THE FIRST APPLICATION OF SENSORY STRUCTURES BASED ON PHOTOELECTRIC TRANSDUCER FOR THE STUDY OF ENZYMATIC REACTIONS

A. V. Kozinetz, O. V. Tsymbalyuk, S. V. Litvinenko


DOI: http://dx.doi.org/10.30970/sbi.1604.698

Abstract


Background. The development of highly sensitive sensor equipment with the possibility of registering analytes in real time is a fast growing research area and a promising diagnostic biomedical technology. Currently, the standard laboratory method for determining the activities of ATPses is an indirect spectroscopic study of the concentration of inorganic phosphate formed as a result of ATP hydrolysis by these enzymes. However, there is no commercially available phosphate sensor with satisfactory parameters of sensitivity, selectivity and stability over time. The purpose of our research was the deve­lopment of a photoelectric recombination sensor system for the real-time detection of biochemical markers and its testing on the example of screening ATPase activity of rat erythrocyte plasma membrane suspension preparations.
Materials and Methods. Experiments were performed on suspension preparations of plasma membranes of erythrocytes of Wistar rats. Preparations of plasma membrane suspensions obtained by Dodge method from each animal were divided into aliquots and used for the simultaneous study of ATPase activity by the reference method of Rathbun & Betlach, as well as the registration of photocurrents induced during the passage of the ATPase reaction using the photoelectric recombination multisensor system of our own design.
Results. The application of silicon sensory structures based on photoelectrical transducer principle for detecting the activity of adenosine triphosphate hydrolases on the example of total Mg2+,Na+,K+-ATPases preparations of plasma membranes of rat erythro­cytes has been experimentally tested. The directly measured analytic parameter is the photocurrent of the deep silicon barrier structure under illumination with high absorption coefficient. The physical features of the device operation have been examined. Detection of such metabolites becomes possible due to reactions intermediates with their own dipole moment (inorganic phosphate, which is one of the products of ATP hydrolysis). The drastic change of photocurrent that characterizes the course of biochemical reaction was observed in real time. The effect is explained by local electrostatic influence on the parameters of recombination centers at the silicon surface that results in surface recombination velocity change. The sensor operation is qualitatively explained in the frame of Stevenson-Keyes’s theory.
Conclusions. Our approach can be regarded as a promising way to elaborate technically simple and highly sensitive method for detection of quantitative behavior of enzymatic reactions. Moreover, the local modification of silicon surface allows obtaining time depending scenarios of the adsorption and thus improving the sensitivity of the sensor. These circumstances open up the possibility of elaborating the complex sensory structures with optimized parameters for certain enzymatic reactions.


Keywords


enzymatic reactions, photoelectrical transducer principle, surface recombination velocity, biomedical diagnostic technology

Full Text:

PDF

References


Ajima, M. N. O., Pandey, P. K., Kumar, K., & Poojary, N. (2018). Alteration in DNA structure, molecular responses and Na+-K+-ATPase activities in the gill of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) in response to sub-lethal verapamil. Ecotoxicology and Environmental Safety, 147, 809-816. doi:10.1016/j.ecoenv.2017.09.050
CrossrefPubMedGoogle Scholar

Assunção, A. G. L., Gjetting, S. K., Hansen, M., Fuglsang, A. T., & Schulz, A. (2020). Live imaging of phosphate levels in Arabidopsis root cells expressing a FRET-based phosphate sensor. Plants (Basel, Switzerland), 9(10), 1310. doi:10.3390/plants9101310
CrossrefPubMedPMCGoogle Scholar

Berchmans, S., Issa, T. B., & Singh, P. (2012). Determination of inorganic phosphate by electroanalytical methods: a review. Analytica Chimica Acta, 729, 7-20. doi:10.1016/j.aca.2012.03.060
CrossrefPubMedGoogle Scholar

Boldyrev, A. A. (1988). Kharakteristika temperaturnoĭ zavisimosti Na, K-ATPazy [Characteristics of temperature dependence of Na, K-ATPase]. Ukrainskii Biokhimicheskii Zhurnal (1978), 60(4), 96-102. (In Russian)
PubMedGoogle Scholar

