MOLECULAR MECHANISMS OF REGULATION OF GENE EXPRESSION AT HYPOXIA

D. O. Minchenko, O. V. Hubenia, K. I. Kubaichuk, T. V. Bakalets, Y. A. Harmash, I. V. Kryvdiuk, R. Yu. Marunych, B. M. Terletsky, R. V. Sulik, N. K. Murashko, O. H. Minchenko


DOI: http://dx.doi.org/10.30970/sbi.0701.267

Abstract


Hypoxia is one of powerful inducers of expression of a large group of genes, including genes which control glycolysis, angiogenesis and proliferation supportingcell surviving at low oxygen condition. However, in tumor cells hypoxia was observed at normal oxygen tension condition as a result of its decreased utilization. Moreover, hypoxia is an obligate component of malignant tumor growth and substantially controls glycolysis, angiogenesis and proliferation processes. Data concerning molecular mechanisms of activation of hypoxia inducible transcription factor HIF in cells at hypoxia and in malignant tumors, as well as its role of in the regulation of gene expressions have been analyzed. The mechanisms of interaction of the transcription factor HIF with specific hypoxic regulatory elements in the promoter region of genes activated by hypoxia were examined.


Keywords


hypoxia, molecular mechanisms, regulation of gene expression, HIF, malignant tumors

References


1. Brahimi-Horn M.C., Berra E., Pouyssgur J. Hypoxia: the tumor's gateway to progression along the angiogenic pathway. Trends in Cellular Biology, 2001; 11: 32-36.
https://doi.org/10.1016/S0962-8924(01)02126-2

2. Bertout J.A., Patel S.A., Simon M.C. The impact of O2 availability on human cancer. Nature Reviews Cancer, 2008; 8(12): 967-975.
https://doi.org/10.1038/nrc2540
PMid:18987634 PMCid:PMC3140692

3. Brahimi-Horn M.C., Chiche J., Pouyssgur J. Hypoxia and cancer. Journal of Molecular Medicine, 2007; 85(12): 1301-1307.
https://doi.org/10.1007/s00109-007-0281-3
PMid:18026916

4. Hopfl G., Ogunshola O., Gassmann M. HIFs and tumors - causes and consequences. American Journal Physiology, 2004; 286(4): R608-R623.
https://doi.org/10.1152/ajpregu.00538.2003
PMid:15003941

5. Arsham A.M., Plas D.R., Thompson C.B., Simon M.C. Akt and hypoxia-inducible factor-1 independently enhance tumor growth and angiogenesis. Cancer Research, 2004; 64: 3500-3507.
https://doi.org/10.1158/0008-5472.CAN-03-2239
PMid:15150104

6. Rankin E.B., Giaccia A.J. The role of hypoxia-inducible factors in tumorigenesis. Cellular Death Differentiation, 2008; 15(4): 678-685.
https://doi.org/10.1038/cdd.2008.21
PMid:18259193 PMCid:PMC3050610

7. Brahimi-Horn M.C., Chiche J., Pouysségur J. Hypoxia signalling controls metabolic demand. Current Opinions in Cellular Biology, 2007; 19(2): 223-229.
https://doi.org/10.1016/j.ceb.2007.02.003
PMid:17303407

8. Vaupel P., Hockel M., Mayer A. Detection and characterization of tumor hypoxia using pO2 histography. Antioxidants & Redox Signaling, 2007; 9(8): 1221-1235.
https://doi.org/10.1089/ars.2007.1628
PMid:17536958

9. Greijer A.E., van der Groep P., Kemming D. et al. Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1). Journal of Pathology, 2005; 206(3): 291-304.
https://doi.org/10.1002/path.1778
PMid:15906272

10. Minchenko D.О., Kubajchuk К.І., Hubenia О.V. et al. The effect of hypoxia and ischemic condition on the expression of VEGF genes in glioma U87 cells is dependent from ERN1 knockdown. Advances in Biological Chemistry, 2011; 2(2): 198-206.

