EVALUATION OF CYTOTOXIC AND MUTAGENIC ACTION OF NOVEL SURFACE ACTIVE COMB-LIKE POLYAMPHOLYTES THAT ARE USED FOR DELIVERY OF NUCLEIC ACIDS TO TARGET CELLS

N. S. Finiuk, Y. Z. Filyak, N. M. Boiko, N. Y. Mitina, O. S. Zaichenko, R. S. Stoika


DOI: http://dx.doi.org/10.30970/sbi.0702.237

Abstract


Rapid development of new nanomaterials and nanotechnologies is accompanied by significant achievements in various fields of medicine, industry and precise technology, as well as by undesirable effects on human health and environment. Our studies were focused on determination of toxicity in vitro and evaluation of the mutagenic activity of novel polyampholyte carriers of BG-2 type. It was shown that they did not exert cytotoxic and could be used in the in vitro experiments at a concentration less than 0.01%. The carriers were not capable of triggering gene mutations in the Ames test. At the absence of metabolic activation, all studied carriers lacked genotoxic effects. No mutagenic effect was observed for novel carriers after adding of the microsomal fraction of rat liver for both strains of Salmonella typhimurium, namely TA98 and TA100. This indicates a safety of novel polyampholyte carriers of BG-2 type as a tool for delivery of nucleic acids into target cells.


Keywords


polyampholytic carriers, cytotoxic impact, cultures of mammalian cells, Ames test

References


1. Федоренко В.О., Осташ Б.О., Гончар М.В., Ребець Ю.В. Великий практикум з генетики, генетичної інженерії та аналітичної біотехнології мікроорганізмів: навчальний посібник для студентів біологічних факультетів університетів. Львів, 2005. 278 с.

2. Dang J.M., Leong K.W. Natural polymers for gene delivery and tissue engineering. Adv. Drug Deliv. Rev, 2006; 58(4): 487-499.
https://doi.org/10.1016/j.addr.2006.03.001
PMid:16762443

3. Igarashi E. Factors aff ecting toxicity and efficacy of polymeric nanomedicines. Toxicol. Appl. Pharmacol, 2008; 229(1): 121-134.
https://doi.org/10.1016/j.taap.2008.02.007
PMid:18355886

4. Lewinski N., Colvin V., Drezek R. Cytotoxicity of nanoparticles. Small, 2008; 4(1): 26-49.
https://doi.org/10.1002/smll.200700595
PMid:18165959

5. Marquis B.J., Love S.A., Braun K.L., Haynes C.L. Analytical methods to assess nanoparticle toxicity. Analyst, 2009; 134(3): 425-439.
https://doi.org/10.1039/b818082b
PMid:19238274

6. Muller L., Riediker M., Wick P. et al. Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways. J. R. Soc. Interface, 2010; 7(1): 27-40.
https://doi.org/10.1098/rsif.2009.0161.focus
PMid:19586954

7. Organisation for Economic Cooperation and Development (OECD) Guideline for the Testing of Chemicals: Bacteria Reverse Mutation Test Guideline 471, 1997.
http://www.oecd-ilibrary.org/environment/test-no-471-bacterial-reverse-mutation-test_9789264071247-en;jsessionid=5bhtrq7mjnc0d.x-oecd-live-01

8. Sayes C.M., Reed K.L., Warheit D.B. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicology Science, 2007; 97(1): 163-180.
https://doi.org/10.1093/toxsci/kfm018
PMid:17301066

9. Zaichenko A.S., Voronov S.A., Shevchuk O.M. et al. Kinetic features and molecular weight characteristics of terpolymerization products of the systems based on vinyl acetate and 5-tert-butyl-peroxy-5-methyl -1-hexene-3-yne. J. of Applied Polymer Science, 1997; 67: 1061-1066.
https://doi.org/10.1002/(SICI)1097-4628(19980207)67:6<1061::AID-APP13>3.0.CO;2-3

10. United States Food and Drug Administration. Toxicological Principles for the Safety Assessment of Food Ingredients. Redbook 2000. IV.C.1. Short-Term Tests for Genetic Toxicity. College Park, MD: Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, 2000. Р. 1-5.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2013 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.