DeBerardinis, R. J., & Keshari, K. R. (2022). Metabolic analysis as a driver for discovery, diagnosis, and therapy. Cell, 185(15), 2678-2689. doi:10.1016/j.cell.2022.06.029
CrossrefPubMedGoogle Scholar

De Souza Gonçalves, B., Toledo, M. M., Colodette, N. M., Chaves, A. L. F., Muniz, L. V., Ribeiro, R. I. M. A., Dos Santos, H. B., Cortes, V. F., Soares, J. M. A., Barbosa, L. A., & de Lima Santos, H. (2020). Evaluation of the erythrocyte membrane in head and neck cancer patients. The Journal of Membrane Biology, 253(6), 617-629. doi:10.1007/s00232-020-00147-w
CrossrefPubMedGoogle Scholar

Engblom, S. O. (1998). The phosphate sensor. Biosensors & Bioelectronics, 13(9), 981-994. doi:10.1016/s0956-5663(98)00001-3
CrossrefPubMedGoogle Scholar

Esmann, M., & Skou, J. C. (1988). Temperature-dependencies of various catalytic activities of membrane-bound Na+/K+-ATPase from ox brain, ox kidney and shark rectal gland and of C12E8-solubilized shark Na+/K+-ATPase. Biochimica et Biophysica Acta, 944(3), 344-350. doi:10.1016/0005-2736(88)90504-4
CrossrefPubMedGoogle Scholar

Formica, D., & Schena, E. (2021). Smart sensors for healthcare and medical applications. Sensors (Basel, Switzerland), 21(2), 543. doi:10.3390/s21020543
CrossrefPubMedPMCGoogle Scholar

Gallagher, K., Catesson, A., Griffin, J. L., Holmes, E., & Williams, H. R. T. (2021). Metabolomic analysis in inflammatory bowel disease: a systematic review. Journal of Crohn's & Colitis, 15(5), 813-826. doi:10.1093/ecco-jcc/jjaa227
CrossrefPubMedGoogle Scholar

Gayathri, M., & Kannabiran, K. (2012). Effect of 2-hydroxy-4-methoxy benzoic acid Isolated from Hemidesmus indicus on erythrocyte membrane bound enzymes and antioxidant status in streptozotocin-induced diabetic rats. Indian Journal of Pharmaceutical Sciences, 74(5), 474-478. doi:10.4103/0250-474X.108438
CrossrefPubMedPMCGoogle Scholar

Gorman, M. W., Feigl, E. O., & Buffington, C. W. (2007). Human plasma ATP concentration. Clinical Chemistry, 53(2), 318-325. doi:10.1373/clinchem.2006.076364
CrossrefPubMedGoogle Scholar

Hargrove, A. E., Nieto, S., Zhang, T., Sessler, J. L., & Anslyn, E. V. (2011). Artificial receptors for the recognition of phosphorylated molecules. Chemical Reviews, 111(11), 6603-6782. doi:10.1021/cr100242s
CrossrefPubMedPMCGoogle Scholar

He, X., Abdoli, L., & Li, H. (2018). Participation of copper ions in formation of alginate conditioning layer: evolved structure and regulated microbial adhesion. Colloids and Surfaces. B, Biointerfaces, 162, 220-227. doi:10.1016/j.colsurfb.2017.11.062
CrossrefPubMedGoogle Scholar

Konukoglu, D., Yelke, H. K., Hatemi, H., & Sabuncu, T. (2001). Effects of oxidative stress on the erythrocyte Na+, K+ ATPase activity in female hyperthyroid patients. Journal of Toxicology and Environmental Health. Part A, 63(4), 289-295. doi:10.1080/15287390151143677
CrossrefPubMedGoogle Scholar

Kozinetz, A. V., Litvinenko, S. V., & Skryshevsky V. A. (2017). Physical properties of silicon sensor structures with photoelectric transformation on the basis of "deep" p-n-junction. Ukrainian Journal of Physics, 62(4), 318-325. doi:10.15407/ujpe62.04.0318
CrossrefGoogle Scholar

