SAFETY PROFILE OF THIAZOLE DERIVATIVE AND ITS COMPLEX WITH PEG-BASED POLYMERIC NANOPARTICLES ON LIVER AND BLOOD CELLS IN TUMOR-BEARING MICE

M. V. Ilkiv, Ya. R. Shalai, Yu. V. Ostapiuk, N. E. Mitina, O. S. Zaichenko, A. M. Babsky


DOI: http://dx.doi.org/10.30970/sbi.1604.696

Abstract


Background. Drug delivery systems (DDS) have demonstrated a significant ability to overcome many of the challenges associated with the delivery of hydrophobic chemotherapeutic compounds to tumor tissues. However, hepatotoxicity and suppression of the hematopoietic system are the key problems in the clinical treatment of cancer by nanoparticle-based DDS that can limit their medical exposure. The aim of this work was to investigate the effect of thiazole derivative N-(5-benzyl-1,3-thiazol-2-yl)-3,5-dimethyl-1-benzofuran-2-carboxamide (BF1) conjugated with PEG-based polymeric nanoparticles (PEG-PN – Th1) on the hepatocytes and blood hematological parameters of mice with grafted NK/Ly.
Materials and Methods. The experiments were conducted on white wild-type male mice with grafted NK/Ly lymphoma. Investigated compounds BF1, PEG-PN Th1, and combination of PEG-PN + BF1 (Th2) at a final concentration of 10 μM were added to the liver samples and incubated for 10 minutes. The level of lipid peroxidation products and the level of antioxidant defense system (AOS) enzymes were determined according to the techniques described below. The cytological parameters of blood were investigated after the treatment of mice with BF1 in concentrations of 10 and 20 mg/kg, PEG-PN (20 mg/kg) and Th2 complex (10 mg/kg). On the 14th day of the experiment, blood was taken from all groups and the number of erythrocytes, leukocytes and leukocyte formula were counted.
Results. It was reported that neither BF1, PEG-PN, nor their complex Th2 changed the content of lipid peroxidation products or the level of AOS enzymes in hepatocytes from mice with NK/Ly. BF1 (in concentration 10 mg/kg) and PEG-PN + BF1 complex did not change the level of murine erythrocytes compared to Doxorubicin. All investigated compounds, except free PEG-PN, significantly decreased the NK/Ly-triggered leukocytosis and increased the level of small lymphocytes. The NK/Ly lymphoma development led to an increase in the number of neutrophils, while BF1 and its complex with PEG-PN reduced it significantly.
Conclusions. BF1 and PEG-PN + BF1 complex had limited negative side effects in the mice with NK/Ly. The investigated compounds were not hepatotoxic toward murine liver cells. Both BF1 and its complex with PEG-PN did not cause any major side effects on the murine blood cells.


Keywords


thiazole derivative, polymeric nanoparticles, drug delivery system, hepatotoxicity, hematological parameters

Full Text:

PDF

References


Ahmed, S., Rehman, S. U., & Tabish, M. (2022). Cancer nanomedicine: a step towards improving the drug delivery and enhanced efficacy of chemotherapeutic drugs. OpenNano, 7, 100051. doi:10.1016/j.onano.2022.100051
CrossrefGoogle Scholar

Bostan, H. B., Rezaee, R., Valokala, M. G., Tsarouhas, K., Golokhvast, K., Tsatsakis, A. M., & Karimi, G. (2016). Cardiotoxicity of nano-particles. Life Sciences, 165, 91-99. doi:10.1016/j.lfs.2016.09.017
Crossref PubMedGoogle Scholar

Cheng, Z., Li, M., Dey, R., & Chen, Y. (2021). Nanomaterials for cancer therapy: current progress and perspectives. Journal of Hematology & Oncology, 14(1),1-27. doi:10.1186/s13045-021-01096-0
CrossrefPubMedPMCGoogle Scholar

Chmielewski, P. P., & Strzelec, B. (2018). Elevated leukocyte count as a harbinger of systemic inflammation, disease progression, and poor prognosis: a review. Folia Morphologica, 77(2), 171-178. doi:10.5603/fm.a2017.0101
CrossrefPubMedGoogle Scholar

