PHENOLIC COMPOUNDS AS COMPONENTS OF SALICYLATE-INDUCED ADAPTIVE RESPONSE OF WHEAT PLANTS ON THE TOXIC EFFECT OF CADMIUM CHLORIDE

M. Kobyletska, I. Boiko, J. Kavulych, O. Terek


DOI: http://dx.doi.org/10.30970/sbi.0702.283

Abstract


The effect of salicylic acid on the content of phenolic compounds and anthocyanins in wheat plants (Triticum aestivum L.) affected by cadmium chloride was investigated. Increase in phenolic compounds content in cadmium-stressed plants was established. Preincubation with salicylic acid reduces phenol content, demonstrating growth activation, however increase in phenols content negatively correlates with photosynthetic productivity and nitrogen accumulation in leaves. Disproportion of distribution of the phenolic compounds in plant organism with significant predominance of their accumulation in root system was revealed. Salicylic acid increases content of anthocyanins in the shoots of 21-days-old plants under cadmium stress. An increase in phenols’ concentration in wheat plants caused by toxic effect of cadmium chloride affirms their functioning as prooxidants. Obtained results do not contradict the realization of antioxidant function by them. A decrease in phenol content in plant roots and shoots and increase in anthocyanin pool after preincubation with salicylic acid dsuggest their role as the components of adaptive response to cadmium stress.


Keywords


salicylic acid, cadmium chloride, phenolic compounds, anthocyanins, Triticum aestivum L.

References


1. Бойко І.В., Кобилецька М.С., Терек О.І. Функціональний стан хлорофіл-білкових комплексів у листках рослин за дії іонів кадмію та саліцилату. Біологічні студії, 2011; 5(1): 105-112.
https://doi.org/10.30970/sbi.0501.132

2. Бойко І.В., Кобилецька М.С., Терек О.І. Саліцилова кислота як регулятор росту рослин за умов кадмієвого стресу. Вісник Львів. ун-ту. Сер. біол, 2012; 58: 271-279.

3. Гащишин О., Грохольська О., Пацула О., Терек О. Вплив іонів важких металів і регулятора росту трептолему на загальний вміст фенольних сполук у рослинах ріпаку та соняшнику. Біологічні студії, 2012; 6(1): 109-116.
https://doi.org/10.30970/sbi.0601.199

4. Гребенникова О.А., Ежов В.Н. Содержание фенольных соединений в плодах алычи в процессе созревания. Физиология и биохимия культ. растений, 2011; 43(5): 378-382.

5. Гуральчук Ж.З. Механизмы устойчивости растений к тяжелым металлам. Физиология и биохимия культ. растений, 1994; 26(2): 107-117.

6. Запрометов М.Н. Биохимические методы в физиологии растений. М.: Наука, 1971. 191 c.

7. Карпин О., Цвілинюк О., Терек О. та ін. Антиоксидантна активність і вміст поліфенолів у рослинах Carex hirta L. та Faba bona Medic. (Vicia faba L.). Біологічні студії, 2009; 3(2): 109-114.
https://doi.org/10.30970/sbi.0302.044

8. Кобилецька М., Терек О. Вплив іонів кадмію на вміст фенольних сполук та вільного проліну в рослинах кукурудзи. Вісник Львів. ун-ту. Сер. біол, 2002; 28: 311-316.

9. Колупаев Ю.Е. Формирование адаптивных реакций растений на действие абиотических стрессов. К.: Основа, 2010. 352 с.

10. Терек О.І., Пацула О.І. Ріст і розвиток рослин. Львів: ЛНУ імені Івана Франка, 2011. 328 с.

11. Феденко В.С. Ціанідин як ендогенний хелатор іонів металів у коренях проростків кукурудзи. Укр. біохім. журнал, 2008; 80(1): 102-106.

12. Чечуй О.Ф. Вміст фенольних сполук у насінні сої при проростанні за оксидативного стресу, спричиненого впливом іонів кадмію та кобальту. Физиология и биохимия культ. растений. 2011: 43(4): 362-363.

13. Chmeliowska J., Veloso J., Gutierrez J., Silvar C., Diaz J. Cross-protection of pepper plants stressed by copper against a vascular pathogen is accompanied by the induction of a defense response. Plant Science, 2010; 178: 176-182.
https://doi.org/10.1016/j.plantsci.2009.11.007

14. Diaz J., Bernal A., Pomar F., Merino F. Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annuum L.) seedlings in response to copper stress and its relation to lignification. Plant Science, 2001; 161: 179-188.
https://doi.org/10.1016/S0168-9452(01)00410-1

15. Eraslan F., Inal A., Gunes A., Alpaslan M. Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Scientia Horticulturae, 2007; 113: 120-128.
https://doi.org/10.1016/j.scienta.2007.03.012