Kozinetz, A. V., Litvinenko, S. V., Sus, B. B., Manilov, A. I., Topchylo, A. S., Rozhin, A., & Skryshevsky, V. A. (2021). Recognition of metallic and semiconductor single-wall carbon nanotubes using photoelectric method. Sensors and Actuators A: Physical, 332, 113108. doi:10.1016/j.sna.2021.113108
CrossrefGoogle Scholar

Kumthekar, M. M., & Katyare, S. S. (1992). Altered kinetic attributes of Na(+)+K(+)-ATPase activity in kidney, brain and erythrocyte membranes in alloxan-diabetic rats. Indian Journal of Experimental Biology, 30(1), 26-32.
PubMedGoogle Scholar

Lader, A. S., Prat, A. G., Jackson, G. R., Jr, Chervinsky, K. L., Lapey, A., Kinane, T. B., & Cantiello, H. F. (2000). Increased circulating levels of plasma ATP in cystic fibrosis patients. Clinical Physiology, 20(5), 348-353. doi:10.1046/j.1365-2281.2000.00272.x
CrossrefPubMedGoogle Scholar

Litvinenko, S. V., Ilchenko, L. M., Kolenov, S. O., Smirnov, E. M., & Skryshevsky, V. A. (1999, May). Series of laser scanning techniques as a nondestructive tool for testing solar cells and batteries (Vol. 3707, pp. 556-564). In G. W. Kamerman & Ch. Werner (Eds.). Laser Radar Technology and Applications IV. SPIE Proceedings. doi:10.1117/12.351376
CrossrefGoogle Scholar

Litvinenko, S., Ilchenko, L., Kaminski, A., Kolenov, S., Laugier, A., Smirnov, E., Strikha, V. & Skryshevsky, V. (2000). Investigation of the solar cell emitter quality by LBIC-like image techniques. Materials Science and Engineering: B, 71(1-3), 238-243. doi:10.1016/S0921-5107(99)00382-7
CrossrefGoogle Scholar

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265-275. doi:10.1016/S0021-9258(19)52451-6
CrossrefPubMedGoogle Scholar

Maurya, P. K., Kumar, P., & Chandra, P. (2015). Biomarkers of oxidative stress in erythrocytes as a function of human age. World Journal of Methodology, 5(4), 216-222. doi:10.5662/wjm.v5.i4.216
CrossrefPubMedPMCGoogle Scholar

Namazi, G., Asa, P., Sarrafzadegan, N., & Pourfarzam, M. (2019). Decreased Na+/K+-ATPase activity and altered susceptibility to peroxidation and lipid composition in the erythrocytes of metabolic syndrome patients with coronary artery disease. Annals of Nutrition & Metabolism, 74(2), 140-148. doi:10.1159/000497065
CrossrefPubMedGoogle Scholar

Ohnishi, T., Suzuki, T., Suzuki, Y., & Ozawa, K. (1982). A comparative study of plasma membrane Mg2+-ATPase activities in normal, regenerating and malignant cells. Biochimica et Biophysica Acta, 684(1), 67-74. doi:10.1016/0005-2736(82)90050-5
CrossrefGoogle Scholar

Orlov, S. N., Pokudin, N. I., Postnov YuV, Kunes, J., & Zicha, J. (1991). Ion transport systems in erythrocyte membrane of spontaneously hypertensive rats (SHR) as compared with normotensive rats of the Brown Norway (BN.lx) strain. Physiological Research, 40(1), 7-10.
PubMedGoogle Scholar

Pandey, K. B., & Rizvi, S. I. (2010). Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxidative Medicine and Cellular Longevity, 3(1), 2-12. doi:10.4161/oxim.3.1.10476
CrossrefPubMedPMCGoogle Scholar

Prasad, A., Sahu, S. P., Figueiredo Stofela, S. K., Chaichi, A., Hasan, S. M. A., Bam, W., Maiti, K., McPeak, K. M., Liu, G. L., & Gartia, M. R. (2021). Printed electrode for measuring phosphate in environmental water. ACS Omega, 6(17), 11297-11306. doi:10.1021/acsomega.1c00132
CrossrefPubMedPMCGoogle Scholar

