EFFECTS OF VITAMIN D3 AND METHYLENEBISPHOSPHONATE ON IMMUNE SYSTEM OF RATS AT DISUSE OSTEOPOROSIS
DOI: http://dx.doi.org/10.30970/sbi.0703.305
Abstract
Disuse osteoporosis is a skeletal disease that develops due to insufficient physical activity, in particular, as the result of aging process. The study was designed to examine changes in cellular and humoral immunity associated with experimental disuse osteoporosis and to assess the efficacy of vitamin D3 and methylenebisphosphonate treatment. It was found that the disuse osteoporosis, in addition to impairments in bone tissue, is accompanied by significant alterations in the immune system. Marked suppression of B-cell immunity, decrease in number of active phagocytic granulocytes and monocytes, and their ability to produce antibacterial biooxidants (reactive oxygen species) were established. More profound effect of vitamin D3 on phagocytic function whereas methylenebisphosphonate was shown to be more effective on humoral immune defense. The effectiveness of combined use of vitamin D3 and methylenebisphosphonate was demonstrated.
Keywords
Full Text:
PDF (Українська)References
1. Волков Н.М. Физиология метаболизма костной ткани и механизм развития метастазов в кости. Практическая онкология, 2011; 12(3): 97-102. | |
| |
2. Герасимов И.Г., Калуцкая О.А. Кинетика реакции восстановления нитросинего тетразолия нейтрофилами крови человека. Цитология, 2000; 42(2): 160-165. | |
| |
3. Комісаренко С.В, Апуховська Л.І., Рясний В.М. Ефективність препарату "Мебівід" в попередженні порушень обміну вітаміну D3 та кальцію за аліментарного остеопорозу. Біотехнологія, 2011; 4(1): 74-81. | |
| |
4. Плеханов Б., Цветкова Т., Пиперков Т., Чиговская М. Щелочная фосфатаза: современное состояние вопроса. Лаб. дело,1989; 11: 4-7. | |
| |
5. Поворознюк В.В., Григорьева Н.В. Менопауза и остеопороз. К.: ВПЦ "Експрес", 2002. 356 c. | |
| |
6. Рясний В.М., Великий О.М., Калашніков О.В., Шиманський І.О. Синергізм дії вітаміну D3 та метиленбісфосфонової кислоти в регуляції мінерального обміну за експериментального дисфункціонального остеопорозу. Медична хімія, 2012; 14(4): 12-18. | |
| |
7. Bass D.A., Parce J.W., Dechatelet L.R. Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J. Immunol, 1983; 130(4): 1910-1917. | |
| |
8. Campbell G.R., Spector S.A. Hormonally active vitamin D3 (α,25-dihydroxycholecalciferol) triggers autophagy in human macrophages that inhibits HIV-1 infection. Biol. Chem, 2011; 286(21): 18890-18902. | |
| |
9. Drake M.T., Clarke B.L., Khosla S. Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin. Proc, 2008; 83(9): 1032-45. | |
| |
10. Dyce B.J., Bessman S.P. A rapid nonenzimatic assay for 2,3-DPG in multiple specimens of blood. Arch. Environ. Health,1973; 27(2): 112-115. | |
| |
11. Eriksen E.F. Cellular mechanisms of bone remodeling. Rev. Endocr. MetabDisord, 2010; 11(4): 219-227. | |
| |
12. Geusens P., Lems W.F. Osteoimmunology and osteoporosis. Arthritis Res. Ther, 2011; 13(5): 242. | |
| |
13. Haussler M.R., Jurutka P.W., Mizwicki M., Norman A.W. Vitamin D receptor (VDR)-mediated actions of 1α,25(OH) vitamin D3: genomic and non-genomic mechanisms. Best. Pract. Res. Clin. Endocrinol. Metab, 2011; 25(4): 543-559. | |
| |
14. Hofbauer L.C., Heufelder A.E. The role of receptor activator of nuclear factor κB ligand and osteoprotegerin in the pathogenesis and treatment of metabolic bone diseases. J. Clin. Endocrinol. Metab, 2000; 85(7): 2355-2363. | |
| |
15. Holick M.F., Chen T.C. Vitamin D deficiency: a worldwide problem with health consequences.Am. J. Clin. Nutr, 2008; 87(4): 1080S-1086S. | |
| |
16. Huang W., O'Keefe R.J., Schwarz E.M. Exposure to receptor-activator of NFkB ligand renders preosteoclasts resistant to IFNγ by inducing terminal differentiation. Arthritis Res. Ther, 2003; 5: 49-59. | |
| |
17. Jiang S., Jiang L., Dai L. Effects of spinal cord injury on osteoblastogenesis,osteoclastogenesis and gene expression profiling in osteoblasts in young rats. OsteoporosInt, 2007; 18: 339-349. | |
| |
18. Jones D., Glimcher L.H., Aliprantis A.O. Osteoimmunology at the nexus of arthritis, osteoporosis, cancer, and infection. J. Clin. Invest, 2011; 121(7): 2534-42 | |
| |
19. Khapli S.M., Mangashetti L.S., Yogesha S.D., Wani M.R. IL-3 acts directly on osteoclast precursors and irreversibly inhibits receptor activator of NF kB ligand-induced osteoclast differentiation by diverting the cells to macrophage lineage. J. Immunol, 2003; 171: 142-151. | |
| |
20. Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology, 2001; 142(12): 5050-5055. | |
| |
21. Krutzik S.R., Hewison M., Liu P.T. IL-15 links TLR2/1-induced macrophage differentiation to the vitamin D-dependent antimicrobial pathway. J. Immunol, 2008; 181(10): 7115-7120. | |
| |
22. Kozai M., Yamamoto H., Ishiguro M., Harada N. Thyroid Hormones Decrease Plasma 1α,25-Dihydroxyvitamin D Levels Through Transcriptional Repression of the Renal 25-Hydroxyvitamin D3 1α-Hydroxylase Gene (CYP27B1). Endocrinology, 2013; 154(2): 609-622. | |
| |
23. Palmqvist P., Persson E., Conaway H.H., Lerner U.H. IL-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF κB ligand, osteoprotegerin, and receptor activator of NFκ B in mouse calvariae. J. Immunol, 2002; 169: 3353-3362. | |
| |
24. Sabokbar A., Kudo O., Athanasou N.A.Two distinct cellular mechanisms of osteoclast formation and bone resorption in periprostheticosteolysis. J. Orthopaed Res, 2003; 21: 73-80. | |
| |
25. Steevels T.A., Meyaard L. Immune inhibitory receptors: essential regulators of phagocyte function. Eur. J. Immunol, 2011; 41(3): 575-87. | |
| |
26. Seeman E.Bone modeling and remodeling. Critical Reviews in Eukaryotic Gene Expression, 2009; 19(3): 219-233. |
Refbacks
- There are currently no refbacks.
Copyright (c) 2013 Studia biologica
This work is licensed under a Creative Commons Attribution 4.0 International License.