Cornu, R., Béduneau, A., & Martin, H. (2020). Influence of nanoparticles on liver tissue and hepatic functions: a review. Toxicology, 430, 152344. doi:10.1016/j.tox.2019.152344
CrossrefPubMedGoogle Scholar

de la Harpe, K. M., Kondiah, P. P. D., Choonara, Y. E., Marimuthu, T., du Toit, L. C., & Pillay, V. (2019). The hemocompatibility of nanoparticles: a review of cell-nanoparticle interactions and hemostasis. Cells, 8(10), 1209. doi:10.3390/cells8101209
CrossrefPubMedPMCGoogle Scholar

Finiuk, N. S., Hreniuh, V. P., Ostapiuk, Y. V., Matiychuk, V. S., Frolov, D. A., Obushak, M. D., Stoika R. S., & Babsky, A. M. (2017). Antineoplastic activity of novel thiazole derivatives. Biopolymers and Cell, 33(2), 135-146. doi:10.7124/bc.00094b
CrossrefGoogle Scholar

Finiuk, N. S., Popovych, M. V., Shalai, Y. R., Mandzynets', S. M., Hreniuh, V. P., Ostapiuk, Y. V., Obushak, M. D., Mitina, N. O., Zaichenko, O. S., Stoika, R. S., & Babsky, A. M. (2021). Antineoplastic activity in vitro of 2-amino-5-benzylthiasol derivative in the complex with nanoscale polymeric carriers. Cytology and Genetics, 55(1), 19-27. doi:10.3103/s0095452721010084
CrossrefGoogle Scholar

Gavas, S., Quazi, S., & Karpiński, T. M. (2021). Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Research Letters, 16(1), 173. doi:10.1186/s11671-021-03628-6
CrossrefPubMedPMCGoogle Scholar

Joshi, M., Sodhi, K. S., Pandey, R., Singh, J., Goyal, S., Prasad, S., ... & Mahajan, S. (2014). Cancer chemotherapy and hepatotoxicity: an update. Indo American Journal of Pharmaceutical Research, 4(6), 2976-2984.
Google Scholar

Kiss, M., Caro, A. A., Raes, G., & Laoui, D. (2020). Systemic reprogramming of monocytes in cancer. Frontiers in Oncology, 10, 1399. doi:10.3389/fonc.2020.01399
CrossrefPubMedPMCGoogle Scholar

Koroliuk, M. A., Ivanova, L. I., Maĭorova, I. G., & Tokarev, V. E. (1988). Metod opredeleniia aktivnosti katalazy [A method of determining catalase activity]. Laboratornoe Delo, (1), 16-19. (In Russian)
PubMedGoogle Scholar

Kostiuk, V. A., Potapovich, A., I., & Kovaleva, Zn. V. (1990). Prostoĭ i chuvstvitel'nyĭ metod opredeleniia aktivnosti superoksid dismutazy, osnovannyĭ na reaktsii okisleniia kvertsetina [A simple and sensitive method of determination of superoxide dismutase activity based on the reaction of quercetin oxidation]. Voprosy Meditsinskoi Khimii, 36(2), 88-91. (In Russian)
PubMedGoogle Scholar

Lowry, O., Rosebrough, N., Farr, A. L., & Randall, R. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275. doi:10.1016/s0021-9258(19)52451-6
CrossrefPubMedGoogle Scholar

Mitina, N. Y., Riabtseva, A. O., Garamus, V. M., Lesyk, R. B., Volyanyuk, K. A., Izhyk, O. M., & Zaichenko, O. S. (2020). Morphology of the micelles formed by a comb-like PEG-containing copolymer loaded with antitumor substances with different water solubilities. Ukrainian Journal of Physics, 65(8), 670. doi:10.15407/ujpe65.8.670
CrossrefGoogle Scholar

