THE FIRST APPLICATION OF SENSORY STRUCTURES BASED ON PHOTOELECTRIC TRANSDUCER FOR THE STUDY OF ENZYMATIC REACTIONS
DOI: http://dx.doi.org/10.30970/sbi.1604.698
Abstract
Background. The development of highly sensitive sensor equipment with the possibility of registering analytes in real time is a fast growing research area and a promising diagnostic biomedical technology. Currently, the standard laboratory method for determining the activities of ATPses is an indirect spectroscopic study of the concentration of inorganic phosphate formed as a result of ATP hydrolysis by these enzymes. However, there is no commercially available phosphate sensor with satisfactory parameters of sensitivity, selectivity and stability over time. The purpose of our research was the development of a photoelectric recombination sensor system for the real-time detection of biochemical markers and its testing on the example of screening ATPase activity of rat erythrocyte plasma membrane suspension preparations.
Materials and Methods. Experiments were performed on suspension preparations of plasma membranes of erythrocytes of Wistar rats. Preparations of plasma membrane suspensions obtained by Dodge method from each animal were divided into aliquots and used for the simultaneous study of ATPase activity by the reference method of Rathbun & Betlach, as well as the registration of photocurrents induced during the passage of the ATPase reaction using the photoelectric recombination multisensor system of our own design.
Results. The application of silicon sensory structures based on photoelectrical transducer principle for detecting the activity of adenosine triphosphate hydrolases on the example of total Mg2+,Na+,K+-ATPases preparations of plasma membranes of rat erythrocytes has been experimentally tested. The directly measured analytic parameter is the photocurrent of the deep silicon barrier structure under illumination with high absorption coefficient. The physical features of the device operation have been examined. Detection of such metabolites becomes possible due to reactions intermediates with their own dipole moment (inorganic phosphate, which is one of the products of ATP hydrolysis). The drastic change of photocurrent that characterizes the course of biochemical reaction was observed in real time. The effect is explained by local electrostatic influence on the parameters of recombination centers at the silicon surface that results in surface recombination velocity change. The sensor operation is qualitatively explained in the frame of Stevenson-Keyes’s theory.
Conclusions. Our approach can be regarded as a promising way to elaborate technically simple and highly sensitive method for detection of quantitative behavior of enzymatic reactions. Moreover, the local modification of silicon surface allows obtaining time depending scenarios of the adsorption and thus improving the sensitivity of the sensor. These circumstances open up the possibility of elaborating the complex sensory structures with optimized parameters for certain enzymatic reactions.
Keywords
Full Text:
PDFReferences
Ajima, M. N. O., Pandey, P. K., Kumar, K., & Poojary, N. (2018). Alteration in DNA structure, molecular responses and Na+-K+-ATPase activities in the gill of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) in response to sub-lethal verapamil. Ecotoxicology and Environmental Safety, 147, 809-816. doi:10.1016/j.ecoenv.2017.09.050 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Assunção, A. G. L., Gjetting, S. K., Hansen, M., Fuglsang, A. T., & Schulz, A. (2020). Live imaging of phosphate levels in Arabidopsis root cells expressing a FRET-based phosphate sensor. Plants (Basel, Switzerland), 