Rathbun, W. B., & Betlach, M. V. (1969). Estimation of enzymically produced orthophosphate in the presence of cysteine and adenosine triphosphate. Analytical Biochemistry, 28(1), 436-445. doi:10.1016/0003-2697(69)90198-5
CrossrefPubMedGoogle Scholar

Ray, A., Esparza, S., Wu, D., Hanudel, M. R., Joung, H. A., Gales, B., Tseng, D., Salusky, I. B., & Ozcan, A. (2020). Measurement of serum phosphate levels using a mobile sensor. The Analyst, 145(5), 1841-1848. doi:10.1039/c9an02215e
CrossrefPubMedPMCGoogle Scholar

Rodrigo, R., Bächler, J. P., Araya, J., Prat, H., & Passalacqua, W. (2007). Relationship between (Na + K)-ATPase activity, lipid peroxidation and fatty acid profile in erythrocytes of hypertensive and normotensive subjects. Molecular and Cellular Biochemistry, 303(1-2), 73-81. doi:10.1007/s11010-007-9457-y
CrossrefPubMedGoogle Scholar

Rodrigo, R., Miranda-Merchak, A., Valenzuela Grau, R., Bachler, J. P., & Vergara, L. (2014). Modulation of (Na,K)-ATPase activity by membrane fatty acid composition: therapeutic implications in human hypertension. Clinical and Experimental Hypertension, 36(1), 17-26. doi:10.3109/10641963.2013.783048
CrossrefPubMedGoogle Scholar

Sookoian, S., & Pirola, C. J. (2015). Liver enzymes, metabolomics and genome-wide association studies: from systems biology to the personalized medicine. World Journal of Gastroenterology, 21(3), 711-725. doi:10.3748/wjg.v21.i3.711
CrossrefPubMedPMCGoogle Scholar

Tsymbalyuk, O. V., Veselsky, S. P., Naumenko, A. M., Davydovska, T. L., Voiteshenko, I. S., Сhyzh, I. I., & Skryshevsky, V. A. (2020). ТiО2 hepatotoxicity under long-term administration to rats. The Ukrainian Biochemical Journal, 92(4), 45-54. doi:10.15407/ubj92.04.045
CrossrefGoogle Scholar

Turpin, C., Catan, A., Meilhac, O., Bourdon, E., Canonne-Hergaux, F., & Rondeau, P. (2021). Erythrocytes: central actors in multiple scenes of atherosclerosis. International Journal of Molecular Sciences, 22(11), 5843. doi10.3390/ijms22115843
CrossrefPubMedPMCGoogle Scholar

Veklich, T. O., Labyntseva, R. D., Shkrabak, O. A., Tsymbalyuk, O. V., & Kosterin, S. O. (2020) Inhibition of Na+,K+-ATPase and activation of myosin ATPase by calix[4]arene C-107 cause stimulation of isolated smooth muscle contractile activity. The Ukrainian Biochemical Journal, 92(1), 21-30. doi:10.15407/ubj92.01.02
CrossrefGoogle Scholar

Vultaggio-Poma, V., Sarti, A. C., & Di Virgilio, F. (2020). Extracellular ATP: a feasible target for cancer therapy. Cells, 9(11), 2496. doi:10.3390/cells9112496
CrossrefPubMedPMCGoogle Scholar

Zarębska, E. A., Kusy, K., Słomińska, E. M., Kruszyna, Ł., & Zieliński, J. (2019). Alterations in exercise-induced plasma adenosine triphosphate concentration in highly trained athletes in a one-year training cycle. Metabolites, 9(10), 230. doi:10.3390/metabo9100230
CrossrefPubMedPMCGoogle Scholar

Zhu, P., Zhao, S. M., Li, Y. Z., Guo, H., Wang, L., & Tian, P. (2019). Correlation of lipid peroxidation and ATP enzyme on erythrocyte membrane with fetal distress in the uterus in patients with intrahepatic cholestasis of pregnancy. European Review for Medical and Pharmacological Sciences, 23(6), 2318-2324. doi:10.26355/eurrev_201903_17371
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 A. V. Kozinetz, O. V. Tsymbalyuk, S. V. Litvinenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.