11. Kappler M., Taubert H., Schubert J. et al. The real face of HIF1α in the tumor process. Cell Cycle, 2012; 11(21): 3932-3936.
https://doi.org/10.4161/cc.21854
PMid:22987151 PMCid:PMC3507488

12. Stoeltzing O., McCarty M.F., Wey J.S. et al. Role of hypoxia-inducible factor 1alpha in gastric cancer cell growth, angiogenesis, and vessel maturation. Journal of National Cancer Institute, 2004; 96(12): 946-956.
https://doi.org/10.1093/jnci/djh168
PMid:15199114

13. Rankin E.B., Giaccia A.J. The role of hypoxia-inducible factors in tumorigenesis. Cell Death and Differentiation, 2008; 15(4): 678-685.
https://doi.org/10.1038/cdd.2008.21
PMid:18259193 PMCid:PMC3050610

14. Chen Y., Zhang .L, Pan Y. et al. Over-Expression of Semaphorin4D, Hypoxia-Inducible Factor-1alpha; and Vascular Endothelial Growth Factor Is Related to Poor Prognosis in Ovarian Epithelial Cancer. International Journal of Molecular Sciences, 2012; 13(10): 13264-13274.
https://doi.org/10.3390/ijms131013264
PMid:23202951 PMCid:PMC3497325

15. Bertout J.A., Majmundar A.J., Gordan J.D. et al. HIF2alpha inhibition promotes p53 pathway activity, tumor cell death, and radiation responses. Proceedings of the National Academy of Sciences of the U.S.A., 2009; 106(34): 14391-14396.
https://doi.org/10.1073/pnas.0907357106
PMid:19706526 PMCid:PMC2726037

16. Ratcliffe P.J., O'Rourke J.F., Maxwell P.H., Pugh C.W. Oxygen sensing, hypoxia-inducible factor-1 and the regulation of mammalian gene expression. Journal of Experimental Biology, 1998; 201: 1153-1162.

17. Uchida T., Rossignol F., Matthay M.A. et al. Prolonged hypoxia differentially regulates hypoxia-inducible factor HIF-1alpha and HIF-2alpha expression in lung epithelial cells: implication of natural antisense HIF-1alpha. The Journal of Biological Chemistry, 2004; 279(15): 14871-14878.
https://doi.org/10.1074/jbc.M400461200
PMid:14744852

18. Stroka D.M., Burkhardt T., Desbaillets I. et al. HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB Journal, 2001; 15(13): 2445-2453.
https://doi.org/10.1096/fj.01-0125com

19. Bilton R., Booker G.W. The subtle side to hypoxia inducible factor (HIFα) regulation. European Journal of Biochemistry, 2003; 270: 791-798.
https://doi.org/10.1046/j.1432-1033.2003.03446.x
PMid:12603312

20. Cheng J.C., Klausen C., Leung P.C. Hypoxia-inducible factor 1 alpha mediates epidermal growth factor-induced down-regulation of E-cadherin expression and cell invasion in human ovarian cancer cells. Cancer Letters, 2013; 329(2): 197-206.
https://doi.org/10.1016/j.canlet.2012.10.029
PMid:23142284

21. Kenneth N. S., Rocha S. Regulation of gene expression by hypoxia. Biochemical Journal, 2008; 414: 19-29.
https://doi.org/10.1042/BJ20081055
PMid:18651837

22. Semenza G.L., Jiang B.-H., Leung S.W. et al. Hypoxia response elements in the aldolase A, enolase 1 and lactate dehydrogenase A gene promoters contain essential binding sites for HIF-1. The Journal of Biological Chemistry, 1996; 27(51): 32529-32537.
https://doi.org/10.1074/jbc.271.51.32529
PMid:8955077

23. Minchenko A., Caro J. Regulation of endotelin-1 gene expression in human microvascular endothelial cells by hypoxia and cobalt: Role of hypoxia responsive element. Molecular and Cellular Biochemistry, 2000; 208(1): 53-62.
https://doi.org/10.1023/A:1007042729486
PMid:10939628

24. Lee J.-W., Bae S.-H., Jeong J.-W. et al. Hypoxia-inducible factor (HIF-1)a: its protein stability and biological functions. Experimental and Molecular Medicine, 2004; 36(1): 1-12.
https://doi.org/10.1038/emm.2004.1
PMid:15031665