9(10), 1310. doi:10.3390/plants9101310 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Berchmans, S., Issa, T. B., & Singh, P. (2012). Determination of inorganic phosphate by electroanalytical methods: a review. Analytica Chimica Acta, 729, 7-20. doi:10.1016/j.aca.2012.03.060 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Boldyrev, A. A. (1988). Kharakteristika temperaturnoĭ zavisimosti Na, K-ATPazy [Characteristics of temperature dependence of Na, K-ATPase]. Ukrainskii Biokhimicheskii Zhurnal (1978), 60(4), 96-102. (In Russian) PubMed ● Google Scholar | ||||
| ||||
DeBerardinis, R. J., & Keshari, K. R. (2022). Metabolic analysis as a driver for discovery, diagnosis, and therapy. Cell, 185(15), 2678-2689. doi:10.1016/j.cell.2022.06.029 Crossref ● PubMed ● Google Scholar | ||||
| ||||
De Souza Gonçalves, B., Toledo, M. M., Colodette, N. M., Chaves, A. L. F., Muniz, L. V., Ribeiro, R. I. M. A., Dos Santos, H. B., Cortes, V. F., Soares, J. M. A., Barbosa, L. A., & de Lima Santos, H. (2020). Evaluation of the erythrocyte membrane in head and neck cancer patients. The Journal of Membrane Biology, 253(6), 617-629. doi:10.1007/s00232-020-00147-w Crossref ● PubMed ● Google Scholar | ||||
| ||||
Engblom, S. O. (1998). The phosphate sensor. Biosensors & Bioelectronics, 13(9), 981-994. doi:10.1016/s0956-5663(98)00001-3 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Esmann, M., & Skou, J. C. (1988). Temperature-dependencies of various catalytic activities of membrane-bound Na+/K+-ATPase from ox brain, ox kidney and shark rectal gland and of C12E8-solubilized shark Na+/K+-ATPase. Biochimica et Biophysica Acta, 944(3), 344-350. doi:10.1016/0005-2736(88)90504-4 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Formica, D., & Schena, E. (2021). Smart sensors for healthcare and medical applications. Sensors (Basel, Switzerland), 21(2), 543. doi:10.3390/s21020543 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Gallagher, K., Catesson, A., Griffin, J. L., Holmes, E., & Williams, H. R. T. (2021). Metabolomic analysis in inflammatory bowel disease: a systematic review. Journal of Crohn's & Colitis, 15(5), 813-826. doi:10.1093/ecco-jcc/jjaa227 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Gayathri, M., & Kannabiran, K. (2012). Effect of 2-hydroxy-4-methoxy benzoic acid Isolated from Hemidesmus indicus on erythrocyte membrane bound enzymes and antioxidant status in streptozotocin-induced diabetic rats. Indian Journal of Pharmaceutical Sciences, 74(5), 474-478. doi:10.4103/0250-474X.108438 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Gorman, M. W., Feigl, E. O., & Buffington, C. W. (2007). Human plasma ATP concentration. Clinical Chemistry, 53(2), 318-325. doi:10.1373/clinchem.2006.076364 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Hargrove, A. E., Nieto, S., Zhang, T., Sessler, J. L., & Anslyn, E. V. (2011). Artificial receptors for the recognition of phosphorylated molecules. Chemical Reviews, 111(11), 6603-6782. doi:10.1021/cr100242s Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
He, X., Abdoli, L., & Li, H. (2018). Participation of copper ions in formation of alginate conditioning layer: evolved structure and regulated microbial adhesion. Colloids and Surfaces. B, Biointerfaces, 162, 220-227. doi:10.1016/j.colsurfb.2017.11.062 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Konukoglu, D., Yelke, H. K., Hatemi, H., & Sabuncu, T. (2001). Effects of oxidative stress on the erythrocyte Na+, K+ ATPase activity in female hyperthyroid patients. Journal of Toxicology and Environmental Health. Part A, 63(4), 289-295. doi:10.1080/15287390151143677 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Kozinetz, A. V., Litvinenko, S. V., & Skryshevsky V. A. (2017). Physical properties of silicon sensor structures with photoelectric transformation on the basis of "deep" p-n-junction. Ukrainian Journal of Physics, 62(4), 318-325. doi:10.15407/ujpe62.04.0318 Crossref ● Google Scholar | ||||
