A. M. Naumenko, A. Zu. Nyporko, O. V. Tsymbalyuk, N. Ye. Nuryshchenko, I. S. Voiteshenko, T. L. Davidovska



A spatial model of nanosized titanium dioxide material was created using Discovery Studio Visualizer software, versions 2.0 and 2.5. A search for and analysis of possible sites of its docking to the extracellular part of GABAB1а receptor subunit were performed using the algorythm for molecular docking PatchDock. The dimensions of the obtained ТіО2 nanoparticle surface were (18.925 × 3.785 × 19.028) Å. Four potentially possible sites of ТіО2 docking to the extracellular part of GABAB1а receptor subunit of GABAB were identified. The ТіО2 nanoparticle demonstrated high affinity of docking to one of the receptor sites with the geometric shape complementarity score of 12562, taking the following values in other sites: 10746; 10370; 10204. The approximate interface area of complex of the extracellular part of GABAB1а receptor subunit of GABAB with ТіО2 for the site with the highest geometric shape complementarity score was 1949.80 Å, and for others – 1273.20 Å, 1261.10 Å and 1170.30 Å, respectively. The evaluation of аtomic contact energy demonstrated the following values for the sites of ТіО2 nanoparticle docking: 362.92; 173.93; 340.63 and 224.61. The nature of connections, stabilizing the sites of ТіО2 docking to the extracellular part of GABAB1а receptor subunit of GABAB, was analyzed in accordance to their amino acid composition.


ТіО2 nanoparticles, GABAB receptor, molecular docking, PatchDock

Full Text:



1. Bettler B., Kaupmann K., Mosbacher J., Gassmann M. Molecular structure and physiological functions of GABA(B) receptors. Physiological Reviews, 2004; 84(3): 835-867.

2. Bormann J. The "ABC" of GABA receptors. Trends in Pharmacological Sciences, 2000; 21(1): 16-19.

3. Chukin G.D., Khrustalev S.V. Hydrate cover and the active centers of the titanium dioxide surface. Journal of Physical Chemistry, 1973; 40(8): 2055-2058. (In Russian)

4. Davydov A.A. The titanium dioxide surface condition according to IR spectroscopy. The Adsorption of Adsorbents, 1977; 5: 83-89. (In Russian)

5. Dolmatov Y.D., Rogachevskaya T.L. Determination of chemically bound OH-groups in the hyd­rated titanium dioxide. Journal of Applied Chemistry, 1973; 46(5): 964-967. (In Russian)

6. Duhovny D., Nussinov R., Wolfson H.J. Efficient unbound docking of rigid molecules. Proceedings of the Fourth International Workshop on Algorithms in Bioinformatics, 2002; 2452: 185-200.

7. Fahmi A., Minot C., Silvi B., Cause M. Theoretical analysis of the structure of titanium dioxide crystals. Physical Review B, 1993; 47(18): 11717-11724.

8. Geng Y., Bush M., Mosyak L. et al. Structural mechanism of ligand activation in human GABAB receptor. Nature, 2013; 504(7479): 254-259.
PMid:24305054 PMCid:PMC3865065

9. Geng Y., Xiong D., Mosyak L. et al. Structure and functional interaction of the extracellular domain of human GABA(B) receptor GBR2. Nature Neuroscience, 2012; 15(7): 970-978.
PMid:22660477 PMCid:PMC3374333

10. Goroshchenko Y.G. Chemistry of Titanium. Kyiv: Scientific Thought, 1970. 416 p. (In Russian)

11. Hill D.R., Dolphin A.C. Modulation of adenylate cyclase activity by GABAB receptors. Neuropharmacology, 1984; 23(7B): 829-830.

12. Jacimovic J., Vaju C., Gaal R. et al. High-pressure study of anatase TiO2. Materials, 2010; 3: 1509-1514.

13. Jackson M. Molecular and cellular biophysics. Moscov: Binomial, 1990. 551 p. (In Russian)

14. Kostrikin A.V., Kuznetsova R.V., Kosenkova al. IR spectrum of hydrated titanium dioxide. Questions of Modern Science and Practice, 2007; 8(2): 181-186. (In Russian)

15. Langel W., Menken L. Simulation of the interface between titanium oxide and amino acids in solution by first principles MD. Surface Science, 2003; 538(1-2): 1-9.

16. Qazi Mohd S.J. Elucidation of Mechanism of Carcinogenesis by Environmental Carcinogens and their Prevention by Nanoparticles: an In Silico study. Lucknow, India: Integral University, 2014. 190 p.

17. Mezhevoy I.N., Badelin V.G. Dissolution and solvation enthalpies of L-serine in aqueous-alcoholic solutions at 298.15 K. Journal of Physical Chemistry, 2008; 82(4): 789-791. (In Russian)

18. Mudunkotuwa I.A., Grassian V.H. Histidine adsorption on TiO2 nanoparticles: an integrated spectroscopic, thermodynamic, and molecular-based approach toward understanding nano−bio interactions. Langmuir, 2014; 30(29): 8751-8760.

19. Nyporko A.Yu., Naumenko A.M., Golius A. et al. 3D reconstruction of a full-size GABAB receptor. Neurophysiology, 2015; 47(5): 364-375.

20. O'Neil K.T., DeGrado W.F. A thermodynamic scale for the heliх - forming tendencies of the commonly occurring amino acids. Science,1990; 250: 646-651.

21. Pele L.C., Thoree V., Bruggbaber S.F.A. et al. Pharmaceutical/food grade titanium dioxide particles are absorbed into the bloodstream of human volunteers. Part Fibre Toxicology, 2015; 12: 26-32.
PMid:26330118 PMCid:PMC4557898

22. Pin J.P., Kniazeff J., Binet V. et al. Activation mechanism of the heterodimeric GABA(B) receptor. Biochemical Pharmacology, 2004; 68(8): 1565-1572.

23. Radchenko N.V., Shapoval L.M., Davidovska T.L., Prilutsky Yu.I. Mathematical modeling of the effects of GABA injection into medullary NO-synthesizing rat cardiovascular neurons. Bulletin of V.N. Karazin Kharkiv National University, 2007; 18(1): 69-73. (In Ukrainian)

24. Radchenko N.V., Shapoval L.M., Davidovska T.L. et al. GABAergic control features of blood circulation function by rats medulla oblongata neurons. Neurophysiology, 2013; 45(5-6): 407-416. (In Ukrainian)

25. Schneidman-Duhovny D., Inbar Y., Nussinov R., Wolfson H.J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Research, 2005; 33 (Web Server issue): W363-367.
PMid:15980490 PMCid:PMC1160241

26. Shapoval L.M., Sahach V.F., Pobihaylo L.S., Stepanenko L.G., Yermolinska N.V. The role of nitric oxide in the effects implementation of intrabulbar introduced γ-aminobutyric acid on the blood circulation system. Physiological Journal, 2005; 51(1): 43-50. (In Ukrainian)

27. Zakharova N.V., Sychev M.M., Korsakov V.G., Myakin S.V. Ferroelectric surface donor-acceptor centers evolution upon dispersing. Condensed Matter and Status, 2011; 13(1): 56-62. (In Russian)

28. Zhang C., Vasmatzis G., Cornette J.L., DeLisi C. Determination of atomic desolvation energies from the structures of crystallized proteins. Journal of Molecular Biology, 1997; 267: 707-726.


  • There are currently no refbacks.

Copyright (c) 2016 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.