CONTRIBUTION OF PERFUSION IN DIFFUSION-WEIGHTED 1H-MRI OF INTRAHEPATIC AND SUBCUTANEOUS HEPATOCELLULAR CARCINOMA IN RAT

A. M. Babsky, B. George, V. P. Greniukh, N. Bansal


DOI: http://dx.doi.org/10.30970/sbi.0702.277

Abstract


Hepatocellular carcinoma (HCC) and liver metastases are an increasing problem worldwide. Non-invasive methods for understanding of HCC growth mechanisms are highly desirable. A biexponential model for analysis of non-invasive diffusion-weighted 1H magnetic resonance imaging (MRI) provides important information about neoplastic transformation in capillary liver tissue perfusion and water molecular diffusion. Fast and slow components of water apparent diffusion coefficient (ADC) were separated in the normal rat liver, intrahepatic, and subcutaneous HCCs. MRI was acquired with a Varian 9.4 T horizontal bore system. The fast component of ADC (ADCfast), which contributes 38% to total signal in the intrahepatic HCC, was significantly lower compared to normal liver value, while the slow component of ADC did not differ in liver, intrahepatic, and subcutaneous HCCs. A decrease in ADCfast may be caused by restricted perfusion in abnormal tumor microvessels. Thus, a reported earlier decrease in ADC in HCC compared to normal liver was mostly due to a decreased in tumor perfusion rather than a decrease in water diffusion. Subcutaneous HCC showed a very limited vasculature development, which makes the tumor perfusion extremely poor and hypoxic. Simultaneous monitoring of water ADC changes in orthotopic and subcutaneous HCCs may be useful, but a possibility of location-based physiological and metabolic differences must be recognized.


Keywords


hepatocellular carcinoma, 1H-MRI, apparent diffusion coefficient, perfusion, tumor location

Full Text:

PDF

References


1. Babsky A., Ju S., Bansal N. Evaluation of tumor treatment response with diffusion-weighted MRI. In: Taouli B. (Ed.) Extra-Cranial Application of Diffusion - Weighted MRI. Cambridge: University Press, 2011: 172-197.
https://doi.org/10.1017/CBO9780511778070.013

2. Babsky A.M., Ju S., Bennett S. et al. Effect of implantation site and growth of hepatocellular carcinoma on apparent diffusion coefficient of water and sodium MRI. NMR in Biomedicine, 2012; 25(2): 312-321.
https://doi.org/10.1002/nbm.1752
PMid:21823182

3. Babsky A.M., Ju S., George B. et al. Predicting response to benzamide riboside chemotherapy in hepatocellular carcinoma using apparent diffusion coefficient of water. Anticancer Research, 2011; 31(6): 2045-2051.

4. Babsky A.M., Zhang H., Hekmatyar S.K. et al. Monitoring chemotherapeutic response in RIF-1 tumors by single-quantum and triple-quantum-filtered 23Na MRI, 1H diffusion-weighted MRI and PET imaging. Magnetic Resonance Imaging, 2007; 25(7): 1015-1023.
https://doi.org/10.1016/j.mri.2006.11.004
PMid:17707164

5. Colagrande S., Carbone S.F., Carusi L.M. et al. Magnetic resonance diffusion-weighted imaging: extraneurological applications. Radiologia Medica, 2006; 111(3): 392-419.
https://doi.org/10.1007/s11547-006-0037-0
PMid:16683086

6. Dave S., Vaupel P., Mueller-Kliesser P., Blendstrup K. Temperature distribution in peripheral s.c. tumors in rats. In: Overgaard J. (Ed.) Hyperthermia Oncology. London: Taylor and Francis, 1984: 503-506.

7. Falk P. Differences in vascular pattern between the spontaneous and the transplanted C3H mouse mammary carcinoma. European Journal of Cancer and Clinical Oncology, 1982; 18(2): 155-165.
https://doi.org/10.1016/0277-5379(82)90059-1

8. Field S.B., Needham S., Burney I.A. et al. Differences in vascular response between primary and transplanted tumours. British Journal of Cancer, 1991; 63(5): 723-726.
https://doi.org/10.1038/bjc.1991.163
PMid:1645562 PMCid:PMC1972409

9. Goshima S., Kanematsu M., Kondo H. et al. Diffusion-weighted imaging of the liver: optimizing b value for the detection and characterization of benign and malignant hepatic lesions. Magnetic Resonance Imaging, 2008; 28(3): 691-697.
https://doi.org/10.1002/jmri.21467
PMid:18777553

10. Guan S., Zhao W.D., Zhou K.R. et al. Assessment of hemodynamics in precancerous lesion of hepatocellular carcinoma: evaluation with MR perfusion. World Journal of Gastroentero¬logy, 2007; 13(8): 1182-1186.
https://doi.org/10.3748/wjg.v13.i8.1182
PMid:17451197 PMCid:PMC4146991

11. Ichikawa T., Haradome H., Hachiya J. et al. Diffusion-weighted MR imaging with a single-shot echoplanar sequence: detection and characterization of focal hepatic lesions. American Journal of Roentgenology, 1998; 170(2): 397-402.
https://doi.org/10.2214/ajr.170.2.9456953
PMid:9456953