25. Ke Q., Costa M. Hypoxia-inducible-factor-1 (HIF-1). Molecular Pharmacology, 2006; 70(5): 1469-1480.
https://doi.org/10.1124/mol.106.027029
PMid:16887934

26. Koh M.Y., Spivak-Kroizman T.R., Powis G. HIF-1 regulation: not so easy come, easy go. Trends in Biochemical Sciences, 2008; 33(11): 526-533.
https://doi.org/10.1016/j.tibs.2008.08.002
PMid:18809331

27. Chun Y.S., Choi E., Yeo E.J. et al. A new HIF-1alpha variant induced by zinc ion suppresses HIF-1-mediated hypoxic responses. Journal of Cell Science, 2001; 114: 4051-4061.

28. Chun Y.S., Choi E., Kim T.Y. et al. A dominant-negative isoform lacking exons 11 and 12 of the human hypoxia-inducible-factor-1alpha gene. Biochemical Journal, 2002; 362: 71-79.
https://doi.org/10.1042/bj3620071
PMid:11829741 PMCid:PMC1222361

29. Chun Y.S., Lee K.H., Choi E. et al. Phorbol ester stimulates the nonhypoxic induction of a novel hypoxia-inducible-factor 1alpha isoform: implications for tumor promotion. Cancer Research, 2003; 63: 8700-8707.

30. Semenza G.L. Oxygen-regulated transcription factors and their role in pulmonary disease. Respiratory Research, 2000; 1: 159-162.
https://doi.org/10.1186/rr27
PMid:11667980 PMCid:PMC59554

31. Kaur B., Khwaja F.W., Severson E.A. et al. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro-Oncology, 2005; 7(2): 134-153.
https://doi.org/10.1215/S1152851704001115
PMid:15831232 PMCid:PMC1871894

32. Makino Y., Cao R.H., Svensson K. et al. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature (London), 2001; 414: 550-554.
https://doi.org/10.1038/35107085
PMid:11734856

33. Makino Y., Kanopka A., Wilson W.J. et al. Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3alpha locus. The Journal of Biological Chemistry, 2002; 277: 32405-32408.
https://doi.org/10.1074/jbc.C200328200
PMid:12119283

34. Depping R., Hagele S., Wagner K.F. et al. A dominant-negative isoform of hypoxia-inducible factor-1 alpha specifically expressed in human testis. Biology of Reproduction, 2004; 71(1): 331-339.
https://doi.org/10.1095/biolreprod.104.027797
PMid:15031145

35. Wiesener M.S., Jurgensen J.S., Rosenberger C. et al. Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB Journal, 2003; 17(2): 271-273.
https://doi.org/10.1096/fj.02-0445fje
PMid:12490539

36. Hu C.J., Wang L.Y., Chodosh L.A. et al. Differential roles of hypoxia-inducible factor 1alpha (HIF-1a) and HIF-2a in hypoxic gene regulation. Molecular and Cellular Biology, 2003; 24: 936-9374.
https://doi.org/10.1128/MCB.23.24.9361-9374.2003
PMid:14645546 PMCid:PMC309606

37. Sowter H.M., Raval R.R., Moore J.W. et al. Predominant role of hypoxia-inducible transcription factor (Hif)-1alpha versus Hif-2alpha in regulation of the transcriptional response to hypoxia. Cancer Research, 2003; 63(19): 6130-6134.

38. Uchida T., Rossignol F., Matthay M.A. et al. Prolonged hypoxia differentially regulates hypoxia-inducible factor HIF-1alpha and HIF-2alpha expression in lung epithelial cells: implication of natural antisense HIF-1alpha. The Journal of Biological Chemistry, 2004; 279(15):14871-14878.
https://doi.org/10.1074/jbc.M400461200
PMid:14744852

39. Lando D., Peet D.J., Whelan D.A. et al. Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science, 2002; 295: 858-861.
https://doi.org/10.1126/science.1068592
PMid:11823643

40. Ivan M., Haberberger T., Gervasi D.C. et al. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proceedings of the National Academy of Sciences of the U.S.A., 2002; 99(21): 13459-13464.
https://doi.org/10.1073/pnas.192342099
PMid:12351678 PMCid:PMC129695