| ||||
Kozinetz, A. V., Litvinenko, S. V., Sus, B. B., Manilov, A. I., Topchylo, A. S., Rozhin, A., & Skryshevsky, V. A. (2021). Recognition of metallic and semiconductor single-wall carbon nanotubes using photoelectric method. Sensors and Actuators A: Physical, 332, 113108. doi:10.1016/j.sna.2021.113108 Crossref ● Google Scholar | ||||
| ||||
Kumthekar, M. M., & Katyare, S. S. (1992). Altered kinetic attributes of Na(+)+K(+)-ATPase activity in kidney, brain and erythrocyte membranes in alloxan-diabetic rats. Indian Journal of Experimental Biology, 30(1), 26-32. PubMed ● Google Scholar | ||||
| ||||
Lader, A. S., Prat, A. G., Jackson, G. R., Jr, Chervinsky, K. L., Lapey, A., Kinane, T. B., & Cantiello, H. F. (2000). Increased circulating levels of plasma ATP in cystic fibrosis patients. Clinical Physiology, 20(5), 348-353. doi:10.1046/j.1365-2281.2000.00272.x Crossref ● PubMed ● Google Scholar | ||||
| ||||
Litvinenko, S. V., Ilchenko, L. M., Kolenov, S. O., Smirnov, E. M., & Skryshevsky, V. A. (1999, May). Series of laser scanning techniques as a nondestructive tool for testing solar cells and batteries (Vol. 3707, pp. 556-564). In G. W. Kamerman & Ch. Werner (Eds.). Laser Radar Technology and Applications IV. SPIE Proceedings. doi:10.1117/12.351376 Crossref ● Google Scholar | ||||
| ||||
Litvinenko, S., Ilchenko, L., Kaminski, A., Kolenov, S., Laugier, A., Smirnov, E., Strikha, V. & Skryshevsky, V. (2000). Investigation of the solar cell emitter quality by LBIC-like image techniques. Materials Science and Engineering: B, 71(1-3), 238-243. doi:10.1016/S0921-5107(99)00382-7 Crossref ● Google Scholar | ||||
| ||||
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265-275. doi:10.1016/S0021-9258(19)52451-6 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Maurya, P. K., Kumar, P., & Chandra, P. (2015). Biomarkers of oxidative stress in erythrocytes as a function of human age. World Journal of Methodology, 5(4), 216-222. doi:10.5662/wjm.v5.i4.216 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Namazi, G., Asa, P., Sarrafzadegan, N., & Pourfarzam, M. (2019). Decreased Na+/K+-ATPase activity and altered susceptibility to peroxidation and lipid composition in the erythrocytes of metabolic syndrome patients with coronary artery disease. Annals of Nutrition & Metabolism, 74(2), 140-148. doi:10.1159/000497065 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Ohnishi, T., Suzuki, T., Suzuki, Y., & Ozawa, K. (1982). A comparative study of plasma membrane Mg2+-ATPase activities in normal, regenerating and malignant cells. Biochimica et Biophysica Acta, 684(1), 67-74. doi:10.1016/0005-2736(82)90050-5 Crossref ● Google Scholar | ||||
| ||||
Orlov, S. N., Pokudin, N. I., Postnov YuV, Kunes, J., & Zicha, J. (1991). Ion transport systems in erythrocyte membrane of spontaneously hypertensive rats (SHR) as compared with normotensive rats of the Brown Norway (BN.lx) strain. Physiological Research, 40(1), 7-10. PubMed ● Google Scholar | ||||
| ||||