12. Jayasundar R., Honess D., Hall L.D., Bleehen N.M. Simultaneous evaluation of the effects of RF hyperthermia on the intra- and extracellular tumor pH. Magnetic Resonance in Medicine, 2000; 43(1):1-8.
https://doi.org/10.1002/(SICI)1522-2594(200001)43:1<1::AID-MRM1>3.0.CO;2-2

13. Jennings D., Hatton B.N., Guo J. et al. Early response of prostate carcinoma xenografts to docetaxel chemotherapy monitored with diffusion MRI. Neoplasia, 2002; 4(3): 255-262.
https://doi.org/10.1038/sj.neo.7900225
PMid:11988845 PMCid:PMC1531699

14. Jordan B.F., Runquist M., Raghunand N. et al. Dynamic contrast-enhanced and diffusion MRI show rapid and dramatic changes in tumor microenvironment in response to inhibition of HIF-1alpha using PX-478. Neoplasia, 2005; 7(5): 475-485.
https://doi.org/10.1593/neo.04628
PMid:15967100 PMCid:PMC1501160

15. Lemaire L., Howe F.A., Rodrigues L.M., Griffiths J.R. Assessment of induced rat mammary tumour response to chemotherapy using the apparent diffusion coefficient of tissue water as determined by diffusion-weighted 1H-NMR spectroscopy in vivo. Magnetic Resonance Materials in Physics, Biology and Medicine, 1999; 8(1): 20-26.
https://doi.org/10.1007/BF02590631

16. Morse D.L., Galons J.P., Payne C.M. et al. MRI-measured water mobility increases in response to chemotherapy via multiple cell-death mechanisms. NMR in Biomedicine, 2007; 20(6): 602-614.
https://doi.org/10.1002/nbm.1127
PMid:17265424

17. Namimoto T., Yamashita Y., Sumi S. et al. Focal liver masses: characterization with diffusion-weighted echo-planar MR imaging. Radiology, 1997; 204(3): 739-744.
https://doi.org/10.1148/radiology.204.3.9280252
PMid:9280252

18. Padhani A., Liu G., Koh D.M. et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia, 2009; 11(2): 102-125.
https://doi.org/10.1593/neo.81328
PMid:19186405 PMCid:PMC2631136

19. Parkin D.M., Bray F., Ferlay J., Pisani P. Estimating the world cancer burden: Globocan 2000. International Journal of Cancer, 2001; 94(2): 153-156.
https://doi.org/10.1002/ijc.1440
PMid:11668491

20. Seierstad T,. Folkvord S., Roe K. et al. Early changes in apparent diffusion coefficient predict the quantitative antitumoral activity of capecitabine, oxaliplatin, and irradiation in HT29 xenografts in athymic nude mice. Neoplasia, 2007; 9(5): 392-400.
https://doi.org/10.1593/neo.07154
PMid:17534444 PMCid:PMC1877980

21. Sun X., Wang H., Chen F. et al. Diffusion-weighted MRI of hepatic tumor in rats: Comparison between in vivo and postmortem imaging acquisitions. Magnetic Resonance Imaging, 2009; 29(3): 621-628.
https://doi.org/10.1002/jmri.21675
PMid:19243058

22. Taouli B., Koh D.-M. Diffusion-weighted MRI of the liver. In: Taouli B. (Ed.) Extra-Cranial Application of Diffusion - Weighted MRI. Cambridge: University Press, 2011: 18-31.
https://doi.org/10.1017/CBO9780511778070.003

23. Taouli B., Vilgrain V., Dumont E. et al. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology, 2003; 226(1): 71-78.
https://doi.org/10.1148/radiol.2261011904
PMid:12511671

24. Thoeny H.C., De Keyzer F., Chen F. et al. Diffusion-weighted magnetic resonance imaging allows noninvasive in vivo monitoring of the effects of combretastatin a-4 phosphate after repeated administration. Neoplasia, 2005; 7(8): 779-787.
https://doi.org/10.1593/neo.04748
PMid:16207480 PMCid:PMC1501887

25. Yamada I., Aung W., Himeno Y. et al. Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology, 1999; 210(3): 617-623.
https://doi.org/10.1148/radiology.210.3.r99fe17617
PMid:10207458

26. Yuan Y.H., Xiao E.H., Liu J.B. et al. Characteristics of liver on magnetic resonance diffusion-weighted imaging: dynamic and image pathological investigation in rabbit liver VX-2 tumor model. World Journal of Gastroenterology, 2008; 14(25): 3997-4004.
https://doi.org/10.3748/wjg.14.3997
PMid:18609683 PMCid:PMC2725338

27. Zhao M., Pipe J.G., Bonnett J., Evelhoch J.L. Early detection of treatment response by diffusion-weighted 1H-NMR spectroscopy in a murine tumour in vivo. British Journal of Cancer, 1996; 73(1): 61-64.
https://doi.org/10.1038/bjc.1996.11
PMid:8554985 PMCid:PMC2074297


Refbacks

  • There are currently no refbacks.


Copyright (c) 2013 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.