41. Jaakkola P., Mole D.R., Tian Y.M. et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2 - regulated prolyl hydroxylation. Science, 2001; 292: 468-471.
https://doi.org/10.1126/science.1059796
PMid:11292861

42. Srinivas V., Leshchinsky I., Sang N. et al. Oxygen sensing and HIF-1 activation does not require an active mitochondrial respiratory chain electron-transfer pathway. The Journal of Biological Chemistry, 2001; 276(25): 21995-21998.
https://doi.org/10.1074/jbc.C100177200
PMid:11342528 PMCid:PMC4536919

43. Minchenko A. G., Leshchinsky I., Opentanova I. L. et al. Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. The Journal of Biological Chemistry, 2002; 277(8): 6183-6187.
https://doi.org/10.1074/jbc.M110978200
PMid:11744734 PMCid:PMC4518871

44. Minchenko O.H., Opentanova I.L., Minchenko D.O. et al. Hypoxia induces transcription of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 gene via hypoxia-inducible factor-1alpha activation. FEBS Letters, 2004; 576(1): 14-20.
https://doi.org/10.1016/j.febslet.2004.08.053
PMid:15474002

45. Bobarykina А.Y., Мінченко Д.О., Opentanova I.L. et al. Hypoxic regulation of PFKFB-3 and PFKFB-4 gene expression in gastric and pancreatic cancer cell lines and expression of PFKFB genes in gastric cancers. Acta Biochimica Polonica, 2006; 53(4): 789-799.

46. Бобарикіна А.Ю., Мінченко Д.О., Опентанова І.Л. та ін. Експресія мРНК HIF-1a, HIF-2a та VHL у різних лініях клітин при гіпоксії. Український біохімічний журнал, 2006; 78(2): 62-72.

47. Mahon P.C., Hirota K., Semenza G.L. FIH 1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF 1 transcriptional activity. Genes & Development, 2001; 15: 2675-2686.
https://doi.org/10.1101/gad.924501
PMid:11641274 PMCid:PMC312814

48. Masson N., Ratcliffe P.J. HIF prolyl and asparaginyl hydroxylases in biological response to intracellular O2 levels. Journal of Cell Science, 2003; 116: 3041- 3049.
https://doi.org/10.1242/jcs.00655
PMid:12829734

49. Hewitson K.S., McNeill L.A., Riordan M.V. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. The Journal of Biological Chemistry, 2002; 277: 26351- 26355.
https://doi.org/10.1074/jbc.C200273200
PMid:12042299

50. Jaakkola P., Mole D.R., Tian Y.M. et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2 - regulated prolyl hydroxylation. Science, 2001; 292: 468-471.
https://doi.org/10.1126/science.1059796
PMid:11292861

51. Ivan M., Kondo Z.K., Yang H.F. et al. HIF-1α targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science, 2001; 292: 464-468.
https://doi.org/10.1126/science.1059817
PMid:11292862

53. Appelhoff R.J., Tian Y-M., Raval R.R. Differential function of the prolyl hydroxylase PHD1, PHD2 and PHD3 in the regulation of hypoxia-inducible factor. The Journal of Biological Chemistry, 2004; 279(37): 38458-38465.
https://doi.org/10.1074/jbc.M406026200
PMid:15247232

53. Raur B.H., Durar V., Gottlieb E. Prolyl hydroxylases as regulators of cell metabolism. Biochemical Society Transactions, 2009; 37: 291-294.
https://doi.org/10.1042/BST0370291
PMid:19143649

54. Kaelin W.G.Jr. The von Hippel-Lindau protein, HIF hydroxylation, and oxygen sensing. Biochemical and Biophysical Research Communications, 2005; 338(1): 627-638.
https://doi.org/10.1016/j.bbrc.2005.08.165
PMid:16153592

55. Min J.-H., Yang H., Ivan M., Gertler F. Structure of a HIF-1a-pVHL complex: hydroxyprolyne recognition in signalling. Science, 2002: 296: 1886-1889.
https://doi.org/10.1126/science.1073440
PMid:12004076