Pandey, K. B., & Rizvi, S. I. (2010). Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxidative Medicine and Cellular Longevity, 3(1), 2-12. doi:10.4161/oxim.3.1.10476 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Prasad, A., Sahu, S. P., Figueiredo Stofela, S. K., Chaichi, A., Hasan, S. M. A., Bam, W., Maiti, K., McPeak, K. M., Liu, G. L., & Gartia, M. R. (2021). Printed electrode for measuring phosphate in environmental water. ACS Omega, 6(17), 11297-11306. doi:10.1021/acsomega.1c00132 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Rathbun, W. B., & Betlach, M. V. (1969). Estimation of enzymically produced orthophosphate in the presence of cysteine and adenosine triphosphate. Analytical Biochemistry, 28(1), 436-445. doi:10.1016/0003-2697(69)90198-5 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Ray, A., Esparza, S., Wu, D., Hanudel, M. R., Joung, H. A., Gales, B., Tseng, D., Salusky, I. B., & Ozcan, A. (2020). Measurement of serum phosphate levels using a mobile sensor. The Analyst, 145(5), 1841-1848. doi:10.1039/c9an02215e Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Rodrigo, R., Bächler, J. P., Araya, J., Prat, H., & Passalacqua, W. (2007). Relationship between (Na + K)-ATPase activity, lipid peroxidation and fatty acid profile in erythrocytes of hypertensive and normotensive subjects. Molecular and Cellular Biochemistry, 303(1-2), 73-81. doi:10.1007/s11010-007-9457-y Crossref ● PubMed ● Google Scholar | ||||
| ||||
Rodrigo, R., Miranda-Merchak, A., Valenzuela Grau, R., Bachler, J. P., & Vergara, L. (2014). Modulation of (Na,K)-ATPase activity by membrane fatty acid composition: therapeutic implications in human hypertension. Clinical and Experimental Hypertension, 36(1), 17-26. doi:10.3109/10641963.2013.783048 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Sookoian, S., & Pirola, C. J. (2015). Liver enzymes, metabolomics and genome-wide association studies: from systems biology to the personalized medicine. World Journal of Gastroenterology, 21(3), 711-725. doi:10.3748/wjg.v21.i3.711 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Tsymbalyuk, O. V., Veselsky, S. P., Naumenko, A. M., Davydovska, T. L., Voiteshenko, I. S., Сhyzh, I. I., & Skryshevsky, V. A. (2020). ТiО2 hepatotoxicity under long-term administration to rats. The Ukrainian Biochemical Journal, 92(4), 45-54. doi:10.15407/ubj92.04.045 Crossref ● Google Scholar | ||||
| ||||
Turpin, C., Catan, A., Meilhac, O., Bourdon, E., Canonne-Hergaux, F., & Rondeau, P. (2021). Erythrocytes: central actors in multiple scenes of atherosclerosis. International Journal of Molecular Sciences, 22(11), 5843. doi10.3390/ijms22115843 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Veklich, T. O., Labyntseva, R. D., Shkrabak, O. A., Tsymbalyuk, O. V., & Kosterin, S. O. (2020) Inhibition of Na+,K+-ATPase and activation of myosin ATPase by calix[4]arene C-107 cause stimulation of isolated smooth muscle contractile activity. The Ukrainian Biochemical Journal, 92(1), 21-30. doi:10.15407/ubj92.01.02 Crossref ● Google Scholar | ||||
| ||||
Vultaggio-Poma, V., Sarti, A. C., & Di Virgilio, F. (2020). Extracellular ATP: a feasible target for cancer therapy. Cells, 9(11), 2496. doi:10.3390/cells9112496 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zarębska, E. A., Kusy, K., Słomińska, E. M., Kruszyna, Ł., & Zieliński, J. (2019). Alterations in exercise-induced plasma adenosine triphosphate concentration in highly trained athletes in a one-year training cycle. Metabolites, 9(10), 230. doi:10.3390/metabo9100230 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zhu, P., Zhao, S. M., Li, Y. Z., Guo, H., Wang, L., & Tian, P. (2019). Correlation of lipid peroxidation and ATP enzyme on erythrocyte membrane with fetal distress in the uterus in patients with intrahepatic cholestasis of pregnancy. European Review for Medical and Pharmacological Sciences, 23(6), 2318-2324. doi:10.26355/eurrev_201903_17371 Crossref ● PubMed ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 A. V. Kozinetz, O. V. Tsymbalyuk, S. V. Litvinenko
This work is licensed under a Creative Commons Attribution 4.0 International License.