9833944

31. Sarkar S., Mandal S., Sinha J.et al. Quercetin: critical evaluation as an antileishmanial agent in vivo in hamsters using different vesicular delivery modes. J. Drug Target, 2002; 10: 573-578.
https://doi.org/10.1080/106118021000072681
PMid:12683660

32. Schalkwijk C.G., Stehouwer C.D. Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin. Sci. (Lond.), 2005; 109(2): 143-59.
https://doi.org/10.1042/CS20050025
PMid:16033329

33. Soloviev A., Tishkin S., Kyrychenko S. Quercetin-filled phosphatidylcholine liposomes restore abnormalities in rat thoracic aorta BKCa channel function following ionizing irradiation. Acta Physiologica Sinica, 2009; 63(3): 201-210.

34. Spitaler M.M., Graier W.F. Vascular targets of redox signalling in diabetes mellitus. Diabetologia, 2002; 45: 476-494.
https://doi.org/10.1007/s00125-002-0782-0
PMid:12032623

35. Suntres Z.E. Liposomal Antioxidants for Protection against Oxidant-Induced Damage. J. of Toxicol, 2011; P. 1-16.
https://doi.org/10.1155/2011/152474
PMid:21876690 PMCid:PMC3157762

36. Taniyama Y., Griendling K.K. Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension, 2003; 42:1075-1081.
https://doi.org/10.1161/01.HYP.0000100443.09293.4F
PMid:14581295

37. Tesfamariam B., Brown M.L., Deykin D., Cohen R.A. Elevated glucose promotes generation of endothelium-derived vasoconstrictor prostanoids in rabbit aorta. J. Clin. Invest, 1990; 85(3): 929-932.
https://doi.org/10.1172/JCI114521
PMid:2312734 PMCid:PMC296512

38. The diabetes control and complications trial research group/epidemiology of diabetes interventions and complications research group. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N. Eng. J. Med, 2000; 342: 381-389.
https://doi.org/10.1056/NEJM200002103420603
PMid:10666428 PMCid:PMC2630213

39. Wang S., Xiong X., Song T., Liu L. Protective effects of cariporide on endothelial dysfunction induced by high glucose. Acta Pharmacologica Sinica, 2005; 26(3): 329-333.
https://doi.org/10.1111/j.1745-7254.2005.00042.x
PMid:15715929

40. Wei M., Ong L., Smith M.T. et al. The streptozotocin-diabetic rat as a model of the chronic complications of human diabetes. Heart Lung Circ, 2003; 12(1): 44-50.
https://doi.org/10.1046/j.1444-2892.2003.00160.x
PMid:16352106

41. West I.C. Radicals and oxidative stress in diabetes. Diabet. Med, 2000; 17: 171-180.
https://doi.org/10.1046/j.1464-5491.2000.00259.x
PMid:10784220

42. Wong W.T., Wong S.L., Tian X.Y., Huang Y. Endothelial dysfunction: the common consequence in diabetes and hypertension. J. Cardiovasc. Pharmacol, 2010; 55(4): 300-7.
https://doi.org/10.1097/FJC.0b013e3181d7671c
PMid:20422734

43. Yang G., Lucas R., Caldwell R., Yao L. et al. Novel mechanisms of endothelial dysfunction in diabetes. J. Cardiovasc. Dis. Res, 2010; 1(2): 59-63.
https://doi.org/10.4103/0975-3583.64432
PMid:20877687 PMCid:PMC2945199


Refbacks

  • There are currently no refbacks.


Copyright (c) 2013 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.