GENETIC BASIS FOR THE EMERGENCE OF NOVELTIES IN VERTEBRATES’ EVOLUTION

I. I. Dzeverin


DOI: http://dx.doi.org/10.30970/sbi.0702.290

Abstract


Current data concerning the mechanisms of the emergence of novel organs, structures and characters in evolution of vertebrates are briefly reviewed. There are various patterns of these evolutionary changes, e. g. the transformation in size and shape of organs and structures, differentiation of serially repeated homologues, establishment of new connections between previously existed components. Heterochronies and heterotopies usually underlie these transformations. Some new characters originate de novo with no obvious homologues in ancestral lineages. Examples of such processes are presented and the proposed definitions of evolutionary novelties are discussed. Recent studies suggest that evolutionary novelties arise due to the recruitment of the existing genes into the new regulatory networks.


Keywords


morphological evolution, evolutionary novelties, gene regulatory networks, vertebrates

References


1. Рэфф Р., Кофмен Т. Эмбрионы, гены и эволюция. Пер. с англ. М.: Мир, 1986. 404 с.

2. Ромер А., Парсонс Т. Анатомия позвоночных. Т. 1. Пер. с англ. М.: Мир, 1992. 359 с.

3. Wagner G. P., Lynch V. J. Evolutionary novelties. Current Biology, 2010; 20(2): R48-R52.
https://doi.org/10.1016/j.cub.2009.11.010
PMid:20129035

4. Шубин Н. Внутренняя рыба: История человеческого тела с древнейших времен до наших дней. Пер. с англ. М.: Астрель: CORPUS, 2010. 304 с.

5. Ромер А., Парсонс Т. Анатомия позвоночных. Т. 2. Пер. с англ. М.: Мир, 1992. 408 с.

6. Alberch P., Gould S. J., Oster G. F., Wake D. B. Size and shape in ontogeny and phylogeny. Paleobiology, 1979; 5(3): 296-317.
https://doi.org/10.1017/S0094837300006588

7. Klingenberg C. P. Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biological Reviews, 1998; 73: 79-123.
https://doi.org/10.1017/S000632319800512X
PMid:9569772

8. Müller G. B., Wagner G. P. Novelty in evolution: restructuring the concept. Annual Review of Ecology and Systematics, 1991; 22: 229-256.
https://doi.org/10.1146/annurev.es.22.110191.001305

9. Thompson D. W. On growth and form: A new edition. London - New York - Toronto - Bombay - Calcutta - Madras: Cambridge University Press, 1942. viii + 1116 p. + 2 plates.

10. Zelditch M. L., Swiderski D. L., Sheets H. D., Fink W. L. Geometric morphometrics for biologists: A primer. Amsterdam - Boston - Heidelberg - London - New York - Oxford - Paris - San Diego - San Francisco - Singapore - Sydney - Tokyo: Elsevier Ltd - Academic Press, 2004. 416 p.

11. Mitteroecker P., Gunz P. Advances in geometric morphometrics. Evolutionary Biology, 2009; 36: 235-247.
https://doi.org/10.1007/s11692-009-9055-x

12. Дзеверін І. І. Генетичні та морфогенетичні трансформації на ранніх етапах еволюції рукокрилих: короткий огляд. Біологічні студії, 2010; 4(3): 167-174.
https://doi.org/10.30970/sbi.0403.119

13. Wagner G. P. The biological homology concept. Annual Review of Ecology and Systematics, 1989; 20: 51-69.
https://doi.org/10.1146/annurev.es.20.110189.000411

14. Бляхер Л. Я. Аналогия и гомология (Этюды по истории морфологии. 6). Идея развития в биологии. М.: Наука, 1965: 123-203.

15. Hallgrímsson B., Jamniczky H.A., Young N.M. et al. The generation of variation and the developmental basis for evolutionary novelty. Journal of Experimental Zoology. Part B. Molecular and Developmental Evolution, 2012; 318: 501-517.
https://doi.org/10.1002/jez.b.22448
PMid:22649039 PMCid:PMC3648206

16. Докинз Р. Самое грандиозное шоу на Земле: доказательства эволюции. Пер. с англ. М.: Астрель: CORPUS, 2012. 496 с.

17. Майр Э. Зоологический вид и эволюция. Пер. с англ. М.: Мир, 1968. 598 с.

18. Pigliucci M. What, if anything, is an evolutionary novelty? Philosophy of Science, 2008; 75: 887-898.
https://doi.org/10.1086/594532

19. Brigandt I., Love A.C. Evolutionary novelty and the Evo-Devo synthesis: Field notes. Evolutionary Biology, 2010; 37(2-3): 93-99.
https://doi.org/10.1007/s11692-010-9083-6

20. Hall B.K., Kerney R. Levels of biological organization and the origin of novelty. Journal of Experimental Zoology. Part B. Molecular and Developmental Evolution, 2012; 318: 428-437.
https://doi.org/10.1002/jez.b.21425
PMid:21826786

21. Дарвин Ч. Сочинения. Т. 3. Происхождение видов путем естественного отбора. М.-Л.: Изд-во АН СССР, 1939. XII + 832 c.

22. Charlesworth B., Lande R., Slatkin M. A neo-Darwinian commentary on macroevolution. Evolution, 1982; 36(3): 474-498.
https://doi.org/10.1111/j.1558-5646.1982.tb05068.x
PMid:28568049

23. Креславский А. Г. О происхождении морфологических новаций. Современная эволюционная морфология. Киев: Наукова думка, 1991: 176-189.