16. Grassmann J., Hippeli S., Elstner E.F. Plant's defence and its benefits for animals and medicine: role of phenolics and terpenoids in avoiding oxygen stress. Plant Physiol. Biochem, 2002; 40: 471-478.
https://doi.org/10.1016/S0981-9428(02)01395-5

17. Gould K.S., McKelvie J., Markham K.R. Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant, Cell and Environment, 2002; 25: 1261-1269.
https://doi.org/10.1046/j.1365-3040.2002.00905.x

18. Guangqiu Q., Chongling Y., Haoliang L. Influence of heavy metals on the carbohydrate and phenolics in mangrove, Aegiceras corniculatum L., seedlings. Bull. Environ. Contam. Toxicol, 2007; 78: 440-444.
https://doi.org/10.1007/s00128-007-9204-9
PMid:17619796

19. Jaleel C.A., Wang G., Ahmad P. Changes in the photosynthetic characteristics of Cantharanthus roseus L. as a result of exogenous growth regulator. Plant Omics Journal, 2009; 2(4): 169-174.

20. Kawano T., Furuichi T., Muto S. Controlled salicylic acid and corresponding signaling mechanisms in plants. Plants Biotechnol, 2004; 21: 319-335.
https://doi.org/10.5511/plantbiotechnology.21.319

21. Kovacik J., Klejdus B. Dynamics of phenolic acids and lignin accumulation in metal-treated Matricaria chamomilla roots. Plant Cell. Rep, 2008; 27: 605-615.
https://doi.org/10.1007/s00299-007-0490-9
PMid:18066553

22. Kovacik J., Klejdus B., Hedvabny J., Backor M. Effect of copper and salicylic acid on phenolic metabolites and free aminoacids in Scenedesmus quadricauda (Chlorophyceae). Plant Science, 2010; 178: 307-311.
https://doi.org/10.1016/j.plantsci.2010.01.009

23. Mahdavian K., Kalantari K.M., Ghorbanli M., Torkzade M. The effects of salicylic acid on pigment contents in ultraviolet radiation stressed pepper plants. Biologia Plantarum, 2008; 52(1): 170-172.
https://doi.org/10.1007/s10535-008-0037-0

24. Michalak A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish J. of Environ. Stud, 2006; 15(4): 523-530.

25. Morina F., Jovanovic L., Kukavica B., Veljovic-Jovanovic S. Peroxidase, phenolics, and antioxidative capacity of common mullein (Verbascum thapsus L.) grown in a zinc excess. Arch. Biol. Sci, 2008; 60(4): 687-695.
https://doi.org/10.2298/ABS0804687M

26. Neill S.O., Gould K.S., Kilmartin P.A. et al. Antioxidant activities of red versus green leaves in Elatostema rugosum. Plant, Cell and Environment, 2002; 25: 539-547.
https://doi.org/10.1046/j.1365-3040.2002.00837.x

27. Rice-Evans C.A., Miller N.J., Paganga G. Antioxidant properties of phenolic compounds. Trends in Plant Science, 1997; 2(4): 152-159.
https://doi.org/10.1016/S1360-1385(97)01018-2

28. Rivero R.M., Ruiz J.M., Garcia P.C. et al. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Science, 2001; 160: 315-321.
https://doi.org/10.1016/S0168-9452(00)00395-2

29. Sakihama Y., Cohen M.F., Grace S.C., Yamasaki H. Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology, 2002; 177: 67-80.
https://doi.org/10.1016/S0300-483X(02)00196-8

30. Sasaki M., Yamamoto Y., Matsumoto H. Lignin deposition induced by aluminium in wheat (Triticum aestivum) roots. Physiologia Plantarum, 1996; 96: 193-198.
https://doi.org/10.1111/j.1399-3054.1996.tb00201.x

31. Sgherri C., Cosi E., Navari-Izzo F. Phenols and antoixidative status of Raphanus sativus grown in copper excess. Physiologia Plantarum, 2003; 118: 21-28.
https://doi.org/10.1034/j.1399-3054.2003.00068.x
PMid:12702010

32. Sumbele S., Fotelli M.N., Nikolopoulos D. et al. Photosynthetic capacity is negatively correlated with the concentration of leaf phenolic compounds across a range of different species. AoB PLANTS, 2012; doi: 10.1093/aobpla/pls025.
https://doi.org/10.1093/aobpla/pls025
PMid:23050073 PMCid:PMC3465559

33. Sytar O., Cai Z., Brestic M. et al. Foliar applied nickel on buckwheat (Fagopyrum esculentum) induced phenolic compounds as potential antioxidants. CLEAN - Soil, Air, Water, 2013. doi: 10.1002/clen.201200512.
https://doi.org/10.1002/clen.201200512

34. Vlot A.C., Dempsey D.A., Klessig D.F. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopatol, 2009; 47: 177-206.
https://doi.org/10.1146/annurev.phyto.050908.135202
PMid:19400653


Refbacks

  • There are currently no refbacks.


Copyright (c) 2013 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.