Moin, V. M. (1986). Prostoĭ i spetsificheskiĭ metod opredeleniia aktivnosti glutationperoksidazy v éritrotsitakh [A simple and specific method for determining glutathione peroxidase activity in erythrocytes]. Laboratornoe Delo, 12, 724-727. (In Russian)
PubMedGoogle Scholar

Mudd, T. W., & Guddati, A. K. (2021). Management of hepatotoxicity of chemotherapy and targeted agents. American Journal of Cancer Research, 11(7), 3461-3474.
PubMedPMCGoogle Scholar

Mironchik, V. V. (1984). Sposob opredeleniya soderzhaniya gidroperekisey lipidov v biologicheskih tkanyah [Method for determination of lipid hydroperoxides in biological tissues]. Patent SU, (1084681). (In Russian)
Google Scholar

Ozer, J., Ratner, M., Shaw, M., Bailey, W., & Schomaker, S. (2008). The current state of serum biomarkers of hepatotoxicity. Toxicology, 245(3), 194-205. doi:10.1016/j.tox.2007.11.021
CrossrefPubMedGoogle Scholar

Popovych, M. V., Shalai, Ya. R., Hreniukh, V. P., Kulachkovskyy, O. R., Mandzynets, S. M., Mitina, N. O., Zaichenko, O. S., & Babsky, A. M. (2021). Effect of thiazole derivative complexed with nanoscale polymeric carriers on cellular ultrastructure of murine lymphoma cells in vivo. Studia Biologica, 15(2), 15-24. doi:10.30970/sbi.1502.653
CrossrefGoogle Scholar

Shalai, Ya. R., Popovych, M. V., Mandzynets, S. M., Hreniukh, V. P., Finiuk, N. S., & Babsky, A. M. (2021). Prooxidant and antioxidant processes in the liver homogenate of healthy and tumor-bearing mice under the action of thiazole derivatives. The Ukrainian Biochemical Journal, 93(3), 61-67. doi:10.15407/ubj93.03.061
CrossrefGoogle Scholar

Timirbulatov, R. A., & Seleznev, E. I. (1981). Metod povysheniia intensivnosti svobonoradikal'nogo okisleniia lipidsoderzhashchikh komponentov krovi i ego diagnosticheskoe znachenie [Method for increasing the intensity of free radical oxidation of lipid-containing components of the blood and its diagnostic significance]. Laboratornoe Delo, (4), 209-211. (In Russian)
PubMedGoogle Scholar

van Leent, M. M. T., Priem, B., Schrijver, D. P., de Dreu, A., Hofstraat, S. R. J., Zwolsman, R., Beldman, T. J., Netea, M. G., & Mulder, W. J. M. (2022). Regulating trained immunity with nanomedicine. Nature Reviews Materials, 7(6), 465-481. doi:10.1038/s41578-021-00413-w
CrossrefGoogle Scholar

Vieira, D. B., & Gamarra, L. F. (2016). Advances in the use of nanocarriers for cancer diagnosis and treatment. Einstein (Sao Paulo, Brazil), 14(1), 99-103. doi:10.1590/S1679-45082016RB3475
CrossrefPubMedPMCGoogle Scholar

Vilas-Boas, V., & Vinken, M. (2021). Hepatotoxicity induced by nanomaterials: mechanisms and in vitro models. Archives of Toxicology, 95(1), 27-52. doi:10.1007/s00204-020-02940-x
CrossrefPubMedGoogle Scholar

Wondimneh, B., Anekere Dasappa Setty, S., Gebregzabher Asfeha, G., Belay, E., Gebremeskel, G., & Baye, G. (2021). Comparison of hematological and biochemical profile changes in pre- and post-chemotherapy treatment of cancer patients attended at Ayder Comprehensive Specialized Hospital, Mekelle, Northern Ethiopia 2019: a retrospective cohort study. Cancer Management and Research, 13, 625-632. doi:10.2147/CMAR.S274821
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 M. V. Ilkiv, Ya. R. Shalai, Yu. V. Ostapiuk, N. E. Mitina, O. S. Zaichenko, A. M. Babsky

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.