24. Emera D., Wagner G. P. Transposable element recruitments in the mammalian placenta: impacts and mechanisms. Briefings in functional genomics, 2012; 11(4): 267-276.
https://doi.org/10.1093/bfgp/els013
PMid:22753775

25. Yu J.-K., Meulemans D., McKeown S. J., Bronner-Fraser M. Insights from the amphioxus genome on the origin of vertebrate neural crest. Genome Research, 2008; 18: 1127-1132.
https://doi.org/10.1101/gr.076208.108
PMid:18562679 PMCid:PMC2493401

26. Иванова-Казас О.М. Сравнительная эмбриология беспозвоночных животных. Низшие хордовые. М.: Наука, 1978. 167 с.

27. Lynch V.J., Tanzer A., Wang Y. et al. Adaptive changes in the transcription factor HoxA-11 are essential for the evolution of pregnancy in mammals. Proceedings of the National Academy of Sciences of the USA, 2008; 105(39): 14928-14933.
https://doi.org/10.1073/pnas.0802355105
PMid:18809929 PMCid:PMC2567470

28. Lynch V.J., Brayer K., Gellersen B., Wagner G.P. HoxA-11 and FOXO1A cooperate to regulate decidual prolactin expression: Towards inferring the core transcriptional regulators of decidual genes. PloS ONE, 2009; 4(9): e6845. 8 p.
https://doi.org/10.1371/journal.pone.0006845
PMid:19727442 PMCid:PMC2731163

29. Lynch V.J., Leclerc R.D., May G., Wagner G.P. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nature Genetics, 2011; 43(11): 1154-1159.
https://doi.org/10.1038/ng.917
PMid:21946353

30. Wagner G.P., Amemiya C., Ruddle C. Hox cluster duplications and the opportunity for evolutionary novelties. Proceedings of the National Academy of Sciences of the USA, 2003; 100(25): 14603-14606.
https://doi.org/10.1073/pnas.2536656100
PMid:14638945 PMCid:PMC299744

31. Lynch M., Conery J.S. The evolutionary fate and consequences of duplicate genes. Science, 2000; 290: 1151-1155.
https://doi.org/10.1126/science.290.5494.1151
PMid:11073452

32. Холдэн Дж.Б.С. Факторы эволюции. Пер. с англ. М.-Л.: Биомедгиз, 1935. XXVIII + 123 с.

33. Haldane J.B.S. The part played by recurrent mutation in evolution. American Naturalist, 1933; 67(708): 5-19.
https://doi.org/10.1086/280465

34. Оно С. Генетические механизмы прогрессивной эволюции. Пер. с англ. М.: Мир, 1973. 228 с.

35. Taylor J. S., Raes J. Duplication and divergence: the evolution of new genes and old ideas. Annual Review of Genetics, 2004; 38: 615-643.
https://doi.org/10.1146/annurev.genet.38.072902.092831
PMid:15568988

36. Zhang J. Evolution by gene duplication: an update. Trends in Ecology and Evolution, 2003; 18(6): 292-298.
https://doi.org/10.1016/S0169-5347(03)00033-8

37. Шмальгаузен І. Значення індивідуальних кореляцій в еволюції ембріона. Праці Науково-дослідного Інституту біології (Київський державний університет), 1937; 1: 7-31.

38. Шмальгаузен И. И. Организм как целое в индивидуальном и историческом развитии: Избранные труды. М.: Наука, 1982. 384 с.

39. Lande R. Natural selection and random genetic drift in phenotypic evolution. Evolution, 1976; 30(2): 314-334.
https://doi.org/10.1111/j.1558-5646.1976.tb00911.x
PMid:28563044

40. Lynch M., Hill W.G. Phenotypic evolution by neutral mutation. Evolution, 1986; 40(5): 915-935.
https://doi.org/10.1111/j.1558-5646.1986.tb00561.x
PMid:28556213

41. Turelli M., Gillespie J. H., Lande R. Rate tests for selection on quantitative characters during macroevolution and microevolution. Evolution, 1988; 42(5): 1085-1089.
https://doi.org/10.1111/j.1558-5646.1988.tb02526.x
PMid:28581161

42. Дзеверін І. І. Еволюційна нестабільність складних фенотипних структур. Доповіді НАН України, 2000; (4): 188-192.

43. Dzeverin I.I. The regressive trend of complex phenotypic structures in neutral evolution. Vestnik zoologii, 2007; 41(1): 53-69.

44. Корочкин Л.И. Связь онто- и филогенеза в генетическом освещении. Проблема макромутаций (морфологический и молекулярный аспекты). Генетика, 2002; 38(6): 727-738.

45. Fisher R.A. The genetical theory of natural selection. Oxford: Clarendon Press, 1930. XIV + 272 p.
https://doi.org/10.5962/bhl.title.27468

46. Lande R. Microevolution in relation to macroevolution. Paleobiology, 1980; 6(2): 233-238.
https://doi.org/10.1017/S0094837300006771

47. Orr H. A. Adaptation and the cost of complexity. Evolution, 2000; 54(1): 13-20.
https://doi.org/10.1111/j.0014-3820.2000.tb00002.x
PMid:10937178

48. Wagner G.P., Kenney-Hunt J.P., Pavlicev M. et al. Pleiotropic scaling of gene effects and the 'cost of complexity'. Nature, 2008; 452: 470-472.
https://doi.org/10.1038/nature06756
PMid:18368117

49. Lande R. The response to selection on major and minor mutations affecting a metrical trait. Heredity, 1983; 50(1): 47-65.
https://doi.org/10.1038/hdy.1983.6

50. Медников Б.М. Избранные труды: Организм, геном, язык. М.: Т-во научных изд. КМК, 2005. 456 с.

51. Кольцов Н.К. Организация клетки: Сборник экспериментальных исследований, статей и речей 1903-1935 гг. М.;Л.: Биомедгиз, 1936. 652 с.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2013 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.