56. Lancaster D.E., McNeill L.A., McDonough M.A. et al. Disruption of dimerization and substrate phosphorylation inhibit factor inhibiting hypoxia-inducible factor (FIH) activity. Biochemical Journal, 2004: 383: 429-437.
https://doi.org/10.1042/BJ20040735
PMid:15239670 PMCid:PMC1133735

57. Lee C., Kim S.J., Jeong D.G. et al. Structure of human FIH-1 reveals a unique active site pocket and interaction sites for HIF-1 and von Hippel-Lindau. The Journal of Biological Chemistry, 2003; 278(9): 7558-7563.
https://doi.org/10.1074/jbc.M210385200
PMid:12482756

58. Taylor M.S. Characterization and comparative analysis of the EGLN gene family. Gene, 2001; 275: 125-132.
https://doi.org/10.1016/S0378-1119(01)00633-3

59. Elkis J.M., Hewitson K.S., McNeil L.A. et al. Structure of factor inhibiting hypoxia-inducible factors (HIF) reveals mechanism of oxidative modification of HIF-1. The Journal of Biological Chemistry, 2003; 278: 1802-1806.
https://doi.org/10.1074/jbc.C200644200
PMid:12446723

60. Dann C.E.III., Bruick R.K., Deisenhofer J. Structure of factor-inhibiting hypoxia-inducible factor 1: an asparaginyl hydroxylase involved in the hypoxic response pathway. Proceedings of the National Academy of Sciences of the U.S.A., 2002; 99: 15351-15356.
https://doi.org/10.1073/pnas.202614999
PMid:12432100 PMCid:PMC137720

61. Schofield C.J., Ratcliffe P.J. Oxygen sensing by HIF hydroxylases. Nature Reviews Molecular Cell Biology, 2004; 5: 343-354.
https://doi.org/10.1038/nrm1366
PMid:15122348

62. Peyssonnaux C., Nizet V., Johnson R.S. Role of the hypoxia inducible factors HIF in iron metabolism. Cell Cycle, 2008; 7(1): 28-32.
https://doi.org/10.4161/cc.7.1.5145
PMid:18212530

63. Peyssonnaux C., Zinkernagel A.S., Schuepbach R.A. et al. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). Journal of Clinical Investigations, 2007; 117(7): 1926-1932.
https://doi.org/10.1172/JCI31370
PMid:17557118 PMCid:PMC1884690

64. Bentovim L., Amarilio R., Zelzer E. HIF1α is a central regulator of collagen hydroxylation and secretion under hypoxia during bone development. Development, 2012; 139(23): 4473-4483.
https://doi.org/10.1242/dev.083881
PMid:23095889

65. Cicchillitti L., Di Stefano V., Isaia E. et al. Hypoxia-inducible factor 1-α induces miR-210 in normoxic differentiating myoblasts. The Journal of Biological Chemistry, 2012; 287(53): 44761-44771.
https://doi.org/10.1074/jbc.M112.421255
PMid:23148210 PMCid:PMC3531789

66. Ratcliffe P.J., O'Rourke J.F., Maxwell P.H., Pugh C.W. Oxygen sensing, hypoxia-inducible factor-1 and the regulation of mammalian gene expression. Journal of Experimental Biology, 1998; 201: 1153-1162.

67. Minchenko O., Opentanova I., Caro J. Hypoxic regulation of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene family (PFKFB-1-4) expression in vivo. FEBS Letters, 2003; 554(3): 264-270.
https://doi.org/10.1016/S0014-5793(03)01179-7

68. Minchenko A., Bauer T., Salceda S., Caro J. Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Laboratory Investigation, 1994; 71(3): 374-379.

