LEVEL OF SIALYLATION AND GALACTOSYLATION OF BLOOD PLASMA GLYCOPROTEINS UNDER THE INFLUENCE OF ALKYLATING CHEMOTHERAPY IN PATIENTS WITH CHRONIC LYMPHOCYTIC LEUKEMIA

G. S. Маslak, O. V. Kostyuk, A. O. Kulinich, I. V. Mashejko


DOI: http://dx.doi.org/10.30970/sbi.0702.293

Abstract


Level of sialylation, galactosylation of α1-acid glycoprotein and plasma fibronectin in patients with chronic lymphocytic leukemia before the alkylating therapy and at its different stages were studied. Treatment of patients with chronic lymphocytic leukemia destined chemotherapeutic regimens according to the program СOP (cyclophosphamide, onkovin and prednisolone). Lectin-enzyme analyses with sialospecific Maackia amurensis lectin MAA-II, sambucus nigra lectin SNA and galactospecific ricinus communis lectin were used. Significant decrease of sialylation and galactosylation of both studied proteins in chronic lymphocytic leukemia and dynamic changes of these parameters during the first day of treatment and in two months were shown. Alkylating chemotherapy of chronic lymphocytic leukemia patients influences as the level of sialylation as the level of galactosylation both studied glycoproteins. Restoration of galactose within the N-glycans of α1-acid glycoprotein and fibronectin was observed after chemotherapy. Obtained data could be useful for the better understanding of the mechanisms of action of selected treatment and defense reactions of the organism.


Keywords


fibronectin, α1-acid glycoprotein, sialic acid, galactose, chronic lymphocytic leukemia, COP-therapy

References


1. Schauer R. Achievements and challenges of sialic acid research. Glycoconj J, 2000; 17: 485-499.
https://doi.org/10.1023/A:1011062223612
PMid:11421344

2. Nakano M., Kakehi K., Tsai M. et al. Detailed structural features of glycan chains derived from α1-acid glycoproteins of several different animals: the presence of hypersialylated, O-acetylated sialic acids but not disialyl residues. Glycobiol, 2003; 14(5): 431-441.
https://doi.org/10.1093/glycob/cwh034
PMid:14736726

3. Varki A. Sialic acids in human health and disease. Trends Mol. Med, 2008; 14(8): 351-360.
https://doi.org/10.1016/j.molmed.2008.06.002
PMid:18606570 PMCid:PMC2553044

4. García-Muñoz A., Rodríguez M.A., Bologna-Molina R., Hernández-Hernández F.C. The orosomucoid 1 protein (α1 acid glycoprotein) is overexpressed in odontogenic myxoma. Proteome Science, 2012; 10(49): 1477-1487.
https://doi.org/10.1186/1477-5956-10-49
PMid:22888844 PMCid:PMC3493304

5. Deshui J., Mingxia Y., Xiaomin W., Xiangfang H. Development of a highly metastatic model that reveals a crucial role of fibronectin in lung cancer cell migration and invasion. BMC Cancer, 2010; 10(364): 1186-1192.
https://doi.org/10.1186/1471-2407-10-364
PMid:20615257 PMCid:PMC2912267

6. Takeyama H., Kyoda S., Okamoto T., Manome Y. The expression of sialic fibronectin correlates with lymph node metastasis of thyroid malignant neoplasmas. Anticancer Res, 2011; 31(4): 1395-1398.

7. Higai K., Aoki Y., Azuma Y. et al. Glycosylation of site-specific glycans of alpha1-acid glycoprotein and alterations in acute and chronic inflammation. Biochim. Biophys. Acta, 2005; 30(1): 128-135.
https://doi.org/10.1016/j.bbagen.2005.03.012
PMid:15863355

8. Кулініч А.О., Шевцова А.І., Письменецька І.Ю., Маслак Г.С. Пат. на корисну модель № 54113 Україна. МПК А61В 5/145. Спосіб визначення ступеню фукозильованості фібронектину; заявник та патентовласник Дніпропетровська державна медична академія. - заявл. 05.05.2010; опубл. 25.10.2010, Бюл. № 20.