69. Mueller M.D., Vigne J.-L., Minchenko A.G. et al. Regulation of vascular endothelial growth factor (VEGF) gene transcription by estrogen receptors "a" and "b". Proceedings of the National Academy of Sciences of the U.S.A., 2000; 97(20): 10972-10977.
https://doi.org/10.1073/pnas.200377097
PMid:10995484 PMCid:PMC27133

70. Aversa C.R., Oparil S., Caro J. et al. Hypoxia stimulates human preproendothelin-1 promoter activity in transgenic mice. American Journal Physiology, 1997; 273 (4 Pt 1): L848-L855.
https://doi.org/10.1152/ajplung.1997.273.4.L848
PMid:9357861

71. Minchenko O.H., Ochiai A., Opentanova I.L. et al. Overexpression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4 in the human breast and colon malignant tumors. Biochimie, 2005; 87(11): 1005-1010.
https://doi.org/10.1016/j.biochi.2005.04.007
PMid:15925437

72. Erpolat O.P., Gocun P.U., Akmansu M. et al. Hypoxia-related molecules HIF-1α, CA9, and osteopontin: Predictors of survival in patients with high-grade glioma. Strahlenther Onkology, 2013; 189(2): 147-154.
https://doi.org/10.1007/s00066-012-0262-5
PMid:23263636

73. Weidemann A., Johnson R.S. Biology of HIF-1alpha. Cell Death & Differentiation, 2008; 15(4): 621-627.
https://doi.org/10.1038/cdd.2008.12
PMid:18259201

74. He Y., Kim H., Ryu T. et al. δ-catenin overexpression promotes angiogenic potential of CWR22Rv-1 prostate cancer cells via HIF-1α and VEGF. FEBS Letters, 2013; 587(2): 193-199.
https://doi.org/10.1016/j.febslet.2012.11.024
PMid:23220088

75. Denko N.C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nature Reviews Cancer, 2008; 8: 705-713.
https://doi.org/10.1038/nrc2468
PMid:19143055

76. Rankin E.B., Rha J., Unger T.L. et al. Hypoxia-inducible factor-2 regulates vascular tumorigenesis in mice. Oncogene, 2008; 27(40): 5354-5358.
https://doi.org/10.1038/onc.2008.160
PMid:18490920 PMCid:PMC2575082

77. Azar R., Lasfargues C., Bousquet C., Pyronnet S. Contribution of HIF-1α in 4E-BP1 Gene Expression. Molecular Cancer Research, 2013; 11(1): 54-61.
https://doi.org/10.1158/1541-7786.MCR-12-0095
PMid:23175522

78. Johnson A.B., Denko N., Barton M.C. Hypoxia induces a novel signature of chromatin modifications and global repression of transcription. Mutation Research, 2008; 640: 174-179.
https://doi.org/10.1016/j.mrfmmm.2008.01.001
PMid:18294659 PMCid:PMC2346607

79. Carmeliet P., Dor Y., Herbert J.M. et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 1998; 394(6692): 485-490.
https://doi.org/10.1038/28867
PMid:9697772

80. Semenza G.L. Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discovery Today, 2007; 12: 853-859.
https://doi.org/10.1016/j.drudis.2007.08.006
PMid:17933687

81. Chen J., Zhao S., Nakada K. et al. Dominant-negative hypoxia-inducible factor-1 alpha reduces tumorigenicity of pancreatic cancer cells through the suppression of glucose metabolism. American Journal of Pathology, 2003; 162(4): 1283-1291.
https://doi.org/10.1016/S0002-9440(10)63924-7

82. Shojaei F., Ferrara N. Antiangiogenic therapy for cancer: an update. Cancer Journal, 2007; 13(6): 345-348.
https://doi.org/10.1097/PPO.0b013e31815a7b69
PMid:18032969

83. Minchenko D.O., Bobarykina A.Y., Ratushna O.O. et al. Dominant-negative constructs of human 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 and -4: effect on the expression of endogenous 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase mRNA. Biotechnology, 2008; 1(4): 49-56.

84. Zheng X., Linke S., Dias J.M. et al. Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways. Proceedings of the National Academy of Sciences of the U.S.A., 2008; 105: 3368-3373.

85. Patel S.A., Simon M.C. Biology of hypoxia-inducible factor-2alpha in development and disease. Cell Death & Differentiation, 2008; 15(4): 628-634.
https://doi.org/10.1038/cdd.2008.17
PMid:18259197 PMCid:PMC2882207

86. Bertout J.A., Patel S. A., Fryer B.H. et al. Heterozygosity for hypoxia inducible factor 1alpha decreases the incidence of thymic lymphomas in a p53 mutant mouse model. Cancer Research, 2009; 69: 3213-3220.
https://doi.org/10.1158/0008-5472.CAN-08-4223
PMid:19293180 PMCid:PMC2707815

87. Chen C., Cai S., Wang G. et al. c-Myc enhances colon cancer cell-mediated angiogenesis through the regulation of HIF-1α. Biochemical and Biophysical Research Commununications, 2013; 430(2): 505-511.
https://doi.org/10.1016/j.bbrc.2012.12.006
PMid:23237807

88. Laderoute K.R., Calaoagan J.M., Knapp M., Johnson R.S. Glucose utilization is essential for hypoxia-inducible factor 1 alpha-dependent phosphorylation of c-Jun. Molecular and Cellular Biology, 2004; 24(10): 4128-4137.
https://doi.org/10.1128/MCB.24.10.4128-4137.2004
PMid:15121835 PMCid:PMC400476

89. Cockman M.E., Lancaster D.E., Stolze I.P. et al. Posttranslational hydroxylation of ankyrin repeats in IκB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proceedings of the National Academy of Sciences of the U.S.A., 2006; 103: 14767-14772.
https://doi.org/10.1073/pnas.0606877103
PMid:17003112 PMCid:PMC1578504

90. Van Uden P., Kenneth N.S., Rocha S. Regulation of hypoxia-inducible factor-1α by NF-κB. Biochemical Journal, 2008; 381: 477-484.
https://doi.org/10.1042/BJ20080476
PMid:18393939 PMCid:PMC2474706

91. Kaelin W.G. Jr. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nature Reviews Cancer, 2008; 8: 865-872.
https://doi.org/10.1038/nrc2502
PMid:18923434

92. Boutin A.T., Weidemann A., Fu Z. et al. Epidermal sensing of oxygen is essential for systemic hypoxic response. Cell, 2008; 133(2): 223-234.
https://doi.org/10.1016/j.cell.2008.02.038
PMid:18423195 PMCid:PMC2849644

93. Kapitsinou P.P., Haase V.H. The VHL tumor suppressor and HIF: insights from genetic studies in mice. Cell Death & Differentiation, 2008; 15(4): 650-659.
https://doi.org/10.1038/sj.cdd.4402313
PMid:18219317 PMCid:PMC3799983

94. Lei L., Mason S., Liu D. Hypoxia-inducible factor-dependent degeneration, failure, and malignant transformation of the heart in the absence of the von Hippel-Lindau protein. Molecular and Cellular Biology, 2008; 28(11): 3790-3803.
https://doi.org/10.1128/MCB.01580-07
PMid:18285456 PMCid:PMC2423296

95. Baek J.H., Liu Y.V., McDonald K.R. et al. Spermidine/spermine N1-acetyltransferase-1 binds to hypoxia-inducible factor-1a (HIF-1a) and RACK1 and promotes ubiquitination and degradation of HIF-1a. The Journal of Biological Chemistry, 2007; 282: 33358-33366.
https://doi.org/10.1074/jbc.M705627200
PMid:17875644

96. Ock M.S., Song K.S., Kleinman H., Cha H.J. Thymosin β4 stabilizes hypoxia-inducible factor-1α protein in an oxygen-independent manner. Annals of the New York Academy of Sciences, 2012; 1269: 79-83.
https://doi.org/10.1111/j.1749-6632.2012.06657.x
PMid:23045974

97. Li M., Liu Y., Jin F. et al. Endothelin-1 induces hypoxia inducible factor 1α expression in pulmonary artery smooth muscle cells. FEBS Letters, 2012; 586(21): 3888-3893.
https://doi.org/10.1016/j.febslet.2012.08.036
PMid:23041290

98. Kumar S., Mehta K. Tissue transglutaminase constitutively activates HIF-1α promoter and nuclear factor-κB via a non-canonical pathway. PLoS One, 2012; 7(11): e49321.
https://doi.org/10.1371/journal.pone.0049321
PMid:23185316 PMCid:PMC3501523

99. Wouters B.G., Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nature Reviews Cancer, 2008; 8: 851-762.
https://doi.org/10.1038/nrc2501
PMid:18846101


Refbacks

  • There are currently no refbacks.


Copyright (c) 2013 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.