9. Стєклєньова Н.І., Шевцова А.І., Бразалук О.З., Машейко І.В. Пат. № 53176 Україна, МПК7(2009) A61B 5/145. Спосіб визначення ступеню сіальованості альфа-1-кислого глікопротеїну; заявник і патентовласник Дніпропетровська державна медична академія. - заявл. 02.04.2010; опубл. 27.09.2010, Бюл. № 18.

10. Луцик М.Д., Детюк Е.С., Луцик Н.Д. Лектины в гистохимии / под ред. Е.Н. Панасюка. Львов: Вища школа, 1989. 144 с.

11. D'Souza Y.B., Jones C.J.P., Bonshek R.E. Comparison of lectin binding of drusen, RPE, Bruch's membrane, and photoreceptors. Molecular Vision, 2009; 15: 906-911.

12. Wing S.To., Kim S. Midwood Plasma and cellular fibronectin: distinct and independent functions during tissue repair. Fibrogenesis & Tissue Repair, 2011, 4: 21.
https://doi.org/10.1186/1755-1536-4-21
PMid:21923916 PMCid:PMC3182887

13. Маслак Г.С., Костюк О.В., Бразалук О.З. Сироваточний рівень сіалових кислот та активність нейрамінідази за умов хронічного лімфолейкозу та на фоні хіміотерапевтичного лікування. Вчені записки Таврійського нац. ун-ту ім. Вернадського, 2013; 26(65) №1: 105-111.

14. Chen W.C., Completo G.C., Sigal D.S et al. In vivo targeting of B-cell lymphoma with glycan ligands of CD22. Blood, 2011 May 19; 117(20): 5551.
https://doi.org/10.1182/blood-2011-03-344176

15. Van D.Brinkman-van Linden E.C., Haveeman. Glycolasion of L1-acid glycoprotein in health an disease occurrence, regulation and possible functional implications. Trends Glycosci. Glycotechnol,1998; 10: 235-45.
https://doi.org/10.4052/tigg.10.235

16. Kelm S. Schauer R. Sialic acids in molecular in cellular interactions. In Rev. Cetol, 1997; 157: 137-240.
https://doi.org/10.1016/S0074-7696(08)62127-0

17. Stamatos M., Liang F., Nan X. et al. Differential expression of endogenous sialidases of human monocytes during cellular differentiation into macrophages FEBS J, 2005; 272(10): 2545-56.
https://doi.org/10.1111/j.1742-4658.2005.04679.x
PMid:15885103

18. Sumar N., Isenberg D.A., Bodman K.B. et al. Reduction in IgG galactose in juvenile and adult onset rheumatoid arthritis measured by a lectin binding method and its relation to rheumatoid factor. Ann. Rheum. Dis, 1991 September; 50(9): 607-610.
https://doi.org/10.1136/ard.50.9.607
PMid:1929582 PMCid:PMC1004502

19. Boyd P.N., Lines A.C., Patel A.K. The effect of the removal of sialic acid, galactose and total carbohydrate on the. Mol. Immunol, 1995; 32 (17-18): 1311-8.
https://doi.org/10.1016/0161-5890(95)00118-2

20. Vakonakis I., D. Staunton, Ellis I. R. et al. Motogenic sites in human fibronectin are masked by long range interactions. J. Biol. Chem, 2009; 284(23): 15668-15675.
https://doi.org/10.1074/jbc.M109.003673
PMid:19366708 PMCid:PMC2708863

21. Kuga T., Sakamaki S., Matsunaga T. et al. Fibronectin fragment-facilitated retroviral transfer of the glutathione-S-transferase pi gene into CD34+ cells to protect them against alkylating agents. Hum. Gene Ther, 1997 Nov 1; 8(16): 1901-10.
https://doi.org/10.1089/hum.1997.8.16-1901
PMid:9382956

22. Millard C.J., Campbell I.D., Pickford R. A. Gelatin binding to the 8F19F1 module pair of human fibronectin requires site-specific N-glycosylation. FEBS Let, 2005; 579 (20): 4529-4534.
https://doi.org/10.1016/j.febslet.2005.05.082
PMid:16083879


Refbacks

  • There are currently no refbacks.


Copyright